
Mathematical Reviews Clippings March 2021

MR3931324 68-02 60A99 62G99 62H99 68N17 68Q55

Riguzzi, Fabrizio (I-FERR-MI; Ferrara)

FFoundations of probabilistic logic programming.
Languages, semantics, inference and learning.
With a foreword by Agostino Dovier.
River Publishers Series in Software Engineering.

River Publishers, Gistrup, 2018. xxxiii+387 pp. ISBN 978-87-7022-018-7;
978-87-7022-017-0

Probabilistic logic programming (PLP) is an attempt to find a bridge between computa-
tional logic and modern machine learning methods. This book gives a nice, self-contained
introduction to PLP. It consists of 12 chapters, which can be grouped into five parts:
preliminaries, languages, semantics, inference, and learning.

Preliminaries. The first chapter is devoted to the material which can equip the
reader with the necessary background to understand the subsequent topics. It starts by
recalling notions related to orders, lattices, ordinals, mapping, and fixpoints, followed
by a concise introduction to logic programming and its semantics, probability theory,
and probabilistic graphical models.

Languages. The existing approaches to combining logic programming with probability
can be classified into two categories: those based on Sato’s Distribution Semantics
(DS-based) and those based on Knowledge Base Model Construction (KBMC-based).

The second chapter of the book is dedicated to these approaches. It starts with
DS-based languages that do not contain function symbols. Here, the idea is to use
a probabilistic logic program to define a probability distribution over normal logic
programs (worlds). Then, for a given query, the distribution is extended to a joint
distribution of the query and the worlds, from which the probability of the query
is computed by summing over the worlds. To define the distribution over programs,
random choices are encoded for clauses, and the set of choices induces the probability
distribution. Different DS-based languages may choose different encodings or different
ways of stating probabilities for choices, but in the end, all of them have the same
expressive power. Logic Programs with Annotated Disjunctions (LPAD), ProbLog,
Probabilistic Horn Abduction, Independent Choice Logic, PRISM, and CP-logic are the
languages considered in this part. Well-chosen examples help the reader to understand
their syntax and semantics. This part also contains a section on a translation of LPADs
into Bayesian networks and a discussion on semantics for non-sound probabilistic logic
programs.

The KBMC-based languages are represented by three examples: Bayesian Logic Pro-
grams (BLPs), CLP(BN), and the Prolog Factor Language (PFL). In these languages,
a program is a template for generating a ground probabilistic graphical model. BLPs
generalize both logic programs and Bayesian networks. Ground atoms correspond to
random variables and clauses represent the idea of conditional probability densities,
defining the dependencies between ground atoms. CLP(BN) is based on constraint logic
programming and uses Bayesian networks to represent the joint probability distribution
over terms constructed from Skolem symbols. Probabilistic dependencies are expressed
by constraints. PFL is an extension of Prolog for representing first-order probabilistic
models. In general, the treatment of KBMC-based languages is brief. The author does
not go into as much detail as he does for DS-based languages. This is not surprising,
since the emphasis of the book is on DS-based languages.

This part ends with a brief discussion of a couple of frameworks for probabilistic logic
programming that do not follow the distribution semantics, and on probabilistic logic
languages that are not based on logic programming.

Semantics. This part includes semantics for programs with function symbols (Chapter

1



Mathematical Reviews Clippings March 2021

3) and semantics for hybrid programs (Chapter 4). For programs with function symbols,
the set of ground instances (grounding) of a clause is infinite and the number of worlds
is uncountable. Therefore, the number of atomic choices in a selection that defines a
world is infinite. It may lead to the consequence that the probability of each individual
world is zero, and the semantics defined for function-free programs is not applicable
anymore. The material presented in Chapter 3 deals with this problem. Semantics for
programs with function symbols is defined based on sets of choices that ensure that
the query is true. Such sets are called explanations. They identify sets of worlds that
entail the query. Then the probability of a query q is a function of the set of all possible
explanations for q (called the covering set of explanations for q).

Hybrid probabilistic programs include continuous random variables alongside dis-
crete ones. In Chapter 4, some hybrid languages are introduced and their semantics
is presented. Hybrid ProbLog is one such language, which extends ProbLog with con-
tinuous probabilistic facts. The number of continuous variables is finite. The approach
to defining the semantics of hybrid ProbLog programs is based on discretization tech-
niques. The space of possible assignments of continuous variables is discretized into
intervals. The actual values within intervals do not play a role. The semantics of a hy-
brid program is then defined based on the semantics of the discretized program. For
this approach to work, there are some restrictions imposed on the occurrences of contin-
uous variables. Other languages considered in this chapter are Distributional Clauses,
an extension of PRISM that includes continuous random variables with a Gaussian
or gamma distribution, hybrid programs on cplint, and Probabilistic Constraint Logic
Programming.

Inference. This is the largest part of the book and comprises four chapters: Exact
Inference (Chapter 5), Lifted Inference (Chapter 6), Approximate Inference (Chapter
7), and Non-standard Inference (Chapter 8). There is a strong link with the material in
the previous part, connecting semantics with statistical inference. It is in the tradition
of logic programming, where connections between declarative and operational semantics
are well explored.

In PLP, various inference tasks are considered. Given two conjunctions of ground
literals, q (query) and e (evidence):

(1) the EVID task is to compute the probability of evidence: P (e);
(2) the COND task is to compute the conditional probability distribution of the query

given the evidence: P (q|e);
(3) the MAP task (maximum a posteriori) is to compute the most likely value of a set

of non-evidence atoms given the evidence; and
(4) the DISTR task is to compute the probability distribution or density of the

non-ground arguments of a conjunction of literals.

Some more special tasks include MPE (most probable explanation), which is a special
case of MAP considering the set of all non-evidence atoms, and CONDATOMS, which
is a special case of COND assuming only atoms in q.

Exact inference aims at solving these tasks in an exact way and is performed either by
dedicated algorithms for special cases, knowledge compilation, conversion to graphical
models, or by lifted inference. The first three methods are discussed in Chapter 5.
Inference in PRISM can be seen as an example of inference in a special case since this
system requires subgoals to be independent and clauses in programs to be exclusive. The
knowledge compilation approach is more general. It first converts the program, the query,
and the evidence into a Boolean formula encoding the covering set of explanations, and
then performs the actual compilation, converting the formula into a form from which the
probability can be easily computed. In the book, this process is illustrated for various
systems and different inference tasks. The chapter ends with a discussion of inference

2



Mathematical Reviews Clippings March 2021

for programs with function symbols and hybrid programs.
Lifted inference has been introduced for efficiency reasons since reasoning with

real-world models is often very expensive. It tries to exploit symmetries in the model
to achieve a speeding up in inference. Lifted versions of various techniques and their
comparisons are discussed in Chapter 6.

Yet another way to address the complexity problem of exact inference is to relax
it and consider some approximations. The approaches to approximate reasoning are
classified into two groups: those that modify exact inference and those that are based
on sampling. Various such techniques, used in different systems for different tasks, are
defined and illustrated in Chapter 7.

The inference part of the book ends with the chapter on non-standard inference,
where problems for languages that are similar to PLP are considered. This includes
Possibilistic Logic Programming, Decision-Theoretic ProbLog, and Algebraic ProbLog.

Learning. This part is an attempt to connect logic programming with machine learn-
ing. PLP seems to be a promising approach in this direction. Two problems are ad-
dressed: Parameter Learning in Chapter 9, and Structure Learning in Chapter 10.

The parameter learning problem is formulated as follows: Given data (as a set of
ground atoms or interpretations) and a probabilistic logic program, find the parameters
of the program that maximize the probability of the data. It is illustrated how this
problem is approached in several PLP systems.

The structure learning problem aims at generating whole programs (including their
parameters and structure) from given data. This direction is related to Inductive Logic
Programming, where data consists of three parts: positive and negative examples as
sets of ground atoms, background knowledge in the form of a logic program, and a set
of possible programs. The goal is to find a program among the possible ones which,
together with the background knowledge, implies all positive examples and does not
imply any negative ones. In the context of structure learning with PLP, one talks about
Probabilistic Inductive Logic Programming (PILP). The author illustrates how learning
is done in several PILP systems, where the exact problem statement depends on what
kind of data is considered and what properties the final program should satisfy.

The book ends with a set of program examples and the illustration of how the cplint
system answers queries to them (Chapter 11). This is a very instructive part, and I
enjoyed reading it. Some open problems and future research directions are discussed in
the concluding chapter (Chapter 12).

The book will be useful for readers with a background in computer science and
artificial intelligence who want to learn about principles, techniques, and systems for
probabilistic logic programming. Temur Kutsia

3


