River Publishers Series in Software Engineering

Engineering Agile
Big-Data Systems

Kevin Feeney, Jim Davies, James Welch, Sebastian Hellmann,
Christian Dirschl, Andreas Koller, Pieter Francois and
Arkadiusz Marciniak (Editors)

Ll

'

Q‘
-

River Publishers

Engineering Agile Big-Data Systems

RIVER PUBLISHERS SERIES IN SOFTWARE
ENGINEERING

Indexing: All books published in this series are submitted to the Web of
Science Book Citation Index (BKCI), to CrossRef and to Google Scholar.

The “River Publishers Series in Software Engineering” is a series of
comprehensive academic and professional books which focus on the theory
and applications of Computer Science in general, and more specifically
Programming Languages, Software Development and Software Engineering.

Books published in the series include research monographs, edited
volumes, handbooks and textbooks. The books provide professionals,
researchers, educators, and advanced students in the field with an invaluable
insight into the latest research and developments.

Topics covered in the series include, but are by no means restricted to the
following:

e Software Engineering

e Software Development

e Programming Languages
e Computer Science

e Automation Engineering
e Research Informatics

e Information Modelling

e Software Maintenance

For a list of other books in this series, visit www.riverpublishers.com

Engineering Agile Big-Data Systems

Editors

Kevin Feeney
Trinity College Dublin, Ireland

Jim Davies
Oxford University, United Kingdom

James Welch
Oxford University, United Kingdom

Sebastian Hellmann

University of Leipzig, Germany

Christian Dirschl

Wolters Kluwer, Germany

Andreas Koller

Semantic Web Company, Austria

Pieter Francois
Oxford University, United Kingdom

Arkadiusz Marciniak

Adam Mickiewicz University, Poland

River Publishers

Published, sold and distributed by:
River Publishers

Alsbjergvej 10

9260 Gistrup

Denmark

River Publishers
Lange Geer 44
2611 PW Delft
The Netherlands

Tel.: +45369953197
www.riverpublishers.com

ISBN: 978-87-7022-016-3 (Hardback)
978-87-7022-015-6 (Ebook)

©The Editor(s) (if applicable) and The Author(s) 2018. This book is
published open access.

Open Access

This book is distributed under the terms of the Creative Commons Attribution-Non-
Commercial 4.0 International License, CC-BY-NC 4.0) (http://creativecommons.org/
licenses/by/4.0/), which permits use, duplication, adaptation, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, a link is provided to the Creative Commons license and
any changes made are indicated. The images or other third party material in this book
are included in the work’s Creative Commons license, unless indicated otherwise in the
credit line; if such material is not included in the work’s Creative Commons license and
the respective action is not permitted by statutory regulation, users will need to obtain
permission from the license holder to duplicate, adapt, or reproduce the material.

The use of general descriptive names, registered names, trademarks, service marks,
etc. in this publication does not imply, even in the absence of a specific statement, that
such names are exempt from the relevant protective laws and regulations and therefore
free for general use.

The publisher, the authors and the editors are safe to assume that the advice and
information in this book are believed to be true and accurate at the date of publication.
Neither the publisher nor the authors or the editors give a warranty, express or implied,
with respect to the material contained herein or for any errors or omissions that may have
been made.

Printed on acid-free paper.

Contents

Preface

XV
Acknowledgements xvii
List of Contributors Xix
List of Figures xxi
List of Tables xxix
List of Abbreviations xxxi

1 Introduction

1.1 State of
1.1.1

1.2 State of

1
the Art in Engineering Data-Intensive Systems . . . 2
The Challenge 4
the Art in Semantics-Driven Software Engineering . 5

8

1.2.1 TheChallenge
1.3 State of the Art in Data Quality Engineering 8
1.3.1 TheChallenge 11
14 About ALIGNED 12
1.5 ALIGNED Partners 15
1.5.1 Trinity College Dublin 15
1.5.2 Oxford University — Department of Computer
Science Lo oL 15
1.5.3 Oxford University — School of Anthropology and
Museum Ethnography 15
1.5.4 University of Leipzig — Agile Knowledge Engineering
and Semantic Web (AKSW) 15
1.5.5 Semantic Web Company 16
1.5.6 Wolters Kluwer Germany 16

vi

Contents

1.5.7
1.5.8

Adam Mickiewicz University in Poznan
Wolters Kluwer Poland

1.6 Structure.

ALIGNED Use Cases — Data and Software Engineering

Challenges
Arkadiusz Marciniak and Patrycja Filipowicz
2.1 Introduction,
2.2 The ALIGNED Use Cases
2.2.1 Seshat: Global History Databank
2.2.2 PoolParty Enterprise Application Demonstrator
System
223 DBpedia
2.24 Jurion and Jurion IPGo 0oL L
2.2.5 Health Data Management
2.3 The ALIGNED Use Cases and Data Life Cycle.
Major Challenges and Offered Solutions
2.4 The ALIGNED Use Cases and Software Life Cycle.
Major Challenges and Offered Solutions
2.5 Conclusions
Methodology

James Welch, Jim Davies, Kevin Feeney, Pieter Francois,

Jeremy Gibbons and Seyyed Shah

Introduction oL
Software and Data Engineering Life Cycles

3.1

3.2

33

34

3.5

3.2.1
322

Software Engineering Life Cycle
Data Engineering Life Cycle

Software Development Processes

33.1
332
333

Model-Driven Approaches
Formal Techniques
Test-Driven Development

Integration Points and Harmonisation

34.1 IntegrationPoints
3.4.2 Barriers to Harmonisation
34.3 Methodology Requirements
An ALIGNED Methodology
3.5.1 A General Framework for Process Management . . .

21

21
24
24

26
27
29
31

33

36
39

41

41
43
43
47
49
49
51
52
53
54
55
58
60
60

Contents

3.5.2 An Iterative Methodology and Illustration
3.6 Recommendations.
3.6.1 Sample Methodology
3.7 Sample Synchronisation Point Activities
3.7.1 Model Catalogue: Analysis and Search/Browse/
Explore
3.7.2 Model Catalogue: Design and Classify/Enrich
3.7.3 Semantic Booster: Implementation and Store/Query
3.7.4 Semantic Booster: Maintenance and Search/Browse/
Explore
3.8 Summary
38.1 RelatedWork
39 Conclusions

ALIGNED MetaModel Overview

Rob Brennan, Bojan Bozic, Odhran Gavin and Monika Solanki
4.1 Generic Metamodel
4.1.1 BasicApproach.
4.1.2 Namespacesand URIs
4.1.3 Expressivity of Vocabularies
4.1.4 Reference Style for External Terms
4.1.5 Links with W3CPROV.
4.2 ALIGNED Generic Metamodel
4.2.1 Design Intent Ontology (DIO)
4.3 Software Engineering
4.3.1 Software Life Cycle Ontology
4.3.2 Software Implementation Process Ontology (SIP) . .
4.4 DataEngineering oL
4.4.1 DataLife Cycle Ontology
4.5 DBpedia DatalD (DatalD)
4.6 Unified Quality Reports
4.6.1 Reasoning Violation Ontology (RVO) Overview . .
4.6.2 W3C SHACL Reporting Vocabulary
4.6.3 Data Quality Vocabulary
4.6.4 Test-Driven RDF Validation Ontology (RUT)
4.6.5 Enterprise Software Development (DIOPP)
4.6.6 Unified Governance Domain Ontologies

vii

72
74
74
76

79

viii Contents

4.6.7

4.6.8
4.6.9
4.6.10
4.6.11
4.6.12

5 Tools

Semantic Booster and Model Catalogue Domain
Ontology
4.6.7.1 Model catalogue
4672 Booster.

Kevin Feeney, Christian Dirschl, Katja Eck, Dimitris Kontokostas,
Gavin Mendel-Gleason, Helmut Nagy, Christian Mader and
Andreas Koller

5.1 Model Catalogue
5.1.1 Introduction.
5.1.2 Model Catalogue
5.1.2.1 Architecture

5.1.2.2 Searching and browsing the catalogue
5.1.2.3 Editing the catalogue contents
5.1.24 Administration

5.1.2.5 Eclipse integration and model-driven

development
5.1.2.6 Semantic reasoning
5.1.277 Automation and search
5.1.3 Semantic Booster L.
5.1.3.1 Introduction
5.1.3.2 Semantic Booster
52 RDFUnit
5.2.1 RDFUnit Integration

5.2.1.1 JUnit XML report-based integration
5.2.1.2 Custom apache maven-based integration .
5.2.1.3 The shapes constraint language
(SHACL)
5.2.1.4 Comparison of SHACL to schema definition
using RDFUnit test patterns
5.2.1.5 Comparison of SHACL to auto-generated
RDFUnit tests from RDFS/OWL axioms .

Contents 1X

5.2.1.6 Progress on the SHACL specification and
standardisation process 163
5.2.1.7 SHACL support in RDFUnit 163
5.3 Expert Curation Tools and Workflows 164
5.3.1 Requirements 165
5.3.1.1 Graduated application of semantics 165
5.3.1.2 Graph —object mapping 165

5.3.1.3 Object/document level state management
and versioning 166
5.3.1.4 Object-based workflow interfaces 166
5.3.1.5 Integrated, automated, constraint validation 166
5.3.1.6 Resultinterpretation 167
5.3.1.7 Deferredupdates 167
5.3.2 Workflow/Process Models 167

5.3.2.1 Process model 1 — linked data object

creation 167

5.3.2.2 Process model 2 object — linked data object
updates 168

5.3.2.3 Process model 3 — updates to deferred
updates 168
5.3.2.4 Process model 4 — schema updates 169

5.3.2.5 Process model 5 — validating schema

updates 170
5.3.2.6 Process model 6 — named graph creation . 170

5.3.2.7 Process model 7 — instance data updates
and named graphs 171
5.4 Dacura Approval Queue Manager 172
5.5 Dacura Linked Data Object Viewer 172
5.5.1 CSP Design of Seshat Workflow Use Case 173
5.5.2 Specification 0oL 174
5.6 Dacura Quality Service 176
5.6.1 Technical Overview of Dacura Quality Service . . . 177
5.6.2 Dacura Quality Service API 178
5.6.2.1 Resource and interchange format 178
5622 URIL, 178
5.623 Literals. 178
5.6.2.4 Literaltypes 178
5625 Quads 179
5.6.2.6 POST variables 180

X Contents

5627 Tests
5.6.2.8 Required schematests
5.6.29 Schematests
5.6.2.10 Errors,
5.6.2.11 Endpoints
5.7 Linked Data Model Mapping
5.7.1 Interlink Validation Tool
5.7.1.1 Interlink validation
5.7.1.2 Technical overview
5.7.1.3 Configuration via iv_config.txt

5.7.14 Configuration via external_datasets.txt
5.7.1.5 Execute the interlink validator tool
5.7.2 Dacura Linked Model Mapper
5.7.3 Model Mapper Service
5.7.3.1 Modelling tool — creating mappings
5.7.3.2 Importing semi-structured data with data
harvestingtool
5.8 Model-Driven Data Curation
5.8.1 Dacura Quality Service Frame Generation
5.8.2 Frames for UserInterface Design
5.8.3 SemiFormal Frame Specification.
5.8.4 Frame APl Endpoints

Use Cases

Kevin Feeney, Christian Dirschl, Andreas Koller, James Welch,

Dimitris Kontokostas, Pieter Francois, Sabina Lobocka
and Piotr Bledzki

6.1 Wolters Kluwer — Re-Engineering a Complex Relational

Database Application

6.1.1 Introduction.

6.1.2 Problem Statement

6.1.3 ACtOIS. e

6.1.4 Implementation

6.1.4.1 PoolParty notification extension

6.1.4.2 rsine notification extension

6.1421 Results.

6.1.4.3 RDFUnit for data transformation

6.1.4.4 PoolParty external link validity

6.1.4.5 Statistical overview

193
195
196
197
197
199

201

6.2

6.3

Contents X1

6.1.5 BEvaluation 215
6.1.5.1 Productivity 217
6.152 Quality L. 217
6.1.53 Agility L 217
6.1.5.4 Measuring overall value 218
6.1.5.5 Data quality dimensions and thresholds . . 218
6.1.5.6 Model agility 219
6.1.5.7 Dataagility 219
6.1.6 JURIONIPG 219
6.1.6.1 Introduction 219
6.1.6.2 Architecture 225
6.1.6.3 Tools and features 227
6.1.6.4 Implementation 228
6.1.6.5 Evaluation 232
6.1.6.6 Experimental evaluation 234
Seshat — Collecting and Curating High-Value Datasets with
the Dacura Platform 235
6.2.1 UseCase 237
6.2.1.1 Problem statement 237
6.2.2 Architecture. 238
6.2.2.1 Tools and features 240
6.2.3 Implementation 240
6.2.3.1 Dacura data curation platform 240
6.2.3.2 General description 240
6.2.3.3 Detailedprocess 241
6.2.4 Overview of the Model Catalogue 246
6.2.4.1 Model catalogue in the demonstrator
SYStem 250
6.2.5 Seshat Trial Platform Evaluation 253
6.2.5.1 Measuring overall value 253
6.2.5.2 Data quality dimensions and thresholds . . 253
Managing Data forthe NHS 259
6.3.1 Introduction. 259
632 UseCase, 260
6.3.2.1 Quality 260
6.3.22 Agility 260
6.3.3 Architecture.o 261
6.3.4 Implementation 263

6.3.4.1 Modelcatalogue 263

Xii

Contents

6.4

6.5

6.3.4.2 NIHR health informatics collaborative . . 263
6.3.5 Evaluation, . 268
6.3.5.1 Productivity 269
6.3.52 Quality 271
6.3.53 Agility 272
Integrating Semantic Datasets into Enterprise Information
Systems with Poolparty 272
6.4.1 Introduction. 272
6.4.2 Problem Statement 274
6421 Actors 274
6.43 Architecture. 274
6.4.4 Implementation 276
6.4.4.1 Consistency violation detector 276
6.4.4.2 RDFUnit test generator 2717
6.4.4.3 PoolParty integration 2717
6.4.4.4 Notification adaptations 277
6445 RDFUnit. 278
6.4.4.6 Validationonimport 278
645 Results L. 284
6.4.5.1 RDFconstraintscheck. 285
6.4.52 RDFvalidation 286
6.4.5.3 Improved notifications 289
6.4.5.4 Unified governance 293
6.4.6 Evaluation 295
6.4.6.1 Measuring overallvalue 295
6.4.6.2 Data quality dimensions and thresholds . . 299
6.4.6.3 Evaluationtasks 300
Data Validationat DBpedia 302
6.5.1 Introduction. 302
6.5.2 Problem Statement 302
6.52.1 Actors 303
6.5.3 Architecture. 303
6.5.4 Tools and Features 304
6.5.5 Implementation 305
6.5.6 Evaluation, . 309
6.5.6.1 Productivity 309
6.5.6.2 Quality 310

6563 Agility 312

Contents Xiil

7 Evaluation 305

Pieter Francois, Stephanie Grohmann, Katja Eck, Odhran Gavin,
Andreas Koller, Helmut Nagy, Christian Dirschl, Peter Turchin and
Harvey Whitehouse

7.1 Key Metrics for Evaluation 313
7.1.1 Productivity oL 315

7.12 Quality 316

703 Agility ... 316

7.1.4 Usability 317

7.2 ALIGNED Ethics Processes 318

7.3 Common Evaluation Framework 320
7.3.1 Productivity 320

732 Quality 320

733 Agility ... 321

7.4 ALIGNED Evaluation Ontology 323
Appendix A — Requirements 325
Index 395

About the Editors 399

Preface

As digital processes become more embedded in all facets of life, the ability
to deal with big data has become not just an advantage, but a necessity. The
massive increase in scale of computer systems has led to new challenges for
the builders of software and data systems. The data these systems consume
is heterogeneous and unstructured, requiring innovative approaches in how
to deal with its volume, variety, and velocity. Manual management of data
becomes impossible when dealing with billions or trillions of data points,
necessitating the development of software systems which can automatically
handle this magnitude of information. These systems must capable of
automatic reconfiguration to deal with the changes in data required by the
business needs of users and consumers.

This book outlines a suite of approaches which can be used to deal with
the continuing growth of scale in software and data engineering. By utilising a
lightweight alignment methodology and a variety of semantic web tools, users
can ensure that software and data remain synchronised throughout multiple
development cycles. This approach allows users to give structure to massive
and diverse data collections, giving legibility to data which would otherwise
be practicably unworkable.

The methodology and software developments covered in this book arose
out of the ALIGNED project. ALIGNED — Aligned, Quality-centric Software
and Data Engineering, was a European Union Horizon 2020 project that
ran from February 2015 to January 2018. Partners from five European
Union member states, all with deep interests in the semantic web and its
opportunities, came together to develop new ways of dealing with large scale
big data and semantic web approaches.

The research outlined in this book been incorporated into the Semantic
Web Company’s PoolParty Semantic Suite, the Seshat Global History
Databank, the release process for DBpedia, and two of Wolters Kluwer’s
systems — JURION, a legal portal for German and EU law, and JURION
IPG, a legal-commercial information system. It also led to the spin out
of a start-up from TCD, backed by Atlantic Bridge, called DataChemist.

XV

XVi Preface

Building on lessons learned and tools developed during the project,
DataChemist provides companies with a way to build clean consistent
datasets at large scale from messy, unstructured data. After devising a
schema incorporating semantic intelligence for all the organisation’s data,
artificial intelligence approaches map relationships usually undiscovered
by conventional approaches. DataChemist enables the identification and
visualisation of relationships between entities, at depths unmatched by any
other competing approach, and enforces compliance with previously specified
rules concerning those relationships.

We would like to thank all of the people who were involved in the
ALIGNED project during its inception and when it was running for their
hard work. This book would not have been possible without all of their
contributions. We thank the members of the following groups who have
participated in the project: the School of Computer Science and Statistics,
Trinity College Dublin; the Department of Computer Science and the School
of Anthropology and Museum Ethnography, University of Oxford; the Agile
Knowledge Engineering and Semantic Web Research Group, University
of Leipzig; the Institute of Archaeology, Adam Mickiewicz University in
Poznan; Wolters Kluwer Germany; Wolters Kluwer Poland; and Semantic
Web Company. We are grateful to the European Union for funding the
ALIGNED project under the Horizon 2020 Programme.

Editors:

Dr. Kevin Feeney, Trinity College Dublin, Ireland & DataChemist
Prof. Jim Davies, Oxford University, United Kingdom

James Welch, Oxford University, United Kingdom

Dr.-Ing. Sebastian Hellmann, University of Leipzig, Germany
Christian Dirschl, Wolters Kluwer, Germany

Andreas Koller, Semantic Web Company, Austria

Dr. Pieter Francois, Oxford University, United Kingdom

Prof. Arkadiusz Marciniak, Adam Mickiewicz University, Poland

July 2018

Acknowledgements

In addition to the contributors listed, the editors would like to thank the
ALIGNED team members for their work on the project: Markus Ackermann,
Sunduz Akkus-Keles, Marta Bartkowiak, Martin Brummer, Robert David,
Diego Esteves, Ruth Fiddy, Markus Freudenberg, Robbie Gallagher, Mahek
Hanfi, Katja Harms, Steve Harris, Sebastian Hellmann, Nadine Janicke,
Martin Kaltenbock, Jens Lehmann, Marie Lemon, Michael Leuthold,
Alan Meehan, Declan O’Sullivan, Sandra Prator, Thomas Thurner, Andre
Valdestilhas, Katharina Weissenberg, Simon Westhues, Ornella Zampieri,
and Anrapali Zaveri. The editors would also like to thank the ALIGNED
External Advisory Board: Eelco Visser, Heimo Hanninen, Gerard Kuys,
Christoph Goller, Peter Turchin, and Gabriel Hogan.

The ALIGNED project received funding from the European Union’s
Horizon 2020 re-search and innovation programme under grant agreement
No 644055, the ALIGNED project (www.aligned-project.eu) and from the
ADAPT Centre for Digital Content Technology, funded under the SFI
Research Centres Programme (Grant 13/RC/2106) and co-funded by the
European Regional Development Fund.

XVii

List of Contributors

Piotr Bledzki, Wolters Kluwer Poland, Poland

Bojan Bozic, Trinity College Dublin, Ireland

Rob Brennan, Trinity College Dublin, Ireland

Jim Davies, University of Oxford, UK

Christian Dirschl, Wolters Kluwer Germany, Germany
Katja Eck, Wolters Kluwer Germany, Germany

Kevin Feeney, Trinity College Dublin, Ireland

Patrycja Filipowicz, Adam Mickiewicz University, Poland
Pieter Francois, University of Oxford, UK

Odhran Gavin, Trinity College Dublin, Ireland

Jeremy Gibbons, University of Oxford, UK

Stephanie Grohmann, University of Oxford, UK
Andreas Koller, Semantic Web Company, Austria
Dimitris Kontokostas, University of Leipzig, Germany
Sabina Lobocka, Wolters Kluwer Poland, Poland
Christian Mader, Semantic Web Company, Austria
Arkadiusz Marciniak, Adam Mickiewicz University, Poland
Gavin Mendel-Gleason, Trinity College Dublin, Ireland
Helmut Nagy, Semantic Web Company, Austria

Seyyed Shah, University of Oxford, UK

Monika Solanki, University of Oxford, UK

Peter Turchin, University of Connecticut, USA

James Welch, University of Oxford, UK

Harvey Whitehouse, University of Oxford, UK

X1X

List of Figures

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5

Figure 3.6

Figure 3.7
Figure 3.8

Figure 3.9
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4

Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10

Figure 4.11

Seshat World Sample 30. 25
PoolParty Application Suite. 26
DBpedia Extraction Pipeline. 28
JurionIPG. 0oL 30
The waterfall process for software development. . . 43
A modified waterfall process. 44
An iterative software development process. 45
A data engineering lifecycle. 48
Comparison of terminology in software and data
engineering. 56
An incomplete grid for analysing integration

POINtS. 62
A parallel life cycle with synchronisation. 64
Model catalogue interface: browsing the SESHAT
codebook. o 70
Example semantic booster system with annotations. 73
The ALIGNED metamodel layers. 80
The Design Intent Ontology (DIO). 84
The Software Life cycle Ontology. 85
Core Concepts of the Software Implementation
Process (SIP) Ontology. 86
Generic data life cycle metamodel (DLO). 87
The DatalD Ontology. 88
Reasoning Violation Ontology (RVO) Base Classes. 90
RVO Instance and Schema Violation Classes. . . . 91
Resulting RDF Graph after Validation. 91
Data model showing the main relevant classes and
theirrelations. L. 94
Using the property prov:wasDerivedFrom to interrelate
quality metrics and other quality statements. 95

XX1

XXii

Figure 4.12

Figure 4.13
Figure 4.14
Figure 4.15
Figure 4.16
Figure 4.17
Figure 4.18
Figure 4.19
Figure 4.20
Figure 5.1

Figure 5.2

Figure 5.3
Figure 5.4

Figure 5.5
Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

Figure 5.10
Figure 5.11
Figure 5.12
Figure 5.13
Figure 5.14
Figure 5.15
Figure 5.16
Figure 5.17

Figure 5.18
Figure 5.19

List of Figures

The ALIGNED domain-specific ontology for
E-research in the Social Sciences and Humanities. .
The Seshat ontology.
The Dacuraontology.
Dacura console usage example.
New candidate example part 1.
New candidate example part 2.
The Crowd-sourced Public Datasets ontology. . . .
The Organisation of PROV.
An RDF Graph Describing Eric Miller.
The layered architecture of the Model Catalogue.
Core concepts — data model components — within
the Model Catalogue.
A model showing the datatypes represented in the
Model Catalogue.
Model Catalogue interface: browsing the Seshat
codebook. oo
Model Catalogue interface: data element view. . . .
Model Catalogue interface: keyword search for a
data item.
Model Catalogue interface: editing a data item.
Model Catalogue Eclipse Integration.
Screenshot showing RDF representation of catalogue
contents.o
A Booster specification edited with the

Eclipse IDE.
The Booster generation pipeline.
The architecture of a Booster information system. .
The Booster Web-based user interface.
Generating Booster systems from Model Catalogue
models.
Excerpt from the Booster system generated from
Prov-DM Core.
Model Catalogue information in the Booster
interface. L o
Semantic Booster — generation menu in the Eclipse
IDE.
Semantic Booster — generated R2ZRML file.

Booster specification with semantic annotations. . .

100
100
102

128

Figure 5.20

Figure 5.21
Figure 5.22
Figure 5.23

Figure 5.24

Figure 5.25
Figure 5.26
Figure 5.27
Figure 5.28

Figure 5.29

Figure 5.30
Figure 5.31

Figure 5.32
Figure 5.33
Figure 5.34
Figure 5.35
Figure 5.36
Figure 5.37
Figure 5.38
Figure 5.39

Figure 5.40
Figure 5.41
Figure 5.42
Figure 5.43

Figure 5.44
Figure 5.45

List of Figures

Booster user interface showing semantic annotations
from the Model Catalogue.
Semantic Booster Web-based editor.
Default Booster data explorer.
D2RQ and SNORQL for exploration of Semantic
Booster data.
d3sparql for visual exploration of Semantic Booster
data.
RDFUnit Web interface.
RDFUnit architecture.
RDFUnit report from the IntelliJ IDE.
Example Bamboo overview from an RDFUnit JUnit
XMLreport.
Custom JUnit integration with RDFUnit as a library
for JURION Use Case in ALIGNED.
Overview for Fundamental Concepts of SHACL.

Excerpt of an EARL test report for the SHACL test

Key to workflow/process models.
Process Model 1 — Object Creation.
Process Model 2 — Object Update.

Process Model 3 — Updates to deferred update. . . .
Process model 4 — Schema Updates.
Process model 5 — Validating schema updates. . . .
Process Model 6 — Named Graph Creation.
Process model 7 — instance data updates in named

Screenshot of Dacura Linked Data Approval Queue
Manager Tool.
Screenshot of Dacura Linked Data Object Viewer
Tool showing version browsing toolbar.
Automatically generated workflow diagram from
CSPm specification.
Dacura platform Quality Test Interface that calls the
DQS.
Interlink Validation Process.
Operation of the Interlink Validation Tool. The
arrows indicate the flow of information/data among
the different components.

XX1il

150
152
153

154

155
156
157
159

159

160
162

164
168
168
169
169
170
171
171

172

172

173

175

177
186

Figure 5.46
Figure 5.47

Figure 5.48

Figure 5.49

Figure 5.50

Figure 5.51
Figure 6.1
Figure 6.2

Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7
Figure 6.8
Figure 6.9

Figure 6.10
Figure 6.11

Figure 6.12
Figure 6.13

Figure 6.14
Figure 6.15

Figure 6.16
Figure 6.17

Figure 6.18

Figure 6.19

xxiv List of Figures

Example of seshat code book page.
Importing a model from semi-structured HTML
SOUICE. . v v v v v v v e e e e e e e
Process for associating property definitions in a
model with a pattern within a semi-structured
HTMLopage..
Process for using patterns to extract data from
semi-structured html pages.
Screenshot showing results of automated importing
of semi-structured HTML data into structured

Graphical Representation of ontology fragment. . .
JURION Content Pipeline and Semantic Search. . .
Distribution of the Linked Data stack components
w.r.t. Linked Data Publishing cycle.
ALIGNED Use Cases.
Notification message.
Transformation process with RDFUnit.
RDFUnit results.
Jenkins-CI Test Report.
Validation Data stored for Analysis.
Example defect: the Image file of the external
source does not exist anymore.
Validation Results.
Statistical checks.00
JURION: Overview.
JURION Content Pipeline, showing ALIGNED
tools integrated with existing functionality and
datasets.
IPG problem statement.
Screenshot of a subset of the IPG model in the
Model Catalogue.
The Eclipse-based Booster tool.
Screenshot of the Booster administrator interface
for the JURION IPG system.
Results of using the RDFUnit tool against data from
a Semantic Booster database.
Jurion IPG unsolvable issues.

224

Figure 6.20
Figure 6.21

Figure 6.22
Figure 6.23

Figure 6.24
Figure 6.25
Figure 6.26

Figure 6.27

Figure 6.28
Figure 6.29
Figure 6.30
Figure 6.31
Figure 6.32
Figure 6.33
Figure 6.34
Figure 6.35
Figure 6.36
Figure 6.37
Figure 6.38

Figure 6.39
Figure 6.40

List of Figures XXV
Jurion IPG use-case architecture showing integration
across all major project tools and partners. 227
Integration Paradigms and vocabularies supported
by ALIGNED tools and platforms. 228
Complexity of the Jurion IPGuse case. 229
Integrating Semantic Booster and the Model
Catalogue. 229
IPG Data Error detection and correction using
Dacura. 230
Ontology generated from IPG SQL database by
Dacura’s Model Mapper Tool. 231
Using Dacura’s curation tools to analyse the IPG
datamodel. 231
Seshat Use Case Trial System Architecture,
showing the tools provided to different Seshat users,
the use of ALIGNED integration standards and
interoperation paradigms. 238
Features of the ALIGNED tools used to support the
Seshattrials. 240
The Dacura platform in the context of the
ALIGNED Seshatusecase. 241
Screenshot of TCD’s Seshat Data Entry/Validation
tool in Demonstrator System. 242
Modifying Seshat Schema. 242

Screenshot of TCD’s Schema Management
component using the prototype integrity enforcement

framework in the Demonstrator System. 243
Screenshot of TCD’s Schema Validation Service in

Demonstrator System. 244
Screenshot of TCD’s Wiki Export Component. . . . 245
Seshat Errors per variable. 246
Managing Complex Workflows. 247
Importing data to Seshat from DBpedia with

Unified Views. 248
Publication. 248
Services to support software engineering. 249

The Model Catalogue user interface showing a
section of the code book.

XXVi

Figure 6.41

Figure 6.42

Figure 6.43
Figure 6.44

Figure 6.45
Figure 6.46

Figure 6.47
Figure 6.48

Figure 6.49
Figure 6.50
Figure 6.51
Figure 6.52
Figure 6.53
Figure 6.54

Figure 6.55
Figure 6.56
Figure 6.57
Figure 6.58
Figure 6.59
Figure 6.60
Figure 6.61
Figure 6.62
Figure 6.63
Figure 6.64

Figure 6.65

Figure 6.66

List of Figures

Screenshot of the Model Catalogue Web interface,
showing the ‘tree view’ and a section of the Seshat
codebook. 0oL
Screenshot of the Model Catalogue Web interface
showing the comparison between two versions of
the Seshat codebook.
Seshat: Comparison.
Health Informatics Collaborative system
architecture.o L.
The front page of the catalogue interface.
Data comparison in the Health Informatics
Collaborative.
Data elements in the UK 100,000 Genomes Project
catalogue.
An example shopping cart in the Health Data
Finder.
The model catalogue in the Health Data Finder.
Dataset metadata in the NIHR Health Data Finder. .
Screenshot from the NIHR HIC Model Catalogue. .
PoolParty Architecture.
Import dialogue.
Consistency constraint violations as reported by
RDFUnit.
High level technical overview.
RDF validation conformance checks.
Repair strategy for the constraint check.
RDF Validation Screenshot.
Improved notification system.
UnifiedViews pipeline for PoolParty use case. . . .
Unified Governance Search.
Issue Integration reporting dialogue.
Issue Integration created dialogue.
Semantic search over development artefact — Graph
Search.. L.
Details view of specific issue with the option to
select similarity algorithm — PP Recommender.
DBpedia Use Case Trial System Architecture,
showing the ALIGNED tools used in different
stages of the DBpedia data workflow.

266

267
267
268
271
275

Figure 6.67

Figure 6.68
Figure 6.69

Figure 6.70

Figure 6.71
Figure 6.72
Figure 6.73

Figure 6.74
Figure 6.75
Figure 7.1
Figure 7.2
Figure A.1

List of Figures XXvil

ALIGNED Tools and Features used in the DBpedia

trial platform. L. 305
Instance data validation report with RDFUnit. . . . 305
Mapping validation report with RDFUnit

andRML. 306
The new Mappings UI (using RDFUnit for
validating mappings). 307
DBpedia Link Viztool. 307
SUMMR Mapping tool. 308
Active extraction monitoring (here: extraction
summaries forwarded to Slack). 308
DBpedia download page through DatalD. 309
Dockerised DBpedia. 309
The ALIGNED Evaluation Framework. 314
ALIGNED metrics ontology — classes. 324
Seshat Architecture for Month 19 Demo. 358

List of Tables

Table 3.1

Table 4.1
Table 4.2

Table 4.3
Table 4.4
Table 4.5
Table 4.6
Table 4.7
Table 4.8
Table 4.9
Table 4.10
Table 4.11
Table 5.1
Table 5.2

A usecase-oriented synchronisation table for the

ALIGNED project 66
Generic metamodel namespace declarations 81
Domain-specific metamodel namespace

declarations oL 97
JURIONactors 98
JURION entities 98
JURION activities 99
DBpediaactors 106
DBpediaentities 107
DBpedia activities 107
PoolParty actors 110
PoolParty entities 110
PoolParty activities 111
CSPm specification of workflow 174
Dacura Quality Service Frame Grammar 198

XX1X

List of Abbreviations

ACID
AKSW

CI
CIDE
CMS
CSP
CSPDO
CWA
D2RQ

DC
DCAT
DIEF
DIO
DIOPP
DLO
DQS
DQV
DSL
DTD
EBNF
EIPDM

ELV
EMF
ETL
FOAF
FOL
GIS
GUID

Atomic, Consistent, Isolated, Durable

Agile Knowledge Engineering and Semantic Web
group, University of Leipzig

Continuous integration

PoolParty Confluence/JIRA Data Extractor
content management system
Communicating Sequential Processes
Crowd-sourced Public Datasets

Closed World Assumption

D2RQ Platform, a system for accessing relational
databases as virtual, read-only RDF graphs
Dublin Core

W3C Data Catalog Vocabulary

DBpedia Information Extraction Framework
Design Intent Ontology

Enterprise Software Development Ontology
Data Life Cycle Ontology

Data Quality Service

Data Quality Vocabulary

domain specific language

Document Type Definition

extended Backus-Naur form

Enterprise Information Processing Domain-specific
Meta-Model

External Link Validation

Eclipse Modeling Framework

Extract Transform Load

Friend Of A Friend

First Order Logic

geographic information system

globally unique identifier

XXX1

xxxii List of Abbreviations

HIC
IBIS
Icv
IRI
JSON
KPI
LD
LOD
MDA
MDE
MDSE
MIREOT

MUTO
NESSI

NIHR
OMG
ORE
ORM
OWL
PCI
PP
PPT
PPX
PROV
R2RML
RDF
RDFS
REST
RF
RUT
RVO
SE
SEON
SHACL
SIP
SKOS
SLO

Health Informatics Collaborative
Interactive Intent-Based Illustration
Integrity Constraint Validator
International Resource Identifier
JavaScript Object Notation

key performance indicator

Linked Data

Linked Open Data

Model-driven architecture

Model-driven engineering

Model-driven software engineering
Minimum information to reference an external
ontology term

Modular and Unified Tagging Ontology
Networked European Software and Services
Initiative

National Institute for Health Research
Object Management Grou

Ontology Repair and Enrichment
Object-relational mapping

Web Ontology Language

Portal Content Interface

PoolParty

PoolParty Thesaurus Manager
PoolParty Extractor

W3C PROV Ontology

RDB to RDF Mapping Language
Resource Description Framework

RDF Schema

Representational State Transfer

Repair Framework and Notification
Test-Driven RDF Validation Ontology
Reasoning Violations Ontology
Software engineering

Software Evolution Ontologies

Shapes Constraint Language

Software Implementation Process Ontology
Simple Knowledge Organisation System
Software Lifecycle Ontology

SME
SNORQL
SOAP
SPARQL
SPIN
SUS
SWC
SWO

UL

UML
UNA
URI
WKD
XLST
XML
XSD

List of Abbreviations

Small and medium-sized enterprises

front-end for exploring RDF SPARQL endpoints
Simple Object Access Protocol

SPARQL Protocol and RDF Query Language
SPARQL Inferencing Notation

System Usability Scale

Semantic Web Company

Software Ontology

University of Leipzig

Unified Modeling Language

Unique Name Assumption

Uniform Resource Identifier

Wolter Kluwer

Extensible Stylesheet Language Transformations
eXtensible Markup Language

XML Schema Definition

XXX1ii

1

Introduction

To be effective, data-intensive systems require extensive ongoing customi-
sation to reflect changing user requirements, organisational policies, and the
structure and interpretation of the data they hold. Manual customisation is
expensive, time-consuming, and error-prone. In large complex systems, the
value of the data can be such that exhaustive testing is necessary before
any new feature can be added to the existing design. In most cases, precise
details of requirements, policies and data will change during the lifetime of
the system, forcing a choice between expensive modification and continued
operation with an inefficient design.

In 2013, the Networked European Software and Services Initiative
(NESSI) identified “Collaborative Service Engineering based on convergence
of software and data” as an EU research priority. Information systems are
composed of software and data components that must co-evolve as require-
ments change. In existing development methodologies, software and data
engineering are considered as separate concerns.! New techniques and tools
are required to support the development of effective solutions in the pres-
ence of changing requirements, policies, schemas, and data. NESSI also
identified “Integration of Big Data Analytics into Business processes” as a
research priority, emphasising the importance of data-centric or “Big Data”
approaches. This serves only to emphasise the relative value of the data and
the need for agility. Big Data approaches involve the imposition of multiple,
changing models upon unstructured heterogeneous Linked Data. A single
static data model will not suffice, and the manual development of customised
code against multiple changing models is unsustainably expensive. Auto-
matic support for customisation, driven by domain models of knowledge and
requirements, is an essential component of effective, sustainable Big Data
solutions, building on underlying technology from both domains.

'A. Cleve, T. Mens, J-L. Hainaut, Data-Intensive System Evolution, IEEE Computer,
August 2010.

2 Introduction

In software engineering, there are meta-modelling frameworks of the kind
that support the Unified Modeling Language (UML), allowing engineers to
describe and design features that work for whole classes or families of data
models, rather than for a specific instance. There is widespread language sup-
port for higher-order programming, in which programs are managed as data.
There are mature formal program specification approaches and languages
that enable programs to be described mathematically and to be provably
correct. We have model-driven, product-line, and generative programming
techniques, in which a single set of validated transformations is used to
produce or customise many different applications or many different versions
of the same application. However, evidence is lacking for the effectiveness of
these techniques except in narrow domains.”

In data engineering, we have meta-formats such as eXtensible Markup
Language (XML), allowing us to describe and design data formats and repre-
sentations. We have languages such as the Resource Description Framework
(RDF) for recording and communicating relationships between different data
items; Resource Description Framework Schema (RDFS) for detailing rela-
tionships between classes of entities; the Web Ontology Language (OWL)
for describing domain knowledge, axioms, and inference rules; and pow-
erful, scalable tools for applying knowledge and rules to large collections
of data and metadata. These tools overlap with the expressivity of UML,
but in practice, the tractability of code or transformation generation and the
ability to reuse data from these syntax-focussed expressions are much weaker
than those of native semantic models. More important is perhaps the skills
and engineering culture gaps that divide the software and data engineering
communities. Common tools that bridge this gap will lead to a deeper shared
understanding.

The challenge is to bring these aspects together in a practical, proven
methodology, which can be instantiated in software, and which enables
the effective, sustainable development of large, complex, and data-intensive
systems.

1.1 State of the Art in Engineering Data-Intensive Systems

While the topic of co-evolution between software artefacts and other artefacts
produced during software development is an active area of research, its

2J. Hutchinson et al. “Model-driven engineering practices in industry,” Software
Engineering (ICSE), pp. 633,642, 21-28, 2011.

1.1 State of the Art in Engineering Data-Intensive Systems 3

application to data-intensive software systems is not trivial.> Although the
research focus had been fixed firmly on software interacting with traditional
data environments of relational databases* and data warehousing,’ recently,
a more technology-independent approach has emerged. Mori and Cleve®
introduced the notion of data-intensive self-adaptive systems as data-intensive
systems able to perform context-dependent data access. They proposed adop-
tion of a framework that supports feature-based data tailoring by means of
a filtering design process and a run-time filtering process. Manousis et al.’
introduced a method for the adaptation of data-intensive ecosystems based
on three algorithms that (i) assess the impact of a change, (ii) compute the
need of different variants of an ecosystem’s components, depending on policy
conflicts, and (iii) rewrite the modules to adapt to the change.

Naturally, a prerequisite to assessing impact is the ability to repre-
sent the interdependency of the artefacts in a machine-processable manner.
Terwilliger et al.® stated that “bi-directional mappings” are emerging as a
mechanism in the software engineering domain to represent such interde-
pendency. They also identify, characterise, and compare a representative
set of tools implementing the approach. Compatible with the concepts, but
emerging from the data community, are semantic mappings, where progress
has been made in representing and characterising complex mappings through
correspondence patterns.’

3A. Serebrenik & T. Mens. Emerging trends in software evolution. In Evolving software
systems, pp. 329-332, Berlin: Springer, 2014.

4A. Cleve, T. Mens, and J.-L. Hainaut, Data-intensive system evolution, [IEEE Computer,
vol. 43, no. 8, pp. 110-112, 2010.

A. Abell6, J. Darmont, L. Etcheverry, M. Golfarelli, J. Mazén, F. Naumann, T. Pedersen
et al. “Fusion cubes: Towards self-service business intelligence.” International Journal of Data
Warehousing and Mining (IIDWM) 9, no. 2, pp. 66-88, 2013.

M. Mori, A. Cleve, Towards Highly Adaptive Data-Intensive Systems: A Research
Agenda, Advanced Information Systems Engineering Workshops, Lecture Notes in Business
Information Processing Volume 148, pp. 386401, 2013.

"P. Manousis, P. Vassiliadis, G. Papastefanatos, Automating the Adaptation of Evolv-
ing Data-Intensive Ecosystems, Conceptual Modelling, Lecture Notes in Computer Science
Volume 8217, pp. 182-196, 2013.

8J. F. Terwilliger, A. Cleve, C. A. Curino, How Clean Is Your Sandbox?, Theory and
Practice of Model Transformations, Lecture Notes in Computer Science Volume 7307,
pp- 1-23, 2012.

°J. Keeney, A. Boran, I. Bedini, C. Matheus and P. Patel-Schneider, “Approaches to Relating
and Integrating Semantic Data from Heterogeneous Sources.” In Proc. 2011 IEEE/WIC/ACM
International Conferences on Web Intelligence and Intelligent Agent Technology-Vol 01,
pp- 170-177. IEEE Computer Society, 2011.

4 Introduction

Empirical studies and research that help to motivate the need for strongly
integrated system co-evolution are also emerging. Goeminne et al.'? reported
on early results obtained in the empirical analysis of the co-evolution between
code-related and database-related activities of contributors in a large open
source data-intensive system. Their study investigated questions such as:
what is the effect of introducing a new database technology? And how do
developers divide their effort between the activity types involved in evolving
a data-intensive system? Papastefanatos et al.'! proposed a set of graph-
theoretic metrics for the prediction of impact of schema evolution upon ETL
software and evaluated them over seven systems. Meurice and Cleve,'? in
a short study, described the type of schema evolution that emerged in four
systems over a period of months and the utility of having a tool to aid
the analysis. Sen and Gotlieb'® proposed a methodology for testing data-
intensive systems and present results achieved when applied to a case study
in the Norwegian Customs and Excise governmental department.

1.1.1 The Challenge

There is a body of research studying data-intensive systems, from a unified
point of view, but the focus to date has been largely on relational data models.
These are, of course, important for current enterprise systems. However, the
Web is currently undergoing a data revolution, where machine-to-machine
communication will eventually dominate over human-centric, document-
oriented Web traffic. A key driver of this data revolution is graph-based data,
whether in the form of the Facebook Graph API'* for searching their social
graph, Google, Bing, Yandex and Yahoo’s schema.org for annotating Web
pages with graph-based metadata or the W3C’s Linked Open Data (LOD)

'"M. Goeminne, A. Decan, T. Mens, (2014, February). Co-evolving code-related and
database-related changes in a data-intensive software system. In Proceedings of the IEEE
CSMR-WCRE 2014 Software Evolution Week.

1G. Papastefanatos, P. Vassiliadis, A. Simitsis, Y. Vassiliou, Metrics for the Prediction of
Evolution Impact in ETL Ecosystems: A Case Study, Journal on Data Semantics, Volume 1,
Issue 2, pp. 75-97, August 2012.

2L, Meurice & A. Cleve, DAHLIA: A Visual Analyzer of Database Schema Evolution,
CSMR-WCRE 2014, Belgium, 2014.

138, Sen and A. Gotlieb, Testing a Data-intensive System with Generated Data Interactions:
The Norwegian Customs and Excise Case Study, 25th International Conference on Advanced
Information Systems Engineering (CAISE’13) (2013).

“https://developers.facebook.com/docs/graph-api/

1.2 State of the Art in Semantics-Driven Software Engineering 5

community!> that builds on over a decade of semantic Web research. For
the next generation of Web-scale data-intensive systems, it is not enough to
transfer legacy data models to the cloud. Instead, the research on controlled
co-evolution of software and data must be extended to deal natively with
Linked Data-based systems.

Many of the techniques developed for traditional data-intensive systems,
such as data transformation generation, are still relevant, but Linked Data
versions must be developed. The richer models of semantic, RDF-based
methods offer new opportunities: for leveraging domain knowledge expressed
as ontologies; applying semantic mapping techniques for correspondence
classification to schema evolution evaluation (to drive controlled transforma-
tions for programs, queries, and data); and modelling the software and data
life cycles in a machine-computable way, enabling heterogeneous tools to
collaborate in combined software and data engineering tool chains.

1.2 State of the Art in Semantics-Driven Software
Engineering

Model-driven software engineering is the automatic production of software
artefacts from abstract models of structure and functionality. This approach
can reduce the costs of development and maintenance and increase the
quality and reliability of the software produced. It has been adopted for
the development of control and embedded systems,'® for aspects of data
warehousing,!” and for service implementations.'® It has yet to achieve any
widespread adoption outside these domains. Multiple reasons are suggested
by Den Haan,' but the two most common explanations are a lack of adequate

Bhttp://www.w3.org/standards/semanticweb/data

16D, Histbacka, T. Vepsiliinen, S. Kuikka, Model-driven development of industrial process
control applications, Journal of Systems and Software, Volume 84, Issue 7, pp. 1100-1113,
July 2011.

'7J. Mazén, J. Trujillo, M. Serrano, and M. Piattini. “Applying MDA to the develop-
ment of data warehouses.” In Proceedings of the 8th ACM international workshop on Data
warehousing and OLAP, pp. 57-66. ACM, 2005.

18], Bezivin, S. Hammoudi, D. Lopes, and F. Jouault. “Applying MDA approach for web
service platform.” In Enterprise Distributed Object Computing Conference, 2004. EDOC
2004. pp. 58-70. IEEE, 2004.

197. Den Haan, “8 Reasons Why Model-Driven Approaches (will) Fail”. http://www.infoq.
com/articles/8reasons-why-MDE-fails, July 2008.

6 Introduction
tool support?®
methodology.

Existing tools are focussed on the production of structural, static compo-
nents of an implementation. Beyond a handful of tightly constrained domains,
these tools lack any means to model and generate anything beyond the most
basic aspects of functionality.

Technology platforms are available to support more general model trans-
formation and code production. Many of these have been implemented in
the widely used Eclipse environment and address the Object Management
Group’s (OMG) Model-Driven Architecture (MDA) proposal,?! with tools
for domain-specific modelling,”?> developing model transformations,?® and
performing model edits and manipulations.?*

The Atlas Transformation Language, in particular, is based on the Query
View Transformation proposal®® for transformation languages and acts on
models written in UML: the de facto industry standard for software sys-
tems modelling. Techniques have been developed that support genericity
and bi-directional transformation,?® with the aim of facilitating round-trip
engineering and iterative development. Specialised tools, such as Stratego,?’
have been developed for program transformation or meta-programming.

and, as a consequence, a lack of any proven, empirically tested

205, Whittle, J. Hutchinson, M. Rouncefield, B. Hakan, and R. Heldal. “Industrial Adop-
tion of Model-Driven Engineering: Are the Tools Really the Problem?” In Model-Driven
Engineering Languages and Systems, pp. 1-17. Springer, 2013.

2IA. Kleppe, J. Warmer, W. Bast, “M.D.A. Explained. The model driven architecture:
practice and promise”, 2003.

22F. Jouault, J. Bézivin, and 1. Kurtev, “TCS: a DSL for the Specification of Textual Concrete
Syntaxes in Model Engineering,” in Procs of the 5th Int. Conf. on Generative programming
and Component Engineering (GPCE ’06). New York, NY, USA: ACM, pp. 249-254, 2006.

2F, Jouault, F. Allilaire, J. Bézivin, L. Kurtev, ATL: A model transformation tool, Science of
Computer Programming

2*M. Del Fabro, J. Bézivin, and P. Valduriez. “Weaving Models with the Eclipse AMW
plugin.” In Eclipse Modelling Symposium, Eclipse Summit Europe (2006).

MG, Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification,
OMG Document formal/2011-01-01, Object Management Group, http://www.omg.org/spec/
QVT/1.1/ (2011).

28], Cuadrado, E. Guerra, and J. De Lara. “Generic model transformations: write once, reuse
everywhere.” In Theory and Practice of Model Transformations, pp. 62—77, Springer Berlin
Heidelberg, 2011.

YE. Visser, Program transformation with Stratego/XT, in: Domain-Specific Program Gen-
eration, Vol. 3016 of Lecture Notes in Computer Science, pp. 216238, Springer Berlin
Heidelberg, 2004.

1.2 State of the Art in Semantics-Driven Software Engineering 7

There has been work on mappings between the ISO/IEC 11179 metadata
registry standard and description logics, such as OWL,?® but this has focussed
purely on the representation of modelling constructs, with no consideration
of the implications for software and data engineering. Similarly, within the
OMG, efforts have focussed on how to enable the use of UML notation and
tools for ontology modelling.?” There has been related work on representing
systems specifications as ontologies for project planning that draws on the
OMG MDA specification as inspiration.*”

The most significant effort to date on the incorporation of semantic
models into software engineering has been the FP7 MOST project (2007-
2011), which investigated the utilisation of ontologies in an MDA approach.>!
Their work developed new techniques for applying semantic reasoners to
MDA tasks,?? such as model checking, specification validation, or supporting
domain specific languages (DSLs) with strong semantics. Much effort was
focussed on model translation or bridging®® between non-mainstream UML
variants such as grUML and OWL ontologies. In a 2013 update,** one of
the project’s principal investigators laid out a vision for Ontology-Driven
Software Engineering that targets 2030 as the year when this technology
will be mature. This timescale indicates the difficulty of building formal
ontologies into the heart of software engineering. It also distinguishes this
work from the approach of ALIGNED, which is based on a more lightweight
Linked Data methodology that aims to enable reuse of rich dataset and meta-
data descriptions by software engineering tools while supporting co-evolution

BC. Tao, G. Jiang, W. Wei, H. R. Solbrig, and C. G. Chute. “Towards semantic-web based
representation and harmonization of standard meta-data models for clinical studies.” AMIA
Summits on Translational Science Proceedings: 59 (2011).

2S. Brockmans, R. M. Colomb, P. Haase, E. F. Kendall, E. K. Wallace, C. Welty, G. Tong
Xie. A Model Driven Approach for Building OWL DL and OWL Full Ontologies, ISWC
2006.

M. Lika and P. Navrat, An Approach to Project Planning Employing Software and
Systems Engineering Meta Model Represented by an Ontology, ComSIS Vol.v7, No. 4,
December 2010.

3'http://www.slideshare.net/malgorzatasiwiec/ontologies-and-software-technologies-
the-most-project.

32http://www.slideshare.net/fparreiras/filling-the-gap-between-semantic-web-owl-ont
tology-technology-andmodel-driven-engineering-mde-mdsd-mda.

33T, Walter, Bridging Technological Spaces: Towards the Combination of Model-Driven
Engineering and Ontology Technologies, PhD thesis, Universite Koblenz-Landau, 2011.

3U. Assmann, Current Trends and Perspectives in Ontology-Driven Software Develop-
ment, August 2013, available at http://www.computational-logic.org/content/events/iccl-ss-
2013/download/assmann-1-odsd.pdf.

8 Introduction

of software and data assets. In 2012, Katasonov>> pointed the way forward,
“beyond model checking and transformations”, with a call to apply semantics
in software engineering for its known capabilities in describing software
and data assets, as well as semantic search and multi-layered modelling of
systems.

1.2.1 The Challenge

There is a large body of research on model-driven engineering (MDE), and,
in principle, its benefits are clear, especially for evolvable systems. Despite
this and the high-profile OMG MDA initiative of the early 2000s, it has
not succeeded in proliferating to the mainstream of software engineering
practice other than in embedded systems and certain niches. Modern data-
intensive systems are characterised by the need to meet changing application
requirements and to integrate multiple data sources whose ownership may lie
outside the authority of the application developers. The goal of the ALIGNED
project was to change this by collecting quantitative evidence of the benefits
of deploying model-driven technology in enterprise information processing
systems. The basis of this was aggregating formal system specifications
for both data and software, based on a common set of metamodels or
vocabularies.

There is already evidence that ontologies or semantic models can provide
benefit as input domain models for model-driven development. Despite this,
semantic data engineering is a marginal activity at the periphery of software
engineering. There is an opportunity to create a more holistic view of the
data-intensive system engineering process. By modelling design intents, life
cycles, and inter-life cycle communication, it was possible to better integrate
the tools and methods used in the software and data engineering processes,
in order to enable loosely coupled co-evolution of systems and external Web
data resources.

1.3 State of the Art in Data Quality Engineering

Data quality engineering is an issue that exists independently of data rep-
resentation and technology and arises wherever data are stored for incor-
poration into business processes. However, in general, the older and more

35 A. Katasonov, Ontology-driven software engineering: Beyond model checking and trans-
formations, International Journal of Semantic Computing, Vol. 6 (2012) No. 2, pp. 205-242,
2012.

1.3 State of the Art in Data Quality Engineering 9

established a language and technology, the more mature the tools, standards,
and processes are for dealing with data quality engineering issues. For exam-
ple, where XML is concerned, Schematron® is an ISO standard for validation
and quality control of XML documents based on XPath and XSLT. Similarly,
in database research, there are related approaches to formulate common
integrity constraints®” using First Order Logic (FOL). The work of Fan,3®
for example, uses FOL to describe data dependencies for quality assessment
and suggests repairing strategies. The development of similar mechanisms for
RDF is of crucial importance to provide solutions to allow the use of RDF in
settings that require either high-quality data or at least an accurate assessment
of its quality.

Several approaches for assessing the quality of Linked Data have been
proposed, which can be broadly classified into (i) automated;*® (ii) semi-
automated;*” and (iii) manual*' methodologies. These approaches introduce
systematic methodologies for assessing the quality of an RDF dataset at the
process level. Additionally, there have been efforts to assess the quality of
large-scale Web data,** which included the analysis of 14.1 billion HTML
tables from Google’s general-purpose Web crawl in order to retrieve tables
with high-quality relations. Similarly, Hogan et al.*’ assessed the quality
of published RDF data. This study described the errors characteristically
associated with publishing RDF data, catalogued the available techniques
to improve the quality of structured data on the Web, and analysed each
technique’s effectiveness. In a recent study, 4 million RDF/XML documents
were analysed, which provided insights into the level of conformance these

38http://www.schematron.com/

37A. Deutsch. Fol modelling of integrity constraints (dependencies). In L. LIU and
M. OZSU, editors, Encyclopedia of Database Systems, pp. 1155-1161, Springer US, 2009.

33W. Fan. Dependencies revisited for improving data quality. In Proceedings of the Twenty-
seventh ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
ACM, pp. 159-170, New York, NY, USA, 2008.

%C. Guéret, P. T. Groth, C. Stadler, and J. Lehmann. Assessing linked data mappings using
network measures. In Proceedings of the 9th Extended Semantic Web Conference, volume
7295 of LNCS, pp. 87-102. Springer, 2012.

“0A. Flemming. Quality characteristics of linked data publishing datasources. MSc thesis,
Humboldt-Universitét Berlin, 2010.

41C. Bizer and R. Cyganiak. Quality-driven information filtering using the WIQA policy
framework. Web Semantics, 7(1), pp. 1-10, January 2009.

“2M. J. Cafarella, A. Y. Halevy, D. Z. Wang, E. Wu, and Y. Zhang. Webtables: exploring the
power of tables on the web, PVLDB, 1(1), pp. 538-549, 2008.

“A. Hogan, A. Harth, A. Passant, S. Decker, and A. Polleres. Weaving the pedantic web. In
LDOW, 2010.

10 Introduction

documents had with the Linked Data guidelines. This effort assessed a
vast amount of Web and RDF/XML data; however, most of the analysis
was performed automatically, thereby overlooking the problems arising due
to contextual discrepancies. In earlier work, similar ideas were used for
describing knowledge base evolution.**

The approach described in Fiirber and Hepp* advocates the use of
SPARQL and SPARQL Inferencing Notation (SPIN) for RDF data qual-
ity assessment. However, their approach requires a domain expert for the
instantiation of test case patterns. SPIN*® is a W3C submission aimed at
representing rules and constraints on Semantic Web models. SPIN also allows
users to define SPARQL functions and reuse SPARQL queries. In a similar
way, Fiirber et al. also defined a set of generic SPARQL queries to identify
missing or illegal literal values and datatypes and functional dependency
violations. Another related approach is the Pellet Integrity Constraint Valida-
tor (ICV).#’ Pellet ICV translates OWL integrity constraints into SPARQL
queries. The execution of those SPARQL queries identifies violations. An
implication of the integrity constraint semantics of Pellet ICV is that a partial
unique names assumption (all resources are considered to be different unless
equality is explicitly stated) and a closed world assumption are adopted.
gSKOS defines rules to detect potential quality problems in datasets using
the Simple Knowledge Organisation System (SKOS) schema. The rules are
based on existing thesaurus construction guidelines and are evaluated using
SPARQL queries and graph algorithms (e.g., to find weakly connected com-
ponents). Finally, Lausen et al.*® suggested extensions to RDF by constraints
akin to RDBMS in order to validate data using SPARQL as a constraint
language. This is achieved by providing an RDF view on top of the data.

#(. RieB, N. Heino, S. Tramp, and S. Auer. EvoPat — Pattern-Based Evolution and Refac-
toring of RDF Knowledge Bases. In Proceedings of the 9th International Semantic Web
Conference (ISWC2010), LNCS, Berlin/Heidelberg, Springer 2010.

43C. Fiirber and M. Hepp. Using SPARQL and SPIN for data quality management on the
semantic web. In W. Abramowicz and R. Tolksdorf, editors, BIS, volume 47 of Lecture Notes
in Business Information Processing, pp. 35-46, Springer, 2010.

4H. Knublauch, J. A. Hendler, and K. Idehen. SPIN — overview and motivation. W3C
Member Submission, February 2011.

47E. Sirin and J. Tao. Towards integrity constraints in OWL. In Proceedings of the Workshop
on OWL: Experiences and Directions, OWLED, 2009.

“8G. Lausen, M. Meier, and M. Schmidt. SPARQLing constraints for RDF. In Proceedings of
the 11th International Conference on Extending Database Technology: Advances in Database
Technology, EDBT 08, ACM, pp. 499-509, New York, NY, USA, 2008.

1.3 State of the Art in Data Quality Engineering 11

While there has been considerable research into quality assessment of
Linked Data sets, work that attempts to incorporate such efforts into qual-
ity engineering frameworks, which operate to improve data quality over
time, is only starting to emerge. Feeney et al.** described a semi-automated
methodology, framework, and process, which integrate RDF quality assess-
ment mechanisms with human workflows for achieving quality control of
published RDF datasets.

1.3.1 The Challenge

The challenge that ALIGNED faced in data quality engineering was twofold.
First, the data quality engineering processes that the partners developed for
Linked Data required further development, validation, and standardisation.
Secondly, mechanisms were required to allow quality control actions of
software and data teams, which have generally been developed in isolation, to
be aligned and synchronised. For example, if a customer bug report arrives,
then it can often be solved by modifications in either the applications or the
data. How is this responsibility allocated in diverse teams and what solution
will have the best outcome in terms of both the short- and long-term agility
and integrity of the combined system?

When data quality is vital, the ultimate resource to deploy is human
expertise. In some cases, it may be necessary to deploy human experts to
annotate and interpret datasets in order to elevate the raw data to useful
information or knowledge for the planned application tasks. However, this
is very expensive in terms of both time and the limited resource of domain
expertise. Fully automated solutions are popular in research applications, but
in enterprise, the deployment of human talent dominates. This is because of
the persistent gulf in quality between human-curated content and automated
approaches. Thus, the challenge for pragmatic systems is to define semi-
automated methods and tools that involve human expert curators in the loop
while minimising their workload. By partitioning curation tasks into different
levels of required expertise, it is possible to lower the expertise required
for participation in the data processing pipeline and thus broaden the base
of contributors, hence lowering costs and increasing the productivity of the
highest-value experts. Curation workflow tools that provide this functionality

“K. Feeney, D. O’Sullivan, W., Tai, R. Brennan, Improving curated web-data quality with
structured harvesting and assessment (2014), International Journal on Semantic Web and
Information Systems.

12 Introduction

based on an explicit data life cycle model will result in higher-quality systems
at lower cost.

One of the attractions of Linked Data, from an enterprise point of view,
is the widespread availability of compatible datasets with which to enrich or
annotate an application-specific dataset. However, in practice, this is often
seen as an advantage that is still to be realised, since the quality of datasets
published on the Web varies widely and it is only recently that mature Linked
Data quality frameworks have appeared. Importing low-quality datasets often
results in a large clean-up exercise for the application owners. Given that
system integrity depends directly on the quality of data input, there is an
opportunity to control dataset integrity by limiting updates to datasets based
on a strong, semantic specification of the system, the application and schema
needs, and design intents. A repository integrity gateway could utilise both
data quality frameworks and the system specification to limit the data input,
referring offending data to human administrator-based intervention or to other
automated checks.

Just as unit testing has entered the mainstream of software develop-
ment, it is possible to create automated data testing based on rich models
of domains, application data needs and design intents and to integrate
these into semi-automated processes, which maximise the utilisation of new
technologies without dispensing with the ability to use human expertise
to provide the highest-quality data. Developing and validating processes
that successfully integrate these processes was the challenge tackled by
ALIGNED.

1.4 About ALIGNED

ALIGNED is an EU research project, which ran from February 2015 to
January 2018. It brought together world-class researchers, representing stake-
holders from across the value-chain. It combined model-driven software
engineering (Oxford are leading the development of the next generation of
UK National Health Service systems), Linked Data quality (Leipzig and Trin-
ity College have published foundational papers) with innovative enterprises
(Wolters Kluwer has pioneered the use of Linked Data in complex mission
critical systems; the Semantic Web Company (SWC) leads the world in enter-
prise Linked Data), and expert-driven data curation (Oxford Anthropology
and Poznan) to work on high-impact use cases such as DBpedia (Leipzig

1.4 About ALIGNED 13

are co-creators). The project’s ambition was to develop the foundations for
the next generation of Big Data systems by enabling model-driven creation
of Linked Data applications that can effectively deal with the dynamism,
complexity, scale, and data quality challenges (e.g., inconsistency and incom-
pleteness) of Web data while retaining the reliability, security, and robustness
that come with model-driven software engineering.

The objective of the ALIGNED project was to align semantics-based
model-driven software engineering with full life cycle Linked Data engineer-
ing to produce powerful and flexible service engineering systems and enable
rapid development cycles based on reuse and extension of heterogeneous data
sources. This approach supports an aligned engineering process spanning the
full service life cycle, based on rich, semantic Linked Data representations,
which enable expressive models to be specified for open extensible systems
in such a way that flexibility and reusability are prioritised. This will facilitate
a step change in the development® of Web-scale data-intensive systems.
Successfully attaining this objective requires innovations in three distinct
technical areas:

e Model-driven software engineering is a maturing research field with
well-developed tools and methods like UML, XML, and DSL creation,
code, and transformation generation tools like Stratego/Spoofax.>! The
ALIGNED project evolved this research with more expressive and
shareable data models based on the modern Web of data.

e Enterprise Linked Data-based systems are starting to appear,>> and while
Linked Data quality engineering processes have started to emerge,>
they suffer from inadequate tool support. Most Linked Data life cycle
management tools also suffer from being oriented towards knowledge
engineers, specialising in semantics, rather than the domain experts or
software engineers that build and administer enterprise data-intensive
systems. ALIGNED addressed this shortcoming by developing, test-
ing, and validating collaborative Linked Data engineering tools and
integrating them into user-friendly data curation services and platforms.

Ohttp://www.uml.org/ & http://www.w3.org/XML/

SThttp://strategoxt.org/view/Spoofax/WebHome

52C. Dirschl, K. Eck, and J. Lehmann, “Supporting the Data Lifecycle at a Global Publisher
using the Linked Data Stack”, ERCIM News, 96, January 2014.

3 A. Zaveri, A. Rula, A. Maurino, R. Pietrobon, J. Lehmann, S. Auer, “Quality assessment
methodologies for linked open data”, under review, Semantic Web Journal, IOS Press.

14 Introduction

e Linked Data schemas, expressed in standardised languages such as
RDFS>* and OWL,> enable self-describing data structures with rich
semantics included within the data itself. Aspects of program logic
previously encapsulated in software are now embedded in data mod-
els, meaning that the software engineering life cycle of data-intensive
systems needs to be aligned with the data engineering life cycle. For
example, changes to data schemas may require updates to the software
that consumes it, and vice versa. ALIGNED addressed this challenge
by identifying common phases and signalling between the parallel pro-
cesses and tools to support alignment at higher levels. This supports
both integrated, model-driven unified processes and loosely coupled, co-
evolving systems through the specification of common vocabularies and
domain-specific metamodels.

ALIGNED leveraged Linked Data as the common technical platform to
support integration at three levels: first, by applying semantics and Linked
Data to model-driven software engineering to develop rich domain and
application-specific specification models; second, as a means to integrate
tools for combined software and data engineering; and third, as the basis for
exemplar data-intensive systems that combine software and data to manage,
publish, process, and consume data.

NESSI has identified “Collaborative Service Engineering based on the
convergence of software and data” and “Integration of Big Data Analytics
into Business processes” as EU research priorities.>® This is a response to the
parallel trends which see increasingly complex and dynamic service-delivery
collaborations alongside the ongoing explosive growth of data available via
the Web. The increasing prevalence of rich and flexible standardised semantic
languages®’ has created opportunities for service providers to add value
to their services with readily available machine-processable knowledge.?®
To take advantage of these opportunities, service and software engineer-
ing organisations must integrate data engineering and service engineering
processes.

Shttp://www.w3.org/RDF/ & http://www.w3.org/TR/rdf-schema/

SShitp://www.w3.org/TR/owl2-overview/

*Strategic Research and Innovation Agenda Version 2.0, NESSI Position Paper, April 2013.

7C. Bizer, K. Eckert, R. Meusel, H. Miihleisen, M. Schuhmacher, and J. Vélker: Deploy-
ment of RDFa, Microdata, and Microformats on the Web — A Quantitative Analysis In: 12th
International Semantic Web Conference, 21-25 October 2013.

3P, Hitzler, K. Janowicz, Linked Data, Big Data, and the 4th Paradigm, Semantic Web
Journal, IOS Press, 2013.

1.5 ALIGNED Partners 15

1.5 ALIGNED Partners

1.5.1 Trinity College Dublin

Trinity College Dublin is Ireland’s leading university. TCD, founded in 1592,
hosts over 15,500 students. It enjoys an esteemed reputation in research
and innovation with an outstanding record of publications in high-impact
journals and a track record in winning research funding. Its research impact is
currently ranked 44th in the world by the Times Higher Education Ranking of
World Universities and 9th in Europe by the 2013 Leiden University Ranking
of World Universities’ research performance.

1.5.2 Oxford University — Department of Computer Science

The Department of Computer Science, ranked first in Europe in the Shanghai
tables, has particular strengths in software engineering, programming lan-
guages, and information systems. The Software Engineering Group works
across all three areas and has a strong track record of interdisciplinary collab-
oration in medical and scientific research, humanities, and social sciences.
It has also a strong track record of effective engagement with industry,
delivering a substantial programme of advanced education aimed at full-time
professionals: designers, developers, managers, and users.

1.5.3 Oxford University — School of Anthropology and Museum
Ethnography

The School of Anthropology and Museum Ethnography is one of the oldest
and most distinguished anthropology departments in the world. It is also one
of the broadest, comprising five units that cover a wide range of subfields
of anthropology (social and cultural, cognitive and evolutionary, visual and
material, medical and biological) as well as a range of specialised foci (e.g.,
migration, science and technology) with long-established field projects all
around the globe. Of particular importance for ALIGNED, it is home to the
Institute of Cognitive and Evolutionary Anthropology, which employs staff
with expertise in database construction and analysis.

1.5.4 University of Leipzig — Agile Knowledge Engineering and
Semantic Web (AKSW)

The Institute for Applied Computer Science (InfAl, http://infai.org) at Uni-
versitit Leipzig hosts world-class research groups in service and Web science.

16 Introduction

The approximately 40 researchers of the Agile Knowledge Engineering and
Semantic Web research group (http://aksw.org) at InfAI are establishing
theoretical results and scalable implementations for realising the Semantic
Data Web. Particular emphasis is given to areas such as ontology creation
and manipulation, knowledge extraction, ontology learning and information,
and data integration on the Linked Data Web. The scientific publications of
the group, founded in 2006, have already attracted more than 6,000 citations
(according to Google Scholar).

1.5.5 Semantic Web Company

SWC is an SME, based in Vienna, Austria, founded in 2001, which offers ICT
consulting services and solutions in semantic information management. This
includes data and metadata management, knowledge and information man-
agement systems, LOD, enterprise search, and social software. SWC is the
vendor of the PoolParty Semantic Suite (http://poolparty.biz) for enterprise-
ready solutions in taxonomy management and data integration. SWC’s work
is always based on open semantic Web standards to ensure interoperability
and sustainability for solutions.

1.5.6 Wolters Kluwer Germany

Wolters Kluwer Germany is an information services company specialising
in the legal, business, and tax sectors. Wolters Kluwer provides pertinent
information to professionals in the form of literature, software, and services.
Headquartered in Cologne, it has over 1,200 employees located at over 20
offices throughout Germany, conducting business on the German market for
over 25 years. Wolters Kluwer Germany is part of the leading international
information services company, Wolters Kluwer n.v., located in Alphen aan
den Rijn (the Netherlands). The core market segments, targeting an audience
of professional users, are legal, business, tax, accounting, corporate and
finance services, and healthcare.

1.5.7 Adam Mickiewicz University in Poznan

Adam Mickiewicz University in Poznan is the major academic institution
in Poznan and one of the top Polish universities. Its reputation is founded
on tradition, the outstanding achievements of the faculty, and the attractive
curriculum offered to students. It is a centre of academic excellence, where
research and teaching are mutually sustaining, and where the context within

1.6 Structure 17

which research is conducted and knowledge is sought and applied is interna-
tional as much as regional and national. The University was founded in 1919
and its current student population is nearly 49,000. The University currently
employs nearly 3,000 teaching staff, including 264 tenured professors, 439
associate professors, and 1,617 adjunct professors and senior lecturers.

1.5.8 Wolters Kluwer Poland

Wolters Kluwer Poland the largest publisher of legal and business information
in Poland. It provides a large database of legal and business information under
the IPG brand. Wolters Kluwer Poland is part of the leading international
information services company, Wolters Kluwer n.v., located in Alphen aan
den Rijn (the Netherlands).

1.6 Structure

The remainder of the book is organised as follows. Chapter 2, Use Cases,
briefly describes the five use cases undertaken in the book. It focusses on
the data engineering and software engineering challenges, where they are the
same and where they differ across the use cases. Chapter 3, Methodology,
describes a general methodology for understanding Big Data systems, their
requirements, the different families of modelling approaches that are suitable
for different systems, and the integration of software and data engineering
life cycles by way of signalling points and common vocabularies. Chapter 4,
Vocabularies and Ontologies, describes the use of layered common tax-
onomies, vocabularies, and ontologies as a basis for semantic integration.
These include foundational schemas such as RDF, RDFS, and OWL; com-
mon widely used standards such as PROV and SKOS; new general-purpose
ontologies to describe validation errors and dataset identities such as RVO
and DatalD; and high-level custom ontologies to describe processes (DLO
and SLO). Chapter 5, Tools, describes the software tools used to solve the
problems of the use cases, which include RDFUnit, DatalD, the Model
Catalogue, Semantic Booster, the PoolParty Semantic Suite, and the Dacura
semantic curation platform. It focusses on describing the vocabularies and
APIs supported by each tool with a little bit on implementation for each.
Chapter 6, Integrated Systems, describes the integrated systems that were
developed to solve the problems of the use cases introduced in Chapter 2.

18 Introduction

It is split into five parts:

e Wolters Kluwer — Re-engineering a complex relational database appli-
cation: In every enterprise environment, relational databases are used
for a long time to process critical data. It is a common situation that
the database schema has heavily evolved over time and no one in the
company understands the impact of any change in its entirety anymore.
Therefore, companies continue to use these databases without touching
them anymore, reducing its overall value over time. Sooner or later, a
complete re-engineering or even complete new development is required,
which means a significant investment and a high risk of failure. In this
presentation, we will show that it is possible to reduce this risk by using
semantic technologies when replacing the old application and which also
better prepares the company for any re-engineering effort in the future.

e Seshat — collecting and curating high-value datasets with the Dacura
platform: This section uses the Seshat project as a case study — a huge
distributed effort by social scientists to compile an authoritative data-
bank describing the evolution of all human societies that have existed
since 10,000 BCE. We show how the system uses semantic models
both to provide strong data consistency assurances and to generate user
interfaces for crowd-sourcing and human expert approval. Although this
use case is an academic endeavour, the technology is entirely agnostic to
the application and can be applied in any scenario where an organisation
wishes to collect and curate high-quality datasets.

e Managing data for the NHS: This section examines the ALIGNED
Data Catalogue system: a set of tools for automating aspects of data
management at scale. At the heart of the system is the metadata cat-
alogue, a tool for capturing and linking key information about data:
information that can be used to determine, automatically, how data
are to be processed, transformed, and accessed. Other tools support
the processes of metadata capture and curation, as well as system
configuration and generation. We explore the application of the Data
Catalogue system to the management of health data in the United
Kingdom. The Oxford ALIGNED partners have deployed the metadata
catalogue and other tools in support of several, large health data projects
in collaboration with the NHS. One of these, the 100,000 Genomes
Project, required the coordination of data specifications, form designs,
database schemas, and messages, for a wide range of diseases, across
70 hospitals.

1.6 Structure 19

e Integrating semantic datasets into Enterprise Information Systems with
PoolParty: The Linked Data movement has seen increasingly large
semantic datasets published on the Web, as part of the web of data.
This creates opportunities for integrating public sources of data with
enterprise information sources to create enriched high-quality seman-
tic knowledge bases. ALIGNED is developing tools and processes to
integrate with PoolParty, SWC’s semantic technology suite. PoolParty
Thesaurus Server is a Thesaurus and Taxonomy Management Tool to
build and maintain information architectures. In this section, we show-
case how we use SHACL and the RDFUnit test framework as a basis
for the import assistant to run automatically and manually generated test
cases for validating data consistency constraints.

e Data Validation at DBpedia: Data validation is a crucial part of data
integration — integrated data must meet a minimum validation criterion
before it can be considered integrated. Reducing the manual time and
effort required to validate data is a critical enabler of dealing with the
volume and velocity of Big Data. In this section, we show how DBpedia
has used ALIGNED tools including RDFunit to develop a high-quality
curated dataset offering.

Finally, Chapter 7, Evaluation, describes a suite of evaluation techniques and
measures focussed on agility, productivity, and quality in big-data systems
and presents an ontology in which the various types of measures are related
to one another and an abstract framework for evaluating such systems.

2

ALIGNED Use Cases — Data and Software
Engineering Challenges

Arkadiusz Marciniak and Patrycja Filipowicz

Adam Mickiewicz University, Poland

2.1 Introduction

The ALIGNED project developed an aligned methodology for parallel soft-
ware and data engineering of Web-scale information systems with Linked
Data as a unifying technical foundation for system specification and process
and tool integration. This methodology (see Chapter 3) is based on a meta-
model describing the complete software and data life cycles, domain models,
and design intentions. This metamodel specifies tools to produce software
development models, including transformations that generate or configure
software applications as well as data development models, incorporating
data quality and integrity constraints, data curation workflows, and data
transformations.

Software and data engineering are different disciplines, with different
practices and processes. Significant differences between these fields mean
that a single prescriptive approach could not work. Instead, the project has
identified a matrix of synchronisation points between different stages of the
software and data life cycles. Each point represents a key area where software
and data engineers may need to interact and define formats and processes for
working together. This approach is flexible enough to accommodate many
different workflows, while still identifying key areas where alignment of the
two life cycles can lead to significant savings in effort. The approach adopted
endeavoured to make it possible to improve the overall quality, productivity,
and agility in a variety of different use cases. In order to achieve these
objectives, the project sought to develop Linked Data schemata for alignment
that enabled the software engineering life cycle of data-intensive systems to
be integrated with the data engineering life cycle, by identifying common

21

22 ALIGNED Use Cases — Data and Software Engineering Challenges

phases and signalling between the parallel processes and tools to support
alignment at higher levels.

The decision to adopt data-model-driven approaches in the project had
far-reaching consequences. In particular, it required that every step in the
process be directly driven by the model, rather than independently config-
ured. Harvested datatypes also could not be consumed directly, but through
a model, which dictated the shape and structure that the data must take.
Accordingly, a model-driven approach led to the creation of explicit models
at each stage of the development process.

MDE describes a development process in which the components of the
final software artefact are derived — either manually or automatically — from
models that typically form part or all the specifications or requirements of the
system. The software needs to be written in such a way that it understands
the modelling language and is capable of handling updates to the model. Such
software can be reused in different applications within a similar domain, min-
imising the time spent on the implementation phase, and capturing common
repeating patterns that would otherwise have to be repeated in each cycle
of an iterative development. In the MDE world, it is required that the data
model is provided in the form of the ontologies available at a well-known
URL, which is typically achieved by providing a metadata registry.

In order to achieve the postulated goals, a number of tools from both
domains were developed and used in order to make the advocated integration
of both life cycles efficient, particularly in relation to challenges posed
by the different use cases. These comprise Booster, the Model Catalogue,
RDFUnit, Repair Framework and Notification (RF), Ontology Repair and
Enrichment (ORE), Dacura, the PoolParty Confluence/JIRA Data Extrac-
tor (CJDE), External Link Validation (ELV), and the Unified Governance
Plugins.! Similarly, a set of open, public ontologies and vocabularies were
adopted and used wherever possible by all tools to support integration (for
details, see Chapter 4). These include foundational schemas, such as RDF,
RDFS, and OWL, and common widely used standards such as PROV and
SKOS. Where ontologies did not exist to cover the advocated integration
needs, new models were created and made publicly available (RVO, RUT,
DatalD). This collection of common, project-wide ontologies gave the ability

'Shah, Seyyed M., James Welsh, Jim Davies, and Jeremy Gibbons. 2017. In Mahmood,
Z (ed.), Software Project Management for Distributed Computing: Life-Cycle Methods for
Developing Scalable and Reliable Tools, 367-385. Springer: Cham.

2.1 Introduction 23

to exchange rich, structured information covering the most significant entities
within research focus.

The ultimate objective of the project, however, was to produce tools,
methods, and standards, which lead to real improvements in productivity,
quality, and agility of different types of data. The rapidly increasing size and
complexity of Web and Big Data often makes their management virtually
impossible, where even specialists struggle to harness them. Hence, five
use cases representing different domains from legal to health and complex
archaeological and historical datasets were chosen to adopt a broad bottom-
up approach to system development and integration. Accordingly, the project
tackled problems in a wide range of areas with the intention to show how the
latest semantic technologies can help create means of managing and using
these datasets. The selection of uses cases was also driven by a need of testing
interoperability between the tools, particularly those who support both data
and software engineering that were developed in the project. The chosen use
cases were: (i) Seshat: Global History Databank, (ii) PoolParty Enterprise
Application Demonstrator System, (iii) DBpedia, (iv) Jurion and Jurion IPG,
and (v) Health Data Management.

Each use case is a large-scale, real-world project with large user commu-
nities and complex sets of data. The project’s research has thus had a practical
focus, which has seen the application of innovative tools and solutions in
real life. The use cases represent diverse domains, both commercial and
non-commercial, which have their own requirements and data characteristics.
They also represent a significantly different level of advancements in both the
data and software engineering tools and procedures. Each use case has its own
problems with quality, agility, and productivity. The project has built tools
and processes that improve software and data engineering for each of these
use cases. Every tool appears in more than one use case, and every use case
involves tools developed by different partners. In each case, trial platforms
were constructed in multiple phases, which integrate research outputs from
multiple work packages and partners, served to offer the greatest potential for
real improvements to the existing processes employed within these use cases.

The objectives of this chapter are thus threefold: (1) to present the five
case studies used in the ALIGNED project, (2) to analyse the major chal-
lenges identified by these use cases in the data engineering life cycle as well
as present their proposed solutions, and (3) to analyse the major challenges
identified by the use cases in the software life cycle and propose solutions to
these challenges.

24 ALIGNED Use Cases — Data and Software Engineering Challenges

2.2 The ALIGNED Use Cases
2.2.1 Seshat: Global History Databank

The Seshat: Global History Databank? is an international initiative of human-
ities and social science scholars to build an open repository of expert-
curated historical time-series data.> The Seshat project began by selecting
a sample of 30 areas from around the world. For each area, all soci-
eties that had controlled it throughout history were recorded. This made
it possible to answer a wide range of questions about each of them —
describing its population, technology, religion, infrastructure, and so on.
The Seshat has been designed to test theories about the evolution of social
complexity, from the point of view of historians and anthropologists.*
The databank extracts data from a combination of databases, Linked Data
sources, websites, academic publications, and human experts. Figure 2.1
shows the initial sample of 30 geographical areas chosen for the databank.

A special code book defined the full list of questions, and researchers
added data to the system by creating a copy of the code book page for
each society and adding data points using a special syntax that encoded
uncertainty, disagreement, and temporal scope, along with comments and
citations in relation to domain-specific provenance information. In the initial
stages of the Seshat project, a wiki was used to collect the data. The system
amassed over 200,000 data points on hundreds of civilisations, but whilst the
unstructured wiki data store allowed great flexibility at the start of the project,

Zhttp://seshatdatabank.info

3Turchin, Peter, Thomas E. Currie, Kevin C. Feeney, Pieter Franois, Daniel Hoyer,
J.G. Manning, Arkadiusz Marciniak, Daniel Mullins, Alessio Palmisano, Peter Peregrine,
Edward A.L. Turner and Harvey Whitehouse Harvey. Seshat, The Global History Databank,
Cliodynamics. The Journal of Quantitative History and Cultural Evolution 6(1), pp. 77-107.

“Turchin, Peter, Thomas E. Currie, Harvey Whitehouse, Pieter Franois, Kevin Feeney,
Daniel Mullins, Daniel Hoyer, Christina Collins, Stephanie Grohmann, Patrick Savage, Gavin
Mendel-Gleason, Edward Turner, Agathe Dupeyron, Enrico Cioni, Jenny Reddish, Jill Levine,
Greine Jordan, Eva Brandl, Alice Williams, Rudolf Cesaretti, Marta Krueger, Alessandro Cec-
carelli, Joe Figliulo-Rosswurm, Po-Ju Tuan, Peter Peregrine, Arkadiusz Marciniak, Johannes
Preiser-Kapeller, Nikolay Kradin, Andrey Korotayev, Alessio Palmisano, David Baker, Julye
Bidmead, Peter Bol, David Christian, Connie Cook, Alan Covey, Gary Feinman, Arni Danfel
Juliusson, Axel Kristinsson, John Miksic, Ruth Mostern, Cameron Petrie, Peter Rudiak-Gould,
Barend ter Haar, Vesna Wallace, Victor Mair, Liye Xie, John Baines, Elizabeth Bridges,
Joseph Manning, Bruce Lockhart, Amy Bogaard and Charles Spencer. Single dimension of
complexity in human societies. Proceedings of the National Academy of Sciences, 115 (2)
E144-E151; DOI:10.1073/pnas.1708800115.

2.2 The ALIGNED Use Cases 25

by

Central Asia 3
and Siberia

> 5 2"
Atlantic . 7 /7 Eastfsia pagific

30 Northand 3. [\~
Ocean Qcean

¢
® Central America 28‘

Ocean

Indian
Ocean

Legend
complexity
® o

intermediate

® ey

i

Seshat

E A
. Lo | SR e
2 3| 4.5 AT BROOIT ‘12'13ﬁ4 15 16/1Z-18 192021 22,23 24 25/26/27:281

X
W%,

v

-

i}

s

R

Q

P

N Pacifig
M

L

K.

J

H

G

F

£

2 o ’jy 77: ‘,-f':?

c i 15315415556 57 58 59 60

Figure 2.1 Seshat World Sample 30.

it did not scale to the number of contributors, data users, data points, or the
complexity of the data.

Seshat also evolved to encompass new areas that were not originally
anticipated. In particular, this involved recording societies from the prehis-
toric past, which required a collection of archaeological data. It soon became
obvious that many Seshat variables were unsuitable for capturing this part
of human past. There was also a lack of relevant proxies that would allow
translation of archaeological evidence into coding templates. Accordingly,
the Archaeological Seshat code book was designed and developed in order to
fill in the gap, and the data were collected independently.

A wiki-based approach, used in Seshat for the data collection task, posed
numerous problems, in particular for the verification of data correctness, and
the extraction of data in usable forms. As the dataset grew and the focus
moved from collection to integration and analysis, several other significant
problems emerged. The fundamental problem is that a wiki is designed for
human presentation and editing of data. To a machine, it is semi-structured,
lacks any type information, and the meaning of the elements depends on their
context within a jumble of HTML. Without any support for validation, errors
proliferated.

The limitations of the wiki also impacted agility. As the Seshat code
book was rapidly evolving, any changes needed to be manually copied to
all existing data pages. This was a costly and error-prone task. There was
also no easy way to express spatial data through the wiki, so these data were
stored in a separate geographic information system (GIS). The wiki-based
system offered no support for publication. Furthermore, while the scraping

26 ALIGNED Use Cases — Data and Software Engineering Challenges

tool could extract raw datapoints, important citations and comments were
encoded in totally unstructured HTML.

Productivity suffered as increasing resources had to be devoted to curation
and cleaning. Some of the corrections were not copied back to the wiki and
spreadsheets became the authoritative source for some sections of the data.
Moreover, there was no way of incorporating third-party data into Seshat
dataset.

2.2.2 PoolParty Enterprise Application Demonstrator System

The PoolParty Semantic Suite® is the SWC’s platform for enterprise infor-
mation integration based on Linked Data principles. The PoolParty semantic
technology suite comprises a number of tools based on the extraction, cura-
tion, and management of linked open datasets. These tools are split into three
categories: data portals and collaboration platforms, tools for knowledge
engineering and graph management, and functionality for content enrichment
and data integration. Any data is transformed into RDF graphs and can be
queried with SPARQL (SPARQL Protocol and RDF Query Language). Since
it was created, the product has evolved to include entity extraction from
unstructured information. PoolParty’s API provides a rich set of methods for
text mining and entity extraction. Figure 2.2 shows the tools of the PoolParty
Application Suite.

Data Portals &

Collaboration Platforms Recommender Semantic Analytics &

System Search Visualisation

A'q'
@&

\

Knowledge Engingeering &
Graph Management

000
Taxonomy
&Thesaurus
Management

Ontology Linked Data
Management Management

Content Enrichment &

Data Integration Concept Text Mining & Data Linking &
Tagging Entity Extraction Mapping

Figure 2.2 PoolParty Application Suite.

Shttp://www.poolparty.biz

2.2 The ALIGNED Use Cases 27

As aloosely coupled collection of tools, additional functionality has been
enabled through the integration of third-party tools. An example of this is the
use of Atlassian Confluence (a team collaboration tool), Atlassian Jira (a tool
for issue tracking and project management), and Media Sonar (a Web-mining
tool), for a general-purpose requirements engineering system. However, the
systems concerned are typically document-oriented and require extensive
human interaction in order to link their data to development tasks recorded in
PoolParty against standard ontologies. The system lacks the required integra-
tion and alignment of data management issues with the software development
life cycle, so that each supports the other.

2.2.3 DBpedia

DBpedia® publishes authoritative RDF-based datasets that are used as a com-
mon point of reference for interlinking and enriching most of the structured
data on the Web today. It relies on an automated data extraction framework
to generate open RDF data from Wikipedia documents, published in the form
of file dumps, Linked Data, and SPARQL hosting on the Linked Data Stack.
This structured information resembles an open knowledge graph, which is
a kind of database, which stores knowledge in a machine-readable form and
provides a means for information to be collected, organised, shared, searched,
and utilised. DBpedia passes all published data through RDFUnit, validating
it against an up-to-date version of the DBpedia ontology. The validated
outputs generate consistent data termed DBpedia+, whereas the wider, more
exhaustive data are published as the standard DBpedia datasets.

To create high-quality data, a validation method for DBpedia instance
data has to provide sufficient metadata to distinguish between three different
possible sources of a violation: (i) the Wikipedia editor (entering erroneous
values), (ii) incorrect mappings between source and DBpedia ontology, and
(iii) a software issue in the DBpedia Extraction Framework. Accordingly,
RDFUnit provides the necessary metadata for any violation found and creates
links between a software issue and the violating instance. The resulting viola-
tions and associated metadata provide the exact coordinates of a violation, the
grounds for this violation, and the possible source. Thus, violations recorded
in such a manner are used as a feedback medium, relating possible mistakes to
Wikipedia editors, to the mapping community, or to software developers. In
addition to validating the resulting instance data, DBpedia started to validate

Shttp://wiki.dbpedia.org

28 ALIGNED Use Cases — Data and Software Engineering Challenges

the mappings between DBpedia ontology and the Wikimedia data sources on
a regular basis with RDFUnit. Thus, most of the mapping-related violations
can be caught before ever starting the data extraction, preventing possible
reruns of whole extraction steps and increasing productivity.

The DBpedia Links repository maintains linksets between DBpedia and
other LOD datasets. A system for maintenance, updates, and quality checks,
which validates various aspects of the link submission, is in place and is
integrated with common continuous integration services, such as Travis CI.
It offers a way to publish linksets between DBpedia and any given dataset,
which are published alongside the DBpedia dataset files.

The major productivity issues identified for DBpedia involve code
maintenance, release management, ontology editing, release documentation
creation, and dealing with user queries. Further complications involved
dealing with the increasing number of published datasets that tend to increase
over time when incorporating new extraction methods and algorithms.

To ensure quality regarding the extraction workflow, DBpedia extended
the Extraction Framework to produce metadata for any extraction process,
extensive logging of progress and exceptions, as well as high-level summaries
of extractions. These efforts support extensive monitoring, metadata propaga-
tion and logging (on both the triple and dataset level), and the deployment of
ETL frameworks and Workflow Management Systems to further decrease the
time needed for extraction and to automate this process completely. Figure 2.3
shows this pipeline.

Extraction Manager

Input Parsing Extraction Output

Wikipedia Dump Wiki (tabel)||(Dump) | DBpedia
. Source Parser Sink Dump
) |
Mapping
based
LB

e

2y *
P API
Source

SPARQL Tripl
Sink) riple Store 8
Gatologydll __ oL .

Virtuoso
Mappings

| S

SPARQL endpoint Linked Data

The Web [DBpedia apps ||SPARQL clients || RDF browser|[HTML browser]

Figure 2.3 DBpedia Extraction Pipeline.

2.2 The ALIGNED Use Cases 29

The greatest need for agility in DBpedia is the ability to rapidly respond
to changes in source datasets like Wikipedia. These may involve, among
others, the introduction of new pages that represent new concepts and the
introduction of new infobox templates that represent additional instance data
in DBpedia and changes in infobox structures. Adapting to those changes
in a (semi-) automated way will prevent the loss of data (due to changes to
Wikipedia templates) and incorporate new instance data automatically.

2.2.4 Jurion and Jurion IPG

The Wolters Kluwer’ use case within ALIGNED is twofold. On the one
hand, the project worked with a legal research database application called
Jurion (www.jurion.de) from Wolters Kluwer Germany. In this use case,
it mainly focussed on addressing data quality issues. Second, the project
re-engineered the IPG system from Wolters Kluwer Poland, which is a
commercial intelligence system, based on huge amounts of data in a relational
database system.

Jurion merges and interlinks over one million documents of content and
data from diverse sources such as national and European legislation and court
judgements, extensive internally authored content and local customer data, as
well as social media and Web data (e.g., from DBpedia). In collecting and
managing this data, all stages of the Data Life cycle are present — extraction,
storage, authoring, interlinking, enrichment, quality analysis, repair, and pub-
lication. Wolters Kluwer concentrated mainly on the enhancement of data
quality and repair processes. Based on the requirements, it started to work
on data transformation issues and the improvement of data quality processes
in PoolParty in parallel to some tasks within the PoolParty use case. Based
on large amounts of XML data, governed by a DTD, continuous transforma-
tion from XML to RDF, based on XSLT scripts, needs to take place. This
process is complicated and error-prone, especially when it comes to schema
changes. The second major data quality challenge is around domain thesauri
and controlled vocabularies. Very often, these data are initially created and
stored in XLS files and when it comes to a systematic usage of more
powerful tools like PoolParty, the import process of this data needs to be
optimised, so that errors and inconsistencies can be detected very early in the
process.

"www.wolterskluwer.com

30 ALIGNED Use Cases — Data and Software Engineering Challenges

The Jurion IPG system is a commercial intelligence system, providing
a means for business contractors to perform due-diligence queries, serving
historical data about companies and their relationships with other compa-
nies, responsible individuals, and business documents. It has been developed
by Wolters Kluwer Poland and it contains data on 450,000 companies,
1.1 million people, and 3.5 million documents. The existing data are currently
stored in a relational format. The complexity of the system stems from huge
amounts of daily processed data originating from pdf sources and their main-
tenance through a proprietary, obsolete CMS. In order to remain a reliable
provider of credibility and financial information for over five million entities,
the integrity and consistency of the data is of vital importance, and increas-
ingly hard to manage at scale. Business value of the system is dependent on
the maintenance and evolution of a large, semantically consistent dataset. The
overall goal is to ensure the quality of the system used to enter and maintain
the data and to improve the value by linking to external datasets. The major
requirements involve deploying new tools to find problems in the existing
data, improving the integrity of data submitted in the future as well as help
increasing the scope of the data by enabling the linking of data stored within
the system to external related datasets. Figure 2.4 shows the JURION IPG
workflow.

IPG — a Commercial Intelligence System by Wolters Kluwer Poland with ...

Data is gathered mostly as XML
from various sources and
processed through a
proprietary CMS and a standard
SQL database for content
enrichment and validation into

vl
a final search index which v
\J

serves data for the end user. n ‘ ‘
Software Data
A major problem is data
quality including

Data is also expected missing or incoherent

to be enriched with data as well as semantic The software development lifecycle ist
data originating inconsistencies which mostly autonomous from the data lifecycle.
from new sources including could be detected and Both of them not changing very often, but
publicly available repositories corrected by using are expected to change in the next few

and third party datasets. Aligned tools. years as major upgrades are planned.

Figure 2.4 Jurion IPG.

2.2 The ALIGNED Use Cases 31

2.2.5 Health Data Management

The Health Research Data use case involved four separate projects related to
health research data in the United Kingdom:

e the Health Data Finder® — an online tool for discovering national
healthcare datasets commissioned from the National Institute for Health
Research (NIHR). They primarily contain routine hospital data for
audit and economic reasons, but may be made available to researchers
in academia and industry with appropriate governance approval. The
datasets are maintained by a number of separate organisations, and so
data users wishing to discover data and request access may have to make
a number of requests, often with inconsistent results.

e the NIHR Health Informatics Collaborative® — routine clinical data in
five therapeutic areas provided by the largest teaching and research hos-
pital trusts. These include critical care, ovarian cancer, acute coronary
syndromes, hepatitis, and renal transplantation. Each trust maintains
data to differing standards and semantics, and rather than unifying data
to a lowest common denominator, sites are asked to build their own data
warehouses for a federated data store. Users of the data can make a
request to the hospitals, and data can be linked and unified on a per-usage
basis, taking into account the research purpose.

e the UK 100,000 Genomes Project!’ — a UK Government project aimed
at sequencing whole genomes from National Health Service patients.
It is focussed on rare diseases, major types of cancer, and infectious
diseases. The patients give consent for the genome data to be linked to
information about their medical condition and health data. The ultimate
goal of the project is to improve knowledge of the causes, treatment, and
care of these diseases.

e the construction of a data warehouse for Oxford University Hospitals
Foundation Trust!! — this is a detailed asset register for the hospi-
tal, detailing field-level metadata about databases and spreadsheets of
patient data around the hospital, as well as describing dataflows and
message-passing between systems, and specifications for audit and
research datasets.

8http://www.hdf.nihr.ac.uk
*https://www.nihr.ac.uk/about-us/how-we-are-managed/our-structure/infrastructure/health-

informatics-collaborative.htm
Ohttps://www.genomicsengland.co.uk/the-100000-genomes-project
"http://www.ouh.nhs.uk

32 ALIGNED Use Cases — Data and Software Engineering Challenges

In all four applications, reuse of existing data without detailed documen-
tation causes major problems, particularly in relation to poorly developed
semantics. Furthermore, linkage between datasets may be inaccurate, trans-
formation of data into different formats may be incorrect, and interpretation
of statistical results is error-prone. In the Health Data Finder, such data reuse
is minimal. Researchers do not know what data may be available to them,
different providers may return inconsistent results on data governance, and
data must be re-interpreted each time, which may result in costly errors. In
similar projects preceding the Health Informatics Collaborative and 100,000
Genomes projects, collecting comparable data from multiple hospitals has
proven difficult. Precise specifications have been hard to produce, mecha-
nisms for data capture and transfer have been manually programmed, often
by non-technical domain experts, and inconsistencies have resulted in data
that is often incomplete, incomparable, or completely unusable.

The quality and accuracy of data documentation is difficult to maintain
during an iterative process. In all the health data research projects, datasets are
continually evolving and data specifications are continually being improved.
Without careful version management and automation, it is very easy for the
documentation to get left behind. Similarly, software artefacts must keep
pace with the changes in requirements: changes to the data or the software
specifications must invoke updates to the XML schema, database schema, or
Case Report Forms. Manual coding slows the iteration process, which in turn
can result in outdated or inaccurate specifications.

Furthermore, domain experts find it difficult to provide documentation
or simple modelling because of the technicalities involved. XML schema
and Case Report Forms require specialist technical knowledge. Implement-
ing efficient database structures requires a lot of repetitive work such as
implementation of a domain class will involve a familiar pattern of tables,
association tables, keys, and indexes. Such work is time-consuming and error-
prone, yet ripe for automation. Data scientists looking to reuse health data
currently spend a lot of time searching for usable datasets, often requiring
long periods of interaction where inventories and documentation are not
available online. Applying for governance, asking technical questions, and
retrieving data in a suitable format often require further time and energy.
Interpretation and curation of the data is a typically manual task, which may
be repeated and reproduced by every scientist receiving a data extract.

2.3 The ALIGNED Use Cases and Data Life Cycle 33

2.3 The ALIGNED Use Cases and Data Life Cycle.
Major Challenges and Offered Solutions

The LOD life cycle consists of eight stages for data engineering.!” These
are: (i) extract — taking information in unstructured form or conforming to
other structured or semi-structured formalisms and mapping it to the RDF
data model, (ii) storage and querying — retrieving and persisting information
in triple form to be included as part of the dataset; (iii) manual revision/
authoring — processes for manual creation, modification, and extension of
the structured data; (iv) interlinking/fusion — creating and maintaining links
between datasets; (v) classification/enrichment — creating and maintaining
links between data, and models of data (which themselves may be linked and
part of the dataset); (vi) quality analysis — testing for data completeness and
correctness; (vii) evolution/repair — correcting invalid data resulting from a
quality analysis phase, via either manual or automated processes; and finally,
(viii) search/browse/exploration — making data artefacts available to domain
experts or to users beyond the original authors.

Different stages of data engineering in the ALIGNED project have been
identified primarily for building tool support and integrated frameworks as
well as encouraging compatibility of independent tools within a particu-
lar framework. Feedback from one phase is to be fed into another. For
example, the models linked during the classification or enrichment stage
will determine the scope of the quality analysis stage, or any errors found
during quality analysis may need to be resolved in the evolution/repair
phase.

As the dataset grew and the focus moved from collection to analysis,
several significant problems with agility, quality, and productivity emerged.
First, the fundamental problem was that a wiki is designed for human
presentation and not machine-readable. Second, the limitations of the wiki
impacted agility: manual data harvesting has been very time-consuming.
Finally, productivity suffered as increasing resources had to be devoted to
curation and cleaning.

In each use case, ALIGNED technologies are being used in slightly
different ways. In case of Seshat, these tools are automatically generated
from the Seshat ontology. These comprise the Model Mapping Tool, Real-
time Instance Data Validation, and curation workflows, all deployed as
Dacura services. Dacura is a data curation platform developed by Trinity

12Shah et al. 2017: 370.

34 ALIGNED Use Cases — Data and Software Engineering Challenges

College Dublin, which incorporates several techniques. The adopted solutions
improved the process of data collection.

The model catalogue tool is used in the analysis phase of model-driven
software engineering to explore and gather metadata related to the system
under construction. It is also used in its search browse and phase life cycle.
In the project, it is primarily the Model Catalogue that is used along with
components of Semantic Booster, both developed by Software Engineering
at Oxford University. In the data engineering context, tools generated by
Booster can be used to provide a well-defined API as well as to search and
gather data into the data store. Booster-generated systems provide, create,
read, update, and delete functionality for data in a data store, as well as
implement any user-specified action, which can then be accessed as triples
via an API (Shah et al. 2017: 381).

In the Jurion use case, an enhanced data quality and repair pipeline was
established with the help of RDFUnit and PoolParty, so that data life cycle
process was suffering from less data errors and schema inconsistencies and
the overall process was accelerated, especially when data or schema changed
over time.

In the Jurion IPG use case, the Model Catalogue is used to provide
accurate descriptions of data fields, including those from linked external data
sources. Such descriptions can aid correct data entry and permit additional
reuse of data within the organisation. The Model Catalogue also aims at
serving as a provider of models to the generated tools and as an environment
where new versions of the data model can be created and evolved. Dacura
was instantiated as an alternative approach, covering the overall process from
model storing, mapping, and a complete automatic generation of the final
future data schema, accompanied by automatic data testing with RDFUnit.

In the NIHR Health Data Finder, the Model Catalogue is the central
resource, holding the master copy of models and documentation. In the
NIHR Health Informatics Collaborative, each site hosts its own instance of
the Model Catalogue, documenting their own data landscape including a
data warehouse, source patient record systems, research systems, and local
data flows. A central installation of the catalogue contains the shared data
specifications, along with local variations, and relevant national specification.
Local catalogue installations can automatically import the latest version of the
central models, and the central catalogue is used to generate XML schema for
use by all partners. In the UK 100,000 Genomes Project, the architecture of
the pilot is of particular interest: information is provided by the hospitals in
the form of XML, matching a schema generated by the Model Catalogue, or

2.3 The ALIGNED Use Cases and Data Life Cycle 35

manually through online Case Report Forms, hosted in a system called Open-
Clinica. Information is extracted via an ETL (extract, transform, load) process
from OpenClinica, combined with a shredded form of XML, and stored in a
matching relational database, generated by a component of Semantic Booster.
Finally, the architecture of the OUH data warehouse follows a similar pattern.
Almost 100 local databases and data specifications are modelled within the
catalogue, along with the design for the main data warehouse. The catalogue
is used to document field-level metadata, summary metadata, and dataflows,
and this information is to be used in the construction of research data extracts
and for generating hospital auditing and service improvement metrics.

One of the major steps in data engineering life cycle was the development
of new approaches to data validation. In particular, it comprised a new tool
developed for the PoolParty semantic suite. The process involved importing
RDF data in PoolParty and using the integrated validation checks to identify
problems, which are reported to the user as constraint checks. The user is
then given options to repair the data consistency. After fixing the inconsis-
tencies, the user can then import the data without the risk of application
failure.

RDFUnit is integrated in PoolParty RDF Validation for performing con-
straint checks. The checks are defined as RDFUnit test cases using RDF.
These test cases can also be run by RDFUnit independently of PoolParty
on external data. For each of the constraint checks, there is an RDFUnit
test case, which is based on a SHACL constraint or a SPARQL query that
identifies resources that cause violations. They together formed the basis for
the Data Quality Framework and the Automated Data Testing and Verification
Framework.

In most cases, constraint violations only become apparent after the import
has been done. In the worst case, this may even cause issues displaying
the data or errors displayed to the user. In other cases, issues could pass
through unnoticed or may only become apparent at a later stage. This means
that users interpret data issues as software issues and report those as bugs
in the SWC support space. Import validation has the potential to provide
major improvements of productivity and data quality in the data development
life cycle. The prototype import validation implemented in PoolParty using
RDFUnit enabled the users to get direct user feedback on violations of data
constraints. The feature provides direct feedback on data consistency con-
straint violation before data are imported. Being able to detect violations of
consistency constraints on data import increases data quality, since problems
are not imported into the system in the first place. The import validation

36 ALIGNED Use Cases — Data and Software Engineering Challenges

features provide increased agility, empowering users to import data without
quality issues. That means, users can react to issues themselves and fix the
data before it gets imported. This improves the connection between the data
development and the software development life cycle.

Notification can improve the usability of the PoolParty software, actively
providing notifications to users based on activity in projects. Currently,
staying informed about activities in projects can only be achieved by review-
ing the project history regularly. The ORE tool suggests new ontology
axioms (enrichment) and recommends semi-automatic fixes (for resolving
violations).

Another important contribution of the ALIGNED project was in the
domain of search, browsing, and exploration. Of particular importance is
Dacura, which is in a position to produce data quality tolerance requirements
to constrain the data to be harvested.!? The CIDE tool is also responsible for
extracting relevant requirement information and hence, tickets and creates
RDF data.

The Dacura approval queue allows also dataset administrators to mon-
itor added data for quality and completeness. Administrators can approve,
deny, publish, and unpublish the Linked Data objects submitted by Seshat
researchers. From a Dacura point of view, it is possible to import large
volumes of IPG data into a structured, rich semantic format according to
a predefined model that is amenable to statistical analysis and offers auto-
mated quality control. Dacura ensures consistency requirements and allows
users to monitor newly added data with respect to quality and completeness
conditions according to defined constraints.

The Unified Views tool allows data to be imported via SPARQL from
third-party datasets; in this case, DBpedia is used as a source of data. The
Unified Views tool also allows the establishment of processing workflows to
automate the importation of such data.

2.4 The ALIGNED Use Cases and Software Life Cycle.
Major Challenges and Offered Solutions

The LOD life cycle consists of five stages for software engineering, includ-
ing: (i) planning — assessment of the feasibility of software to fulfil the
requirements of the user; (ii) analysis — identifying potential problems;

3Shah et al. 2017: 381.

2.4 The ALIGNED Use Cases and Software Life Cycle 37

(iii) design — specification of software intended to achieve the specified goals,
including recognition of necessary components and existing constraints;
(iv) implementation — installation of the software on user machines; and
finally, (v) maintenance — controlling and checking the performance of the
software.

The simplest form of the software development is the waterfall model. It is
assumed that each element in the life cycle is completed in an unproblematic
fashion and there is no need to refer to the previous stage in implementing the
process. However, the major problem with this model is that the execution of
one phase of design may influence the previous stage. This is particularly
apparent in the verification stage when issues in implementation and verifi-
cation will require further effort in design, which means that design may be
said to be unfinished until verification is complete. This may also hold true
in the case of planning and specification while the process of producing a
clear, precise specification may uncover ambiguities or inconsistencies in the
requirements provided.

The integration of both life cycles is only possible when the data engineer-
ing systems, such as Dacura, provide several services to software engineers,
developing software that utilises the data curated by the system. These
include reliable access to data models, change notifications, and the automatic
production of simpler formats, which are more familiar to traditional Web
developers. For example, a GeoJSON stream is automatically made available
describing all the features in the dataset that have a geographical location
associated with them.

The data model developed by the Semantic Web community was made
available to software engineers by providing a metadata registry. The Model
Catalogue discussed above is such a registry. It can also be defined as a toolkit
for creating and managing data models. The Model Catalogue tool was used
to help develop and manage the ontologies used by the system — it supports
OWL models and provides a RESTful API to support easy integration with
third-party tools and incorporation into complex workflows. It was also
integrated into the Eclipse Modelling Framework, allowing existing tools
to more easily use the catalogue for development. Plugin capabilities were
added, facilitating the extension of the catalogue to allow it to interact with
more data sources. Semantic reasoning and search were also added, allowing
the more efficient reuse of ontologies and concepts. The Model Catalogue
was used for Seshat, Jurion IPG and Health Data use cases. In case of Seshat,
the Model Catalogue tool allowed the creation of complex ontology to capture
the complex historical data the project is collecting.

38 ALIGNED Use Cases — Data and Software Engineering Challenges

The Unified Views tool is an ETL tool for RDF data developed as part
of the PoolParty semantic suite. It was used to manage the integration of
datasets from third-party datasets. The development artefacts are imported
into the triple store using a UnifiedViews pipeline. This pipeline runs daily to
keep the data up to the date. The pipeline also calculates similarities between
the issues and requirements. This solution was adopted to Seshat, PoolParty,
DBpedia, Jurion, and Jurion IPG. In the latter use case, it was used to ensure
that the results of the validation processes carried out by Dacura and Semantic
Booster be evaluated, manage this mapping and transformation, and save the
transformed data to a triple store.

As regards the design phase in software engineering life cycle, the evi-
dence for this benefit can be seen particularly strongly in the automated
harvesting and curation interface generation tools developed in the project.
This is particularly evident in case of Dacura that informs the software
engineering analysis phase by defining what data is to be harvested (Shah
et al. 2017: 381). The Dacura Linked Data Model Mapping Service tool
creates rich ontological models from semi-structured HTML and automates
harvesting of data conforming to this model and was heavily tested within the
Jurion IPG use case.

For the implementation phase, the University of Leipzig developed a set
of tools around RDFUnit and DatalD, which together formed the basis for
the Data Quality Framework and the Automated Data Testing and Verifica-
tion Framework. Dacura makes it possible to define statistical data quality
measures to be met to support software engineering and suggest Ul refine-
ments to eliminate errors. Repair Framework and Notification tool is used in
both implementation and maintenance phase as the defined data constraints
influence the implementation of algorithms and as taxonomies are changes,
the constraints need to be satisfied.'*

Semantic Booster tool allows the automatic generation of software sys-
tems from formally specified system specifications. Hence, it supports both
semantic domain models and models of the software and data engineering
life cycles. In particular, Semantic Booster has its strengths in the auto-
matic model and software code creation process. It has also strong quality
constraints, so that no invalid data gets into the transformation process.
This approach was augmented by using RDFUnit for further data quality
checks and which is the prerequisite to connect external open datasets to the
IPG application in an easy and sustainable way. A Booster specification is

“Shah et al. 2017: 380.

2.5 Conclusions 39

designed, which creates a model from the SQL database, along with formal
constraints, which ensure that the data remains correct by construction. The
Model Catalogue tool is then used to manage this data model. Semantic
Booster is used to make this data available as RDF via an APL

This system was deployed in Jurion IPG and Health Data. The use of
Semantic Booster in Jurion IPG allows the introduction of a wider range
of semantic integrity constraints and business rules, to be applied on the
data upon entry — ensuring availability of high-quality data. The automatic
data migration tools provided with Semantic Booster minimise the impact of
upgrading and evolving the underlying data model whilst still maintaining
data consistency. Whilst Semantic Booster can already help enforce a range
of integrity constraints, there are some consistency checks, which would be
more reliably performed using RDF and reasoning. Hence, it was decided to
use the existing D2RQ tool to convert data stored within a Booster database
into RDF format, making it available to the RDFUnit testing tool. The
additional testing and monitoring also provides insight into productivity and
quality gains through the use of the ALIGNED tool stack.

The effective maintenance can be achieved in two alternative ways. The
first approach is provided by a configuration of the Oxford MDE approach,
while the second is by Dacura. A Booster specification is created, which
(i) generates SQL statements to extract the data from the legacy SQL DB
and saves it in a format that can be managed by the Model Catalogue tool
and (ii) the Booster specification should ensure that this extracted data are
correct by construction according to the Booster specification. Then, this
extracted data are made available as RDF via Semantic Booster. In the
approach offered by Dacura services, the Model mapping tool transforms the
SQL schema of the legacy DB into an OWL ontology, which is then used by
the schema checking tool to ensure that all data conforms to the model. The
curation and workflow tools allow data managers to change the model and
migrate the data and manage the process. This ontology is deployed as the
schema for the graph into which the instance data are imported.

2.5 Conclusions

All five use cases in the ALIGNED project were thoroughly analysed to
achieve its major goal, namely to create effective methods and tools for inte-
grating software and data engineering processes and develop full life cycle
workflows for combined software and data engineering. The deployment
of the project designed and produced software and tools led to significant

40 ALIGNED Use Cases — Data and Software Engineering Challenges

enhancement of all case studies and significant improvements in data pro-
ductivity, quality, and agility and eventually user satisfaction and customer
support. In Jurion IPG, of particular significance turned out to be Seman-
tic Booster, showing significant improvements in agility, with the addition
of new attributes being up to 45 times faster. Also, Dacura significantly
improved the management of re-engineering from the old relational database
schema to the new one. In addition, Wolters Kluwer’s Jurion and Jurion
IPG business information database was enhanced with ALIGNED tools,
significantly improving their ability to correct errors and change data schemas
over their previous tools.

The introduction of import validation in the PoolParty use case improved
data quality and reduced customer support time as well as significantly con-
tributed to the ability to fix a number of violations. Overall improvements in
data curation, data agility, model agility, and software development processes
were also achieved. The major achievement in DBpedia was the error rate
improved.

The rebuilding of the Seshat data and tools used the full suite of Dacura
tools to import the data, ensure it met consistency requirements, automatically
produce user interfaces and curation tools, and finally publish the data. It
resulted in a quantifiable reduction in the number of errors in data entry,
while the amount of data entered dramatically increased. The new format
of the dataset enabled the ability to link to external datasets to enrich the
Seshat data. The data generators and users reported an increase in usability
and productivity, and the technical users reported an increase in agility: the
speed in which tools and data can adapt to changes in the model. The shared
model for data validation and software generation involves integration points
with the planning phase of the software engineering life cycle, and the quality
analysis, manual revision/authoring, and search/browse/explore phases of the
data engineering life cycle. In addition, the collaborative consensus required
for updating the model brings additional dependencies on the interlinking and
extraction phases of data engineering.

3

Methodology

James Welch!, Jim Davies!, Kevin Feeneyz, Pieter Francois!,

Jeremy Gibbons! and Seyyed Shah!

University of Oxford, UK
2Trinity College Dublin, Ireland

3.1 Introduction

Software engineering is concerned with the development of reliable computer
applications using a systematic methodology. Data engineering involves the
collation, organisation, and maintenance of a dataset, or data product, and
may be seen as the dual of software engineering. The two processes are
typically treated as separate concerns — largely as a result of different skill
sets. However, there is often a great deal of overlap: dependable software
is reliant on consistent, semantically correct data; processing data at scale
requires high-quality tools and applications.

For most enterprises, the data they hold may well be their most valuable
asset. Day-to-day operations will be dependent on data concerning customers,
payments, and stock. It is vital that this data is of high quality: any loss of
integrity or inconsistencies with operating practices or business processes,
may be costly, and in many cases irreparable. Furthermore, the ongoing
success of the business is increasingly reliant on analysis of the data: his-
torical reporting, predictive analytics, and business intelligence. These latter
processes, along with decreasing costs for storing and managing data, drive
an increase in scale: minimising human effort is vital, and new Big Data tools
and techniques are required to manage ever-larger datasets.

For some organisations, the data may be the primary artefact or the
product in itself. From research enterprises to social networks, the value of
the data stems from its quality, coverage, and completeness. These curated
datasets may be the product of many smaller ones, perhaps different in
structure or domain, and linked to create new, richer datasets. For these

41

42 Methodology

combined datasets, the ability to version and update individual components is
critical: users of the data require up-to-date input, new features, and access to
corrections and clarifications. Tool support must be sympathetic to changes
in requirements and the acquisition of new data, and must scale accordingly.

It therefore follows that Software Engineering and Data Engineering are
closely related. Mission-critical software is reliant on high-quality data, and
the construction and maintenance of large datasets is dependent on secure,
reliable software. Many of the key challenges are common to both disciplines:
correctness, scale, and agility; tools and techniques for improving software
quality may also result in improved data quality and vice versa.

The increase in popularity of “Big Data” analytics means that solutions
to these challenges are required more than ever. The rise in data-intensive
applications — those systems that deal with data that is large in scale, complex,
or frequently changing' — has brought about a requirement to abandon tradi-
tional methodologies and explore new processes and techniques. A broader
range of software applications for processing data, including visualisation,
natural language processing, and machine learning, have provided new areas
for innovation, and the integration of a range of software components around
an underpinning data corpus has become a typical system architecture.

Engineering processes for both data and software are also required to be
sympathetic to the so-called “Five V’s of Big Data”: velocity, volume, value,
variety, and veracity. The speed at which data can be acquired — manually
through the efforts of large groups, or automatically through complex
applications — can impact the processes of data curation, enriching, and
analysis. The ever-increasing amount of data collected — which can include
static “historical data” and changing contemporaneous data — can reach scales
challenging existing software scalability. The perceived value of data cap-
tured requires precision software, and rigorous data engineering processes,
to ensure continuing accuracy and integrity. The ever-greater heterogeneity
of data to be handled creates semantic issues, which must be resolved when
linking and analysing data. Finally, the quality or trustworthiness creates fur-
ther semantic issues — understanding the meaning, provenance, and accuracy
of data is vital to realising its worth, and all phases of both software and data
engineering processes need to take this into account.

Modern approaches to software engineering consider automation for
agility and correctness, formal techniques for reliability and iterative
approaches to improve delivery time and adapt to requirements. Data

'M. Kleppmann, Designing Data-Intensive Applications: The Big Ideas behind Reliable,
Scalable, and Maintainable Systems, O’Reilly Media, 2016.

3.2 Software and Data Engineering Life Cycles 43

engineering as a discipline is less mature, although certain phases of an
iterative process have been identified, and dependencies between phases can
infer a natural development life cycle. However, both life cycles remain inde-
pendent, and finding an integrated process, which considers both software
and data in parallel, remains a considerable challenge.

The content in this chapter is adapted from a paper submitted (in January
2018) to Elsevier’s Journal of Information Sciences.

3.2 Software and Data Engineering Life Cycles
3.2.1 Software Engineering Life Cycle

Modern software development methodologies can be seen as refinements
to the original waterfall process for hardware systems development. First
conceived as a “stagewise” model,” an instantiation targeting software
development is typically summarised by the diagram in Figure 3.1.

In this most basic process, progress flows one way, through each of
the stages, and one phase cannot begin until the previous phase has been
completed. Each of the stages can be “signed off” by either the customer or
the developer in such a way that completion of a phase can be recognised and
made final. For example, the requirements for the system determine the scope

‘ Requirements

(Specification

-k

‘ Verification

{ Maintenance 1

Figure 3.1 The waterfall process for software development.

H. D. Benington, Production of large computer programs, IEEE Annals of the History of
Computing 5 (1983), pp. 350-361.

44 Methodology

of the specification; the completed specification document may be seen as a
contract for the design work.

The first major problem with the waterfall model is that the execution
of one phase of design may influence the previous stage. This is particularly
apparent in the verification stage: issues in verification will require further
effort in design; design may be said to be unfinished until verification is
complete. This may also hold true in the case of specification: the pro-
cess of producing a clear, precise specification may uncover ambiguities or
inconsistencies in the requirements provided.

One solution to this problem is to allow feedback from one phase to
modify earlier decisions. This leads to a modified version as proposed by
Boehm,? in which backward arrows lead from one phase to the preceding
one (see Figure 3.2). Although this allows for some notion of iteration in
development, allowing decisions made in each phase to be revisited, it suffers
from another flaw, that is, estimating delivery time (and therefore cost) can
be very difficult. Without specific bounds on revisiting decisions, overall
implementation can take unspecified amounts of time, leading to frustration
for both developer and customer.

Requirements

Specification

Design

Verification

Maintenance

Figure 3.2 A modified waterfall process.

’B. W. Boehm, Software Engineering, IEEE Transactions on Computers 25 (12),
pp. 1226-1241, 1976.

3.2 Software and Data Engineering Life Cycles 45

This uncertainty can be exacerbated by another common problem in
software development: customers often do not know, or understand, precisely
what they want until they have had a chance to see it, or interact with
it. Business rules that may seem fixed at the time of requirements and
specification may need revising in light of constraints in subsequent design
or implementation stages. A good software engineering process must be
sympathetic to revisiting even the earliest requirements decisions after design
and implementation are underway, but still be amenable to stable project
management in order to allow predictable costs and timescales.

More modern approaches to these problems can take two forms. The first
of these is more technical, and directed at the actual design and implementa-
tion process: by reducing the length of time taken to get from requirements
to implementation, decisions can be revisited quickly, and with less devel-
opment effort. Prototyping allows the customer or user to get a feel for the
solution earlier, permitting the requirements or specification to be revisited
sooner in the overall implementation process. Automation in the implemen-
tation phase can reduce the effort involved in updating implementations to
match updated requirements.

The second approach is another update to the software engineering life
cycle, allowing multiple iterations of the traditional model, typically reducing
the retrograde steps in the previous model in favour of completing an imple-
mentation and starting a new requirements and specification iteration sooner.
Figure 3.3 shows a typical iterative software development life cycle.

Requirements

Maintenance

N

Specification ’

J

Verification Design

Figure 3.3 An iterative software development process.

46 Methodology

The iterative model allows a more flexible approach to contracts and
timelines: short cycles of the entire process allow prioritisation of features;
early implementations can be used as prototypes and complex details can
be saved for future iterations when there may be more clarity. Cycles are
typically kept to a predefined length; at the start of each cycle, the scope
of each phase is determined, managing time and cost expectations. Although
system-wide requirements will be gathered throughout the whole cycle, some
analysis will be performed at the start of each cycle in order to confirm the
scope for the next cycle. Overall, time and cost estimation can be managed
more effectively* and revised at the end of each cycle.

Another advantage to the iterative approach is that it changes the nature
of the maintenance phase. Typically, during the life of the software, func-
tionality will need adjusting to match evolving business requirements. With
the standard waterfall model, the final phase of maintenance is often insuf-
ficient to deal with updated requirements, and the whole process needs to
begin again; an iterative approach takes this into account, and maintenance
can be merged in as part of the overall development and re-evaluation
cycle.

The “Manifesto for Agile Software Development™ proposes 12 prin-
ciples for such a development process, including to “satisfy the customer
through early and continuous delivery of valuable software”, to “welcome
changing requirements, even late in development”, and to “deliver working
software frequently, from a couple of weeks to a couple of months, with
a preference to the shorter timescale”. The iterative approach is typically
referred to as an “agile” approach, although the principles as set out for
an agile process extend beyond the software life cycle itself and provide
guidance for the way in which developers work as a team and interact with
their customers.

Managing an iterative process effectively can still be difficult: although
individual cycles can be fixed in duration, and development effort within
the cycle may be reasonably estimated, it can still be difficult to manage
priorities and overall development direction. A number of variations on the
iterative, “agile” process have been proposed, and frameworks built around

25

“A. Begel, N. Nagappan, Usage and perceptions of agile software development in an
industrial context: An exploratory study, in: First International Symposium on Empirical
Software Engineering and Measurement, pp. 255-264, IEEE, 2007.

K. Beck, Manifesto for agile software development, http://agilemanifesto.org, accessed:
November 2017 (2001).

3.2 Software and Data Engineering Life Cycles 47

them, for example, Scrum’,® Kanban,” and Extreme Programming,8 all of
which can help with cost estimation, reducing the time spent on verification
and enhancing code quality.

An agile approach can also be counter-productive for building certain
types of software where solutions are complex and irreducible. Such solutions
require a high degree of planning and design and architectural decision-
making in advance. An iterative development methodology can restrict the
solution space to one in which development time may be reasonably esti-
mated, where progress may be demonstrated at the end of each iteration and
where prioritisation stays consistent.

3.2.2 Data Engineering Life Cycle

As an emerging field of research, the processes of data engineering used in
industrial applications are still relatively immature. The LOD stack LOD2? is
a collection of integrated tools supporting a life cycle for creating and man-
aging Linked Data. Auer et al.'” proposed an iterative process for developing
linked open datasets. Eight core activities of Linked Data management are
identified and managed as phases in an iterative life cycle, consistent with the
principles of Linked Data:

e storage/querying: retrieving and persisting information to be included as
part of the dataset;

e manual revision/authoring: processes for manual curation of content;

e interlinking/fusing: creating and maintaining links between datasets;

®K. Schwaber, M. Beedle, Agile Software Development with Scrum, Vol. 1, Prentice Hall,
2002.

M. O. Ahmad, J. Markkula, M. Oivo, Kanban in software development: A systematic
literature review, in: Software Engineering and Advanced Applications (SEAA), 2013 39th
EUROMICRO Conference on, IEEE, pp. 9-16, 2013.

8K. Beck, Embracing change with extreme programming, Computer 32 (10), pp. 70-77,
1999.

°S. Auer, V. Bryl, S. Tramp, Linked Open Data—Creating Knowledge out of Interlinked
Data: Results of the LOD2 Project, Vol. 8661, Springer, 2014.

105 Auer, L. Biithmann, C. Dirschl, O. Erling, M. Hausenblas, R. Isele, J. Lehmann,
M. Martin, P. N. Mendes, B. van Nuffelen, C. Stadler, S. Tramp, H. Williams, Managing
the life-cycle of linked data with the LOD?2 stack, in: P. Cudre-Mauroux, J. Heflin, E. Sirin,
T. Tudorache, J. Euzenat, M. Hauswirth, J. X. Parreira, J. Hendler, G. Schreiber, A. Bernstein,
E. Blomgqvist (Eds.), International Semantic Web Conference, pp. 1-16, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012.

48 Methodology

e classification/enrichment: creating and maintaining links between data
and models of data (which themselves may be linked and part of the
dataset);

e quality analysis: testing for data completeness and correctness;

e evolution/repair: correcting invalid data resulting from a quality analysis
phase via either manual or automated processes;

e search/browsing/exploration: making data artefacts available to domain
experts or to users beyond the original authors;

e extraction: producing or publishing profiles or projections of data to be
used in other applications.

Figure 3.4 shows an iterative life cycle incorporating these stages.

These stages of data engineering have been identified primarily for
building tool support and integrated frameworks, encouraging compatibility
of independent tools within a particular framework. As with the software
engineering process, feedback from one phase may be fed into another. For
example, the models linked during the classification or enrichment stage will
determine the scope of the quality analysis stage; any errors found during
quality analysis may need to be resolved in the evolution/repair phase.

Interlinking /
Fusing
Manual Revision / Classification /
Authoring Enrichment
Storage / : .
(Querying } (Quality Analysis]

Extraction J [Evolutiqn /
Repair

Search / Browsing /
Exploration

Figure 3.4 A data engineering life cycle.

3.3 Software Development Processes 49

3.3 Software Development Processes

In order to design a combined software and data engineering process, we will
first consider some modern approaches to software engineering at scale and
how phases of the data engineering life cycle might be integrated or merged.
As explained in Section 3.2, automation is often seen as key to improving
both the speed of software delivery and the correctness of the delivered
product. In this section, we will consider three cross-cutting techniques of
software engineering and discuss their advantages and disadvantages. We first
consider model-driven approaches to software development, and the trade-off
between automation and customisation. We then look at formal techniques,
in particular formal specification, validation, and verification. Finally, we
discuss test-driven development and its role in an iterative development
process.

3.3.1 Model-Driven Approaches

MDE describes a development process in which the components of the
final software artefact are derived — either manually or automatically — from
models that typically form part or all the specifications or requirements of the
system. Rather than writing software that understands the data itself, software
is written that understands the modelling language and is capable of handling
updates to the model. Such software can be reused in different applications
within a similar domain, minimising the time spent on the implementation
phase and capturing common repeating patterns that would otherwise have to
be repeated on each cycle of an iterative development.

MDE is a promising starting point for our combined methodology:
by choosing well-suited models that fit the application domain, updating
software to match evolving data can be achieved by simpler updates to a
model. With suitable tool support, this methodology may also allow ordinary
business users to manipulate these models and help bridge the gap between
requirements and specification.

As implied above, MDE approaches fall on a sliding scale between a fully
automated generation process, and something much more manual, allowing
greater flexibility and customisation. An overview of some of the possible
approaches and discussion of their practicality follows below.

The first MDE approach can be described as “full automation”: every-
thing is modelled — including future-proofing — and machine learning is used
to learn how to change the model from the flows of data as their format
changes over time. This approach has significant advantages in terms of

50 Methodology

maintenance cost: once the system is deployed and operational, minimal
further intervention is required. However, although learning how to self-
adapt a model is theoretically possible, it remains impractical for real-world
applications. Another problem is the generation of training datasets for the
machine-learning component: this is currently beyond the scope of most data
engineering projects.

A second approach that appears more practical is where a full model
of system behaviour is manually produced, but a fully functional software
implementation can be generated automatically from the model. The mod-
elling language should be designed in such a way that a broad range of
likely future developments and feature requests can be handled without any
custom code needing to be written. If such tools are written with evolution
and upgrade in mind, they may be used for rapid prototyping, as part of an
iterative agile process or as a technique to manage and enable software change
beyond initial deployment. If the tools for editing and managing models are
good enough, such changes may even be carried out by business users and
deployed instantly, rendering the whole process cost-free from a technical
resources point of view.

Although feasible within particular domains of application, this approach
does not work universally: there can be no theoretical basis for automatically
implementing arbitrary behaviours and functionalities. However, subsets of
the overall problem are tractable, and such modelling languages — also
referred to as DSLs — exist with usable tool support. The UML!! is the
most significant attempt to create a complete modelling language. It does
not have a formal semantics itself, but can be given one for a specific
purpose, and there are many tools based on subsets of the language. UML
has been successfully deployed for building large, complex model-driven
systems. However, in practice, the development and testing of the models
takes considerable amount of time and effort to get right. Such systems are
most appropriate for domains in which a lot of effort is spent moving data
through highly stereotyped workflows that do not change rapidly over time
and where significant resources can be allocated to testing and managing
model updates.

The remaining modelling approaches do not attempt to model behaviours,
limiting their scope to data. The third approach is where a complete data
model, containing a full specification of all the classes and properties that

"1J. Rumbaugh, 1. Jacobson, G. Booch, Unified Modelling Language Reference Manual,
Pearson Higher Education, 2004.

3.3 Software Development Processes 51

are present in the data, is used to constrain or guide the manipulation of data
corresponding to that model. This approach has the advantage that constraints
on data are easier to define and use than those upon behaviours. A complete
data model can be used to generate a large proportion of software components
in an information system — for example, the data storage mechanism and user
interfaces.

The disadvantages to this third approach are that although generation
processes have been formally solved and public standards such as OWL are
available, in practice, automated software generation from such models is
still very hard and requires tools to be built from scratch. Most importantly,
the conceptual framework and the assumptions underlying the logic of OWL
need to be changed. Existing tools for model management are typically
focussed on knowledge engineers with specific goals and as such are not
really suited to business users.

A fourth approach is that of partial data modelling: where a subset of the
information domain is specified — limited to ad-hoc or incomplete positive or
negative constraints on the data. Here the assumption is made that the model
is not exhaustive, that there are states of the data that are not addressed in the
model. This technique has a particular advantage in processing large datasets:
where data are messy and do not necessarily conform to any model, we can
identify and filter out the most important problems caused by the lack of
structure. A model may be incrementally built, adding rules to specifically
address any issues with the data as they are encountered.

A disadvantage with this approach is that the incompleteness of the model
prevents most automation techniques. Another is that the models are built
up by accumulation of ad-hoc rules and become difficult to manage over
time, invariably becoming a barrier to agility, and may become inconsis-
tent. Changes to the model may result in large changes to the data — or
worse, required changes to the data may go unnoticed or their calculation
or derivation may be infeasible from the model.

3.3.2 Formal Techniques

The use of formal methods in the development of programs has been the
traditional practice for those systems that may be seen as safety-critical: typ-
ically those systems whose failure could endanger human life. Such formal
techniques include the mathematical derivation of program code from precise
specifications, the logical proof that code exactly implements specifications in
the form of contracts, or the exhaustive verification of software to show that

52 Methodology

unwanted behaviours are precluded. Each suffers from the same problems:
that formal techniques are slow and expensive, and do not scale to large
complex software systems. A rigorous, mathematical approach will require
developers with very specialised skills and experience.

However, there have been some successful applications of formal tech-
niques in practical software development. Automation can solve problems of
scalability, but a completely automatic process is impossible in the general
case. One solution is to restrict the problem domain: pattern matching can
be applied to the specification and particular refinements applied; proof
libraries and verification results can be stored for reuse. Another solution is
to focus automation on part of a stepwise process; for example, automatically
generating method stubs or proof obligations for manual completion.

In many cases, formal techniques are associated with a more traditional
waterfall method development. This can be because there is a need for a
detailed, comprehensive specification before the mathematical process can
begin — requiring that much of the solution is explored before any program-
ming starts. Hall'> described the development life cycle of the specification
itself: from Learning through Production and Simplification. These stages are
necessary within any development method, but in a formal code derivation
process, these must typically happen before any code has been written. This
may result in an overall speed increase, but does not incorporate the funda-
mental component of an iterative process: feedback — the user’s response to
an initial implementation.

However, the construction of a complete, precise specification is not
without merit. The explication and analysis of the problem space is invaluable
when developing code, most importantly when a team of developers require
a shared understanding. Human-readable documentation is also important
for giving context and addressing subtleties not obvious from the plain
mathematical statement. By addressing both specification and requirements
in this way, developers have a clearer sense of direction, customers can make
better judgements on the suitability of a solution, and managers can better
manage expectations of time and cost.

3.3.3 Test-Driven Development

A test-driven (or “test-first”) software development proceeds in an itera-
tive fashion, but relies on a short development cycle, focussed on building

2A. Hall, Seven myths of formal methods, IEEE Software 7 (5), pp. 11-19, 1990.

3.4 Integration Points and Harmonisation 53

functionality to meet requirements, rather than specification. At the start of
each iteration, acceptance tests are written to validate the implementation of
the next round of features: the expectation is that these new tests will initially
fail. Minimal changes to the code are made in order to get the test suite
completely passing; once all tests pass, the feature development is complete.
An optional refactoring phase can be used to tidy the code, whilst maintaining
a full suite of passing tests.

As well as measuring the suitability of the latest iteration of develop-
ment, tests also provide a valuable restraint on regressions: that previously
correct functionality is not broken by the latest updates. This can give
users confidence in the stability of the software and reduce the burden for
developers.

An agile test-first approach can lead to high-quality, timely software.
However, some of the caveats about agile, iterative development also apply:
maintaining long-term objectives whilst focussing on short-term goals can
be difficult. Finding appropriate levels of code coverage requires experience:
total coverage is often impossible; tests covering trivial or non-realistic cases
can waste developer time, but too few tests may lead to a reduction in quality.

The test-driven approach to software has obvious parallels in the develop-
ment of large datasets: the quality analysis phase of development can be used
to measure the correctness of the other phases — in particular those of manual
revision, interlinking, and enrichment. Tools for finding inconsistencies in
data — and highlighting areas of concern — are readily available and well
understood by data engineers.

3.4 Integration Points and Harmonisation

Although the processes for software engineering and data engineering dis-
cussed so far are complementary, it is more than likely that in the development
of a data-intensive system, there will be dependencies between the two
processes. In general, an integration point corresponds to any pair of points
in the software and data engineering life cycles where specific artefacts and
processes should be shared. In this section we enumerate three different forms
of integration point: overlaps, synchronisation points and dependencies; we
discuss the importance of each, and consider the difficulties in spotting them.
We conclude the section by examining potential barriers to harmonising the
two processes, in terms of terminologies, development roles, models, and tool
support.

54 Methodology

3.4.1 Integration Points

The first type of integration point between the data and software engineering
processes is that of a natural overlap. This will be particularly prominent
at the start of the project: for example, where the initial implementation
of the software may run in parallel with a manual curation of the initial
dataset. Similarly, in some projects, a phase of testing the software for
correctness may coincide with a phase of quality analysis for the data: bugs
in the software may be a cause of inconsistencies in the data; errors in the
data may uncover issues in the software. In general, overlapping phases
such as these can indicate a requirement for software engineers and data
engineers to work together to ensure successful conclusions in both life
cycles.

More generally, we can consider synchronisation points: where phases in
both cycles are required to start, or finish, at the same time. This could be due
to a release of software coinciding with the linking of a new dataset. It may be
due to external pressures: the implementation of software and manual update
of data to match new business processes; the completion of a cross-cutting
software and data concern before a member of staff leaves the organisation.

More generally still, it is important to consider dependencies between
phases in cycles. Typically this can mean that a phase in one cycle must finish
before another starts, but may simply be that one phase must reach a certain
level of completion. One example where a software engineering phase might
depend on a data engineering phase would be when data quality analysis
must be completed before the requirements for the next iteration of software
development can be signed off. An example where a data engineering phase
may depend on a software engineering phase might be where a particular
software feature must be tested and deployed before some manual data
curation may start.

Such integration points may happen regularly with every iteration — for
example the requirement to migrate data to match the deployment of new
software, or may happen irregularly, for example in response to changes
in business processes, the implementation of new features, or updates to
external data sources. Thus it becomes important to regularly review known
integration points and assess the potential for new integration points in the
future. As this requires insight into both data and software engineering
development plans, along with an understanding of overall roadmaps and
business direction, the integration analysis will involve many stakeholders
across a range of disciplines or technical competencies.

3.4 Integration Points and Harmonisation 55

As with any project management activity, care should be taken to ensure
that dependencies can be appropriately managed. It is conceivable that in rare
cases, cyclic dependencies appear: this may indicate that data and software
engineering phases need more carefully defining — split up or merged — or
that requirements and design need revising. Generic tool support for such
project management is readily available, but specialist tooling — as discussed
in Section 7 — is really only available for software development processes.

The nature of each integration point needs investigation to explore the
best way of addressing it. For example, although some straightforward
dependencies may be seen to be sufficiently addressed by a simple sign-
off process, the criteria for completion must be agreed beforehand. More
complicated dependencies, especially where an overlap in phases is con-
cerned, may require more substantial collaboration between data engineers
and software engineers, perhaps with intermediate checkpoints and combined
requirements.

3.4.2 Barriers to Harmonisation

There are a number of barriers to the easy combination of software and data
engineering processes. Although both processes have foundations in com-
puter science and information engineering, the two disciplines have different
terminology, and different reference or metamodels. The participants in each
will also vary: roles may not have obvious counterparts in the other discipline,
and the people carrying out each role will have different backgrounds and
skills. Highlighting barriers and potential pitfalls is important so that they
can be anticipated and worked around.

An integration point will usually indicate some shared resource between
software and data engineering: typically a requirement, a model or a meta-
model. It can be important to recognise this shared resource and ensure
that both data engineers and software engineers share a collective under-
standing. A common barrier is that of terminology: although engineers
may typically share a common language in the domain of application, with
differing skills and backgrounds, software and data engineers may have
different technical terminology. An example of this is shown in Figure 3.5 —
showing a standard equivalence between terms of abstraction in different
domains: data engineering, model-driven software engineering and more
general programming.

Based on the scope of the project, however, the equivalence may not be
as direct as those shown. For example, in a particular project, one specific

56 Methodology

Meta-level Data engineering Software engineering Programming
Schema, Meta-metamodel Grammar notation
Ontology Language

Upper Ontology Metamodel Language Grammar
Domain Ontology, Model Program definition
Schema

Triple, Dataset Instance, Object Program runtime

Figure 3.5 Comparison of terminology in software and data engineering.

Upper Ontology may be used as a Model in software engineering, which
may be represented at Program Runtime in practice. The abstraction level at
which each artefact is expected to be used when shared between software and
data engineering processes should be documented as part of the process, and
any changes in notation — for example, a process used to turn UML software
models into an OWL ontology — should be automated if possible.

As well as the differing terminologies, the models themselves may differ.
In order to facilitate interlinking, data engineers typically make good reuse
of existing models — for example Dublin Core (DC)'3 for generic metadata,
Friend Of A Friend (FOAF)'# for social relationships, or PROV' for data
provenance information, are all commonly reused or extended. This extension
is an essential part of the data engineering process, allowing dataset linking.
In software engineering, however, reuse of such pure data models is less
common: reuse happens in terms of libraries of functionality. While there are
some libraries that do implement standard data models,'® most are typically
restricted to the most trivial — for example hash maps — or the domain-
specific — for example models of Microsoft Word documents.!” Without
common models for software and data, harmonising the two development
processes will prove difficult.

Enumerating the participants involved in each of the two processes can
also highlight potential hurdles. A wide variety of roles may be involved:
in software engineering, these might be systems or software analysts, devel-
opers and testers; in data engineering these might be data architects, data

13§, L. Weibel, T. Koch, The Dublin Core metadata initiative, D-lib Magazine 6 (12),
pp- 1082-9873, 2000.

D, Brickley, L. Miller, FOAF vocabulary specification 0.91 (2007).

5P Groth, L. Moreau, PROV-overview. an overview of the PROV family of documents,
project Report, April 2013.

16C. Mattmann, J. Zitting, Tika in Action, Manning Publications Co., 2011.

"The Apache Software Foundation, Apache POI, http://poi.apache.org, accessed:
November 2017 (2017).

3.4 Integration Points and Harmonisation 57

harvesters and data consumers. There may be roles which can, or should,
be shared across the two processes: requirements engineers, system admin-
istrators, technical or development managers. Users may be technical or
domain experts; they may be users of the software, the data, or both. It is
important that interaction between roles is between both sides of the process:
software developers should understand the concerns of data quality analysts,
for example, and the data architects should collaborate with the software
architects.

Another area where software and data engineers can be divided is on the
use of tools for managing the development process. In software development,
the usual practice is to use an issue-tracking or defect-tracking tool, such
as Atlassian Jira,'® or JetBrains YouTrack.' Such tools can help orchestrate
an iterative process: plugins are available to manage agile variants such as
Kanban or Scrum. Technical problems can be managed through this process
too: issues can be raised directly by users, taken through a workflow from
prioritisation through development to testing by the developers, and “signed
off” as complete by management or the original users. Customisable work-
flows allow this process to be adapted according to particular development
processes or business culture.

Typically, such tool support for data engineering processes does not exist,
in part due to the relative immaturity of formalised processes, and in part due
to the wide variety of workflows for data curation, some of which will be
specific to particular domains. In some cases, customisable tools such as Jira
can be re-purposed, and plugins developed, but data engineers — especially
the domain experts, who may be non-technical — can often be reluctant to use
such tools aimed at software developers. Processes can often be managed in
a more ad-hoc fashion without tool support or building additional bespoke
support into data curation tools.

Having identified a number of potential barriers to integrating two
different engineering processes, we can consider approaches to success.
Collaboration and harmonisation between two typically distinct teams in an
organisation requires a detailed understanding of the other process and those

'8]. Fisher, D. Koning, A. Ludwigsen, Utilizing Atlassian JIRA for large-scale software
development management, Tech. rep., Lawrence Livermore National Laboratory (LLNL),
Livermore, CA (2013).

19JetBrains, JetBrains YouTrack, https://www.jetbrains.com/youtrack/documentation/, acce-
ssed: November 2017 (2017).

58 Methodology

participating in it; of compromise in terms of terminology and modelling;
a sympathy for those solving orthogonal problems within the same space;
and shared sets of resources and tools for collaboration.

3.4.3 Methodology Requirements

Data-intensive systems require careful alignment between data engineering
and software engineering life cycles to ensure the quality and integrity of
the data. Data stored in such systems typically persist longer than, and may
be more valuable than, the software itself, and so it is key that software
development is sympathetic to the aims of “Big Data”: scalability to large
volumes of data; distributed, large-scale research across multiple disciplines;
and complex algorithms and analysis. These are normally described in the
literature as the Five V’s of Big Data: velocity, volume, value, variety, and
veracity.

In existing development methodologies, software and data engineering
are considered as separate concerns.’ Integrating these will introduce a
number of new challenges: software engineering aims of software quality,
agility and development productivity may conflict with data engineering
aims of data quality, data usability, and researcher productivity. Further
challenges include federation of separate data sources, dynamic and auto-
mated schema evolution, multi-source data harvesting, continuous data cura-
tion and revision, data reuse and the move towards unstructured/loosely
structured data.

Auer et al. identified challenges within the domain of life cycles for
Linked Data.?! These include extraction, authoring, natural-language queries,
automatic management of resources for linking, and Linked Data visual-
isation. Typically seen as concerns for data life cycles, they all have a
major impact upon software development: the authors mentioned compo-
nent integration, the management of provenance information, abstraction
to hide complexity, and artefact generation from vocabularies or semantic
representations.

%M. Kleppmann, Designing Data-Intensive Applications: The Big Ideas behind Reliable,
Scalable, and Maintainable Systems, O’Reilly Media, 2016.

21S. Auer, J. Lehmann, A.-C. N. Ngomo, A. Zaveri, Introduction to linked data and its
lifecycle on the web, in: Reasoning Web. Semantic Technologies for Intelligent Data Access,
pp. 1-90, Springer, 2013.

3.4 Integration Points and Harmonisation 59

Mattmann et al.?*> used their experience of data-intensive software sys-
tems across a range of scientific disciplines to identify seven key challenges
which may be summarised as:

e data volume: scalability issues that apply not just to the hardware of the
system, but may affect the tractability and usability of the data;

e data dissemination: distributed systems bring challenges of interoper-
ability and can lead to complex system architectures;

e data curation: supporting workflows and tools for improving the quality
of data, in a way that allows subsequent inspection or analysis;

e use of open source: complex technologies will depend upon reliable,
reusable components supporting generic functionality;

e search: making the data collected available in a usable fashion to users,
including access to related metadata;

e data processing and analysis: boiling down to workflows, tasks, work-
flow management systems, and resource management components;

e information modelling: the authors state that “the metadata should be
considered as significant as the data”.

The authors split these challenges into further subcategories and pointed
out many interdependencies between these problems. Zaveri et al.>* took a
broader view, highlighting inadequate tool support for Linked Data quality
engineering processes. Where tool support does exist, these tools are aimed
at knowledge engineers rather than domain experts or software engineers.
Anderson agreed with this issue,>* describing a more wide-ranging lack
of support for developers of data-intensive systems. He also identified “the
necessity of a multidisciplinary team that provides expertise on a diverse set
of skills and topics™ as a non-technical issue that can be addressed by projects
dealing with large, distributed datasets. A technical equivalent to this issue
is to understand notions of iteration with respect to the data modelling —
he argued that domain knowledge is required in order to understand data
collection and curation. Subsequently, he also argued for technical knowledge

22C. A. Mattmann, D. J. Crichton, A. F. Hart, C. Goodale, J. S. Hughes, S. Kelly, L. Cinquini,
T. H. Painter, J. Lazio, D. Waliser, et al., Architecting data-intensive software systems, in:
Handbook of Data Intensive Computing, pp. 25-57, Springer, 2011.

2B A. Zaveri, A. Rula, A. Maurino, R. Pietrobon, J. Lehmann, S. Auer, Quality assessment
for linked data: A survey, Semantic Web 7 (1), pp. 63-93, 2016.

%K. M. Anderson, Embrace the challenges: Software engineering in a big data world,
in: Proceedings of the First International Workshop on BIG Data Software Engineering,
pp. 19-25, IEEE Press, 2015.

60 Methodology

in order to match frameworks with requirements, emphasising the need for a
multi-disciplinary team.

Some solutions to these challenges have been identified — most notably
in the area of model-driven software engineering, DSLs, and generative
programming. These approaches, in combination with Linked Data languages
and schemas, enable self-describing data structures with rich semantics
included within the data itself. Aspects of program logic previously encap-
sulated in software are now embedded in data models, meaning that the
alignment between data and software engineering becomes even more impor-
tant. But these approaches can lead to further problems: Qiu et al.> identified
two issues: firstly the interaction between domain experts and application
developers, and secondly that change to schema code may not always impact
application code in a straightforward manner.

3.5 An ALIGNED Methodology

This section outlines the proposed methodology for combined software and
data engineering. We describe it as “lightweight”, because the technique
requires some initial setup and maintenance, and its exact form can be heavily
determined by the exact software and data engineering processes, by the
tools available and the technical members of the team. However, in this
methodology, we propose a general framework for process management, an
iterative methodology, and a number of guidelines or recommendations for
successful integration. We conclude the section by considering tool support
for such a process.

3.5.1 A General Framework for Process Management

In Section 5, we outlined a number of potential barriers to harmonising the
data and software engineering processes. Our general framework is concerned
with reducing the effect of these issues, as well as providing an iterative
methodology that is suitably adaptive in response to changes in context. The
framework is split into two phases: the first, a “setup” phase, involves some
analysis of the preferred engineering processes, the shared resources and
integration points, and the impact of any tools, project roles or terminology
where managing integration points will prove problematic. The second phase

D, Qiu, B. Li, Z. Su, An empirical analysis of the co-evolution of schema and code
in database applications, in: Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, pp. 125-135, ACM, 2013.

3.5 An ALIGNED Methodology 61

is the iterative development, where the outputs of the setup phase are under
a process of continuous revision, such that problems can be foreseen at the
start of each cycle.

The setup phase is broken into four consecutive steps — the first of which is
to perform some basic analysis on the preferred software and data engineering
processes. This will be most greatly influenced by the skills of the technical
collaborators, the preferred management style, and the requirements laid
down by the users. As part of the guidelines later in the section, we strongly
recommend iterative development approaches to both software and data, and
for the remainder of the section assume processes similar to those outlined
in Figures 3.3 and 3.4 — generic iterative approaches corresponding with
an agile approach. However, specific projects may choose, for example, a
specific software testing phase apart from the more general software main-
tenance; or a detailed requirements phase within the data engineering life
cycle.

At this point, we can assume that there is some shared understanding of
the requirements — not necessarily a full detailed consensus, but a general
appreciation for the tools and techniques required to produce a satisfactory
solution. This is not an unreasonable assumption, as in most cases some
contractual negotiations will have preceded a team starting on a development,
or the new development will be part of a rolling series of features given to an
in-house team of engineers working on a particular project.

The second step of the setup phase is to consider the resources that should
be shared between software and data engineers. Typically, this will include
requirements or specification in the form of models, or perhaps metamodels,
that can be shared rather than creating two incompatible versions. Unifying
terminology and semantics is important here: if software and data engineers
have differing interpretations of the same model, any potential advantage
may be lost. Creativity in this part of the process may result in gains later
on: other potentially sharable resources may include test suites and other
quality analysis tools, technical and user-facing documentation, and project
management tools or support. As with all analysis carried out in this setup
phase, it can be revised in later iterations, and so any decision taken here
need not be final.

The third step is to consider the integration points for this particular
project, in the context of the decisions made in the previous two analyses.
Given iterative approaches to software and data processes, and a list of shared
resources, it is possible to build a grid, similar to that shown in Figure 3.6. The
software engineering life cycle steps are enumerated along the top, and the

62 Methodology

Manual revision/

Inter-link/fuse
Classify/Enrich
Quality Analysis

Evolve/Repair

Search/Browse/
Explore

Store/Query

Figure 3.6 An incomplete grid for analysing integration points.

data engineering life cycle steps are enumerated on the left-hand side. Each
box in the main part of the grid therefore corresponds to a potential integration
point — for example, the first column in the first row represents a potential
synchronisation between the requirements phase in software engineering with
the manual revision/authoring phase in data engineering.

The grid can now be populated with two pieces of information. The first
is to highlight any squares in which a potential integration point is possible —
this will be based on the shared resources analysed in the previous step. For
example, if a data schema is to be shared, then any changes made as part
of the specification phase could impact some or all the data engineering
phases. Similarly, any shared test cases which are updated as part of the
quality analysis phase in data engineering, will affect the verification phase
of the software development process. The second piece of information is the
tooling that can be used to facilitate the integration at each point in the grid. In
Section 7, we outline some of the tools built by the ALIGNED project that can
be used to support and manage these integration points, but appropriate tools
may be found off-the-shelf, repurposed from software or data engineering,
developed in-house, or built for this specific development. As the need for
data-intensive systems development increases, it is expected that such tools
will be more widely available.

It should be obvious at this point that any identified integration point
without specific tool support may need addressing. In many cases, simple
awareness could be sufficient: highlighting such unsupported integration
points and ensuring greater effort on collaboration at these points in the
process. Alternatively, new tools could be sourced, or processes adjusted to
minimise potential integration.The fourth and final step in this setup phase is

3.5 An ALIGNED Methodology 63

to consider the other barriers to harmonisation, in the context of each integra-
tion point. Software and data engineers involved in the project should come
together to consider how their terminology, standard models, developer roles
and tools can be made compatible in order to ensure maximum integration at
each feasible point.

3.5.2 An lterative Methodology and lllustration

Once the setup phase is complete, a more traditional iterative development
can begin. In the setup phase, an iterative process for each of the software and
data engineering components was selected. In our methodology, these may
now continue independently in parallel, but constrained by the integration
points previously discussed: overlap, synchronisations, and dependencies. To
ensure that these integration points may be sufficiently addressed, it is our
recommendation that the cycles are aligned, or are coincident at a particular
phase in each cycle — this will be determined by the integration points, and
the shared resources.

To illustrate, we consider a typical scenario encountered by our
ALIGNED project use cases. In this scenario, the software engineering pro-
cess is approximately equivalent to the iterative methodology in Figure 3.3,
and the data engineering process can be seen as similar to that defined in
Figure 3.4. The key shared resource is a complex data model, used as a
reference by the data engineers, but also forming part of the software model:
data modification functionality, business rules, and additional internal data
points are added to the external-facing data model, and used as a specification
document for the software engineers.

In such a process, updates to the data model can occur as part of the
storage/querying phase of the data engineering activity, where new data are
added to the existing data corpus, or as part of the specification phase of the
software engineering activity, where new requirements give rise to updates
in the intended functionality of the system. This forms the key integration
point: there is an overlap in process here, as both software and data engineers
should agree on any updates to the data model, and neither may continue
until the updates made are complete and consistent. It is important that
such a key integration point is well managed: problems here could result
in wasted time and effort in curating a dataset against an incorrect model,
developing software against an invalid or inconsistent schema, or managing
a difficult merge operation between two parallel versions of the same data
model. However, managed properly, having a shared data model is worth the

64 Methodology

effort: a reduction in duplication can save time and money; automation based
on this model can be shared; a common understanding can lead to a more
coherent, better designed solution.

In this scenario, we insist that iterative processes in software and data
engineering may now continue independently, but must synchronise on this
overlapping event: storage/querying and specification. Figure 3.7 shows an
example of such a parallel, synchronising process. In theory, this means that
the iterations of each process should be the same length, and while in some
projects this may be feasible, in others, where a particular phase may be more
burdensome, this may prove to be overly restrictive. In such situations, it
may be possible to relax this guideline, by simply insisting that the iterations
synchronise whenever a change affecting both processes is made to the data
model. For example, after a major release of a combined software and data
product, minor, or patch releases may be made to the software if no changes
are made to the data model, or any changes made do not affect the current
iteration of data engineering. This will allow the software engineers to iterate
a few times within a single iteration of the data engineering process, ensuring
that data engineers have time to satisfactorily complete their iteration, and
that software engineers are not kept waiting before beginning a new iteration.

Such synchronous iterations must be managed with care — those managing
the projects must be made aware of any potential delays, since a delay to one
process will impact the other. In software engineering, developers may be
used to working within time-bounded “sprints” — in which the scope of a
release may be reduced in order to ensure that completion is not delayed.

Interlinking /
Fusing
Classification /
Enrichment
Quality Analysis
EVOIUthn /
Repair
Search /
Browsing /

Exploration

Specification,
Storage / Querying

Design Manual
Revision /
Authoring

‘ Maintenance M Requirements

Figure 3.7 A parallel life cycle with synchronisation.

3.6 Recommendations 65

In data engineering, such practices are less common, and so some training
may be required to ensure all technical staff understand the restrictions. In
developments where software and data iterations coincide, but are of differing
lengths, care must be taken to ensure that any additional iterations do not
impact the shared resources. For example, in the scenario outlined above, any
additional software iterations for a minor or patch release must not update
the shared part of the data model, for otherwise the current data engineering
iteration may be inconsistent with the software that will next be deployed.

3.6 Recommendations

The iterative approach outlined above can provide a framework for combining
software and data engineering processes, in such a way that a certain amount
of autonomy can be maintained in two quite separate disciplines, but also
in a way that can improve consistency and efficiency in the delivery of a
solution made up of two closely coupled components. We now give some
recommendations, based on our experience on a number of use-case projects,
for ensuring that integration points are managed efficiently, and to maximise
collaboration between software and data engineers.

Our first recommendation is that models are shared between software
and data specifications, wherever possible. As previously discussed, this
increases the opportunities for reuse and helps ensure that software and data
remain consistent. We further recommend that these models are formalised
in such a way that removes ambiguities, reducing the chance of inconsistent
assumptions being made by software and data engineers.

Second, we recommend that development is driven by these shared mod-
els, in an automated fashion wherever possible. This reduces the chance of
error in development and can ensure consistency such that developers can
rely on the solutions produced in a parallel iteration.

Third, any solutions for either software or data should be rigorously
tested, where tests are also developed — automatically if possible — directly
from the model. Sharing or reusing test components can prove efficient, as
well as ensuring consistency between data and software.

Fourth, tool support should be used to effectively manage the iterative
process on both software and data sides. As discussed in Section 5, software
engineers are used to using project management software to coordinate
and administer an agile process, but such tools are not commonly used in
data engineering applications. Such tools would need specialist support for

66 Methodology

managing the integration points, and a wider range of developer roles and
responsibilities.

Our final recommendation is that whenever meetings are held to discuss
the iterative process — in particular the planning and feedback stages — these
meetings should be attended by representatives of all solution stakeholders.
The purpose for this is twofold: so that integration points and shared resources
can be carefully managed; and so that the overall roadmap and architecture
can be maintained whilst engineers focus on small iterations addressing short-
term goals.

These five recommendations are derived from the combined experience of
the project use cases, but in every project, their priorities differed, according
to the experience of the development and project management teams, the tools
available, and the particular iterative steps used in each development.

3.6.1 Sample Methodology

As an illustration, in this section, we look at the synchronisation points
required for the ALIGNED use cases.

Table 3.1 outlines the usecase-oriented view of the synchronisation
between Data and Software Engineering life cycles. Each entry of the table
represents a synchronisation point within in the project. The use cases will be

Table 3.1 A usecase-oriented synchronisation table for the ALIGNED project

Data Software Engineering

Engineering Requirements Specification Design Verification Maintenance

Manual PS5.1,PS5.2, PS5.1,PS5.2 JURION [WKD3]

revision/ JURION JURION PS1.4, [Seshatl]

Author [WKD1] [WKD2]

Inter-link/ PS4.1,PS4.2, PS4.1,PS4.2, DBpedia

fuse DBpedia PS4.4 [DBP2]
[DBPI1]

Classify/ [Seshat2]

Enrich

Quality JURION PS1.1,PS1.2, PS1.1,PS1.2,

Analysis [WKD4] PS1.3, PS2.3, PS1.3, PS2.3,
DBpedia PS3.1 DBpedia
[DBP3] [DBP4]

Evolve/Repair PS5.3 PS3.1, PS3.2

Search/Browse/ PS5.1,PS5.2 PS5.1,PS5.2 DBpedia [DBPS5]

Explore

Extract PS4.1,PS4.2 PS4.1,PS4.2 DBpedia [DBP6]

Store/Query PS5, JURION JURION [WKD6]

[WKDS5] DBpedia [DBP7]

3.6 Recommendations 67

used to enact the methodology with the tools in Section 7. The following
summary describes the high-level features of each intersection point, in terms
of use cases:

e Manual Revision/Author

o A2: [WKDI] In the schema change use case (JS7), it is reflect-
ing the situation that when a schema change is introduced and
forwarded to the software manager in the SE life cycle, which
initiates a process of validating the suitability of the model for use
in SE. [WKD2] In the bug reporting governance use case (JS8),
when a bug is reported and the software analyst finds that the
bug is caused by a data error, he informs the DE expert to fix the
data error via manual revision. [PS5.1] Develop plugins for Con-
fluence and JIRA [PS5.2] Make use of collected process-related
data.

o A3: [WKD?2] In the bug reporting governance (JS 8) use case, the
SE designer can eliminate scenarios where a data-caused bug could
occur in the future by sending additional constraints to the DE
side, where these constraints are integrated to the schema. [PS5.1]
Develop plugins for Confluence and JIRA [PS5.2] Make use of
collected process-related data.

o A4: [Seshatl] We will implement of graphical user interface soft-
ware to author and edit data and the data will be communicated
and captured in the DE life cycle.

e (B) Interlinking/Fusing

o B2: [PS4.1] Extract data from Confluence and JIRA [PS4.2] Create
RDF data from the extracted data. [DBP1] Refers to the fact over-
lap and conflict evaluation (DS1.3) and in the interlink evaluation
(DS3.2). DS1.3 refers to validation by fusing data from different
DBpedia language editions and Wikidata in order to identify over-
laps and conflicts. DS3.2 refers to tools that validate external links
to other datasets.

o B3:[PS4.1] Extract data from Confluence and JIRA [PS4.2] Create
RDF data from the extracted data [PS4.4] Link Development
Process Data with Data Model Integrity Information.

o (C) Classify/Enrich: There are few synchronisation points where DE use
cases exploit SE tools, possibly because classification in DE is a well-
studied task.

68 Methodology

o AS: [Seshat2] The graphical user interface software widgets on the
SE side will be continuously updated and maintained as the DE
schemas evolve.

e (D) Quality Analysis

o D2: [DBP3] Quality analysis for mapping (DS2.1), ontology
(DS2.2) and instance data (DS3.1).

o [WKD4] When a quality-related schema change is introduced and
accepted in the DE Life Cycle, the changes are communicated
to the SE Life Cycle, where the software is accepted. There is a
protocol for accepting quality changes.

o D4: [PS1.1] Constraints for Internal Actions [PS1.2] Rules for
Reasoning and Inferencing [PS1.3] Constraints for Specific
Schemas [PS2.3] Validate Thesaurus Against Schema.

o DS5: [DBP4] Schemas refers to reports, generated by the automated
mapping validation tool (DS5.1) and erroneous fact report to the
Wikimedia community (DS5.2). [PS1.1] Constraints for Internal
Actions [PS1.2] Rules for Reasoning and Inferencing [PS1.3] Con-
straints for Specific Schemas [PS2.3] Validate Thesaurus Against
Schema.

¢ (E) Evolve/Repair

o E4: [PS5.3] Integrate Data Constraints Information with PPT Data
Migration and Deployment Strategy.

o ES5: [PS3.1] Formulation of Constraint Violation Repair Strategies
[PS3.2] Creation of Repair User Interfaces.

o (F) Search/Browse/Explore

o F2: [PS5.1] Develop plugins for Confluence and JIRA [PS5.2]
Make use of collected process-related data.

o F3: [PS5.1] Develop plugins for Confluence and JIRA [PS5.2]
Make use of collected process-related data.

o F4: [DBP5] These integration points use the generation of DatalD
as a core and auto generate tool for browsing and querying
based on the DatalD file. Browsing is achieved by auto gener-
ating a download page for a DBpedia release and querying by
providing a Docker image that contains the release stored in a
triple store.

3.7 Sample Synchronisation Point Activities 69

¢ (G) Extract

o G2:[PS4.1] Extract data from Confluence and JIRA [PS4.2] Create
RDF data from the extracted data.

o G3:[PS4.1] Extract data from Confluence and JIRA [PS4.2] Create
RDF data from the extracted data.

o G4: [DBP6] Extraction of two additional Wikimedia projects:
Wikimedia Common (DS1.1) and Wikidata (DS1.2), implement-
ing tools in the SE domain that extract the data.

e (H) Store/Query

o H2: [PS5.1] Develop plugins for Confluence and JIRA [PS5.2]
Make use of collected process-related data [PS5.3] Integrate Data
Constraints Information with PPT Data Migration and Deployment
Strategy.

o [WKDS5] This integration point appears in the schema change
(JS 7) use case. Once the schema change is in place in the DE
Life Cycle, new instance by the DE expert to the SE expert. The
new data are used to execute test scenarios on how the new schema
is affects the existing software, to formulate new requirements for
the design and implementation phases.

o H4: [DBP7] These integration points use the generation of DatalD
as a core and auto generate tool for browsing and querying based
on the DatalD file. Browsing is achieved by auto generating a
download page for a D<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>