
5
Tools

Kevin Feeney1, Christian Dirschl2, Katja Eck2, Dimitris Kontokostas3,
Gavin Mendel-Gleason1, Helmut Nagy4, Christian Mader4

and Andreas Koller4

1Trinity College Dublin, Ireland
2Wolters Kluwer Germany, Germany
3University of Leipzig, Germany
4Semantic Web Company, Austria

5.1 Model Catalogue

5.1.1 Introduction

Careful management of metadata is essential for the effective reuse of data
and the correctness of any software designed for processing the data. Meta-
data may capture best practice in a domain and as such the reuse of metadata
can proliferate best practice. Traditionally, most metadata is usually captured
implicitly, and embedded in the software or system that use the data. Motiva-
tion for developing a tool for managing and curating metadata includes data
and software interoperability, documenting metadata as models and building
a platform for automatically generating software systems from models.

Without easily available metadata, determining the compatibility of
datasets and software systems becomes challenging. The problem is com-
pounded where there are multiple datasets and software systems, as the
metadata for each needs to be documented manually, ex post facto, in order to
determine compatibility. There are several challenges to collecting, managing
and documenting metadata. Metadata may have only been documented con-
ceptually, and there may be ambiguities in the metadata that require further
clarification.

The Model Catalogue is an online tool that supports the capture and
documentation of metadata as generic and reusable models. The tool facili-
tates collaboration between metadata creators and potential users. The system

125

126 Tools

defines a core language for describing metadata, which enables sharing,
documentation and reuse of metadata. The tool uses standards-based concepts
for registration, versioning and a standard four level architecture with an API
for interoperability with external tools.

Metadata is data that describes data by capturing essential relationships,
classifications and atomic data elements. Metadata is important for data reuse
and underpins the software that stores, processes and analyses any dataset.
This information captures the meaning and guides interpretation of the data.
However, in typical usage, metadata is captured implicitly and embedded
within the software system that uses the data. This is problematic because
metadata is essential to reuse the data outside the original context.

Metadata is also essential to interoperability. The compatibility of two
datasets may only be determined by examination of the datasets’ metadata.
This can be an arduous task where the metadata is embedded with the soft-
ware and the difficulty can be compounded where there are several datasets
involved. Software interoperability, where independent systems can share
messages and data, relies on compatible metadata for the involved systems.

When metadata is separated from the use of the data, two important
efficiencies are made possible. Firstly, the metadata can be explored inde-
pendently from the data, so the compatibility of datasets and interoperability
of software can be determined without analysis or re-collection of the data.
Metadata can also be captured in a generic form, as metadata models and soft-
ware systems for managing data can be generated from sufficiently detailed
metadata models. Other benefits to a metadata-oriented approach include
reasoning and discussion about the underlying model with experts, reuse of
metadata and creating a map of data across the systems in an organisation.

Metadata can also be used to encode the established best practice in a
domain. The definitions of how data should be structured, what data should
be captured and the intended use for the data can be captured in metadata.
For example, metadata can specify the resolution and level of granularity for
data capture. When metadata is embedded directly with the use of the data,
reuse of the best practice can be a challenge. Where metadata is encoded as
generic models and the models are documented independently of any system,
the essential information about a domain becomes more readily available for
reuse. Software developers can use these metadata models to encode the best
practice of a domain. Reusing metadata models helps proliferate established
best practice.

Generic models of metadata can encode the best practice of a domain.
This can be taken further by allowing potential data users to reuse subsets
of a generic data model. This means that only the relevant data elements

5.1 Model Catalogue 127

and classifications from a model can be reused and repurposed in a new
context. However, reusing, changing or merging models for a new context is
challenging unless elements have exactly the same meaning in both contexts.
Subtle differences between models’ elements can make the reuse of models
and data problematic, especially when changes in versions are not docu-
mented or tracked. Each element of metadata must be documented in order to
determine the compatibility of that data element for reuse in a new context.

5.1.2 Model Catalogue

The Model Catalogue is a toolkit for creating, sharing, and updating
data models. The system uses a layered architecture, described below,
which allows for a number of possible Graphical User Interfaces. The
data models are descriptions or specifications of data artefacts, objects, or
implementations.

A data model may describe or specify:

• a dataset or database holding data of interest
• a request for data from a collection of databases or datasets
• a standard for developers to work to
• a form used for data entry
• a message carrying data from one system to another
• a report offered or required
• a workflow or pathway in which data are collected and used.

A data model will be simpler than the artefact it describes. It need not consider
every aspect of the artefact or implementation, only the data items of interest
and the relationships between them.

A data model will be more comparable. It is easier to compare data
models, written in a single modelling language, than to compare artefacts
implemented using a range of different technologies.

A data model will be more re-usable. It is safer to produce a new
artefact by copying parts of a model than by copying parts of the existing
implementation. There are additional advantages – cost, consistency – if the
new artefact can be generated automatically.

5.1.2.1 Architecture
The Model Catalogue has been built in a traditional layered architecture,
facilitating access through both manual and programmatic means. This struc-
ture is shown in Figure 5.1. At the base layer is a relational database: in
the current implementation, we use PostgreSQL as a stable, tried-and-tested
open source solution. To ensure consistency of the underlying data, we insist

128 Tools

Figure 5.1 The layered architecture of the Model Catalogue.

that all data access and manipulation is through a programmatic API: this is
currently implemented in Java and is used by the higher levels of the stack,
but can also be used by external tools built with Java.

At the next level up is a Web-based REST API. This can be used
to programmatically access remote deployments of the catalogue, and is
language-independent: it can be used by any sophisticated toolset to interact
with a publicly available catalogue. The final layer is the human-readable
Web interface. This provides an attractive view of the data to facilitate a
range of use cases, accessible on modern Web browsers using standard
interface patterns for security and interaction. The Model Catalogue provides
a generic API so that any Java-based tool, including Eclipse, can be integrated
programmatically.

Figure 5.2 Core concepts – data model components – within the Model Catalogue.

5.1 Model Catalogue 129

At the core level, the catalogue contents are structured in a simple hierar-
chy, a subset of which is shown in Figure 5.2. At the top level is a Data Model,
which may be versioned and published. A model contains a number of Data
Classes, which provide categorisation or structuring. At the lowest level are
Data Elements, which describe individual data points. Each Data Element has
a Data Type, which may be either: a Primitive, such as String or Integer; an
Enumerated Type, where allowed values may be defined in the context of this
model or taken from a larger terminology; or a Reference Type, denoting a
pointer to data from another Data Class. Figure 5.3 shows this hierarchy.

Components of data models may be linked: a link between two elements
can represent that two data items are equivalent, that one is derived from
another, or that one is different to another. For example, one element in
a dataset might be linked to a definition within a data-standard to assert
that the guidelines have been followed in the collection of that data item.
Another item might be linked to that same data standard definition with a
“different to” annotation to assert that although these data points might look
the same, there is a subtle difference that may be explained in the item’s
description.

The Model Catalogue Web interface currently supports the fundamental
use case requirements: browsing, searching and editing/updating models.
These are described in the next sections.

Figure 5.3 A model showing the datatypes represented in the Model Catalogue.

130 Tools

5.1.2.2 Searching and browsing the catalogue
There may be many models in the catalogue with the same name. For this
reason, the contents of the catalogue can be searched or browsed using system
metadata:

• model name
• editors – the catalogue users with write access
• status – draft or finalised
• catalogue version
• creation date
• last edit date
• imports from – the list of models which use the datatypes defined within

this model

or by user-supplied metadata:

• owner(s) – responsibility
• author(s) – credit
• organisation(s) – authority
• external version name/label
• external release name/label

Other searching and browsing requirements will be addressed using anno-
tations and classifications. Users with write access to a model can
add annotations against templates provided for that model type. Users
with read access can classify models and model components to which they
have read access.

The two-panel view of the catalogue, as shown in Figure 5.4, provides a
familiar interface, with the structured model contents in the left-hand pane,
and the currently viewed data model component in the larger right-hand pane.
A view of a data model displays metadata about that model and a list of all
child data classes; similarly, the view of a data class shows metadata about
that class, along with all contained data elements. The view of a data element,
as illustrated in Figure 5.5, shows detailed information about the datatype,
including any enumerated values, along with the description, and metadata
about its place within the model, its current publication status, and when it
was last updated.

The Web interface currently offers a basic keyword search across different
component types within the catalogue. This helps potential users of collected
datasets find data items that may be useful to their work. Figure 5.6 shows
this keyword search in action for the Seshat Code Book model.

5.1 Model Catalogue 131

Figure 5.4 Model Catalogue interface: browsing the Seshat code book.

5.1.2.3 Editing the catalogue contents
Editing a draft data model is a simple process whereby most fields may be
edited in place. Figure 5.7 shows the editing of basic data element details:
name and description. All modifications are recorded. A change log is created
and preserved for each model, showing the time, date, and user responsible
for each change.

Although people may currently use the catalogue to collaboratively edit a
model, simultaneous updates can cause confusion. In the next version of the
system, at the point of opening a component for editing, a user will be alerted

132 Tools

Figure 5.5 Model Catalogue interface: data element view.

Figure 5.6 Model Catalogue interface: keyword search for a data item.

if that same component is currently open for editing by other user(s). The
identity of the other user(s) will be displayed, together with the time at which
they started their edit. At the point of saving an edit upon a component, a user
will be alerted if the component has been updated, by other user(s), since the

5.1 Model Catalogue 133

Figure 5.7 Model Catalogue interface: editing a data item.

edit began. In either case, the current can choose to proceed with the edit or
the save.

Once finalised, those with “write access” may further annotate a model:
while annotations are potentially useful and valuable, they are not taken to
contribute to the finalised interpretation of the model or model component.

The contents of a model, and any associated links, cannot be changed
after finalisation. However, the lists of users with write or read access can be
updated by any of those with write access.

Finalisation cannot be undone: instead, a new version must be created.
This can be done by any of those with write access to the finalised model:
the result is a copy of the model with a link to the existing, finalised model
indicating that it is indeed a “new version”.

There is no need to create a new version of a model that has not been
finalised: a user with write access can simply update the contents of the model
in its current “draft” state; an edit log is maintained automatically.

If two users with write access to a finalised model both create new
versions, then the development will branch. A branched development may
be merged by a user with write access to finalised models in both branches,
creating a model that is a new version of both.

A user who does not have write access to a finalised model may create a
copy of the model (or a component) that is not a new version but is instead
“based upon” that item. There is no requirement that the new item should
have the same intended interpretation.

134 Tools

When a new version of a finalised model is created, the result is a draft
model with a complete copy of the finalised model contents and metadata,
including all links and annotations.

Where a model or a component is the target of a classifier or label,
whether the classification concerned is updated to include the new version
depends upon the properties of the classification (and not the model). The
options are:

• add new version to classification alongside existing version
• add new version, remove existing version
• ignore new version

In the last case, the new version can then be added manually, if required.

5.1.2.4 Administration
The Model Catalogue administrator(s) can register new users as editors or
readers. They can manage models for which there are no longer any other
users with write access.

An editor can create new models and add or delete annotations for existing
models to which they have write access. They can create classifications
referring to any items to which they have read access. They can explore
models to which they have read access.

A reader can add or delete annotations for existing models to which they
have write access. They can explore models to which they have read access.

Where there are several users with write access to the same model,
the possibility of conflict arises. Any conflict may be addressed through
interaction with the administrator(s), who are able to modify any aspect of
the catalogue contents.

Any editor can create a user group. Any member of a user group can add
or remove members. User groups can be included in model access control
lists.

5.1.2.5 Eclipse integration and model-driven development
Core parts of the catalogue functionality are integrated with the Eclipse
Modeling Framework (EMF). EMF is fundamental to the majority of model-
driven development tools within Eclipse and is also used as the basis for
DSLs and transformations. This allows existing model-driven tools within
Eclipse to take advantage of the catalogue in order to reuse components of
models, increasing the speed of development, and allowing data linking and
interoperability between tools built within the framework.

5.1 Model Catalogue 135

Figure 5.8 Model Catalogue Eclipse Integration.

Furthermore, the EMF integration allows new Model Catalogue com-
ponents to be built in a MDE fashion – the screenshot in Figure 5.8
shows an automatically generated interface for interacting with the catalogue
data, including automatic change management to track multi-user updates.
Another auto-generated component stores all versions of every model
to disk.

The Model Catalogue also has a plugin architecture, providing exten-
sion points through which new functionality can be built and dynamically

136 Tools

integrated. For example, two key extension points are those of Importer
and Exporter: developers can write their own importers and exporters using
the Model Catalogue Java API to automatically document models in their
own language, or to use the catalogue as an interface for compiling new
models from existing ones. A developer may choose to write a data model
importer that documents the usage of a no-SQL database, and an exporter
that generates queries to retrieve that data and insert it into an SQL
database.

Further plugins are being developed for bespoke types of data model,
and custom interfaces that can be used to display and edit particular types of
model in a more familiar fashion. For example, a graphical editor for UML
diagrams, or a builder tool for designing data entry forms. This plugin archi-
tecture also allows custom configurations of the catalogue to be deployed –
using just those plugins necessary for the context: providing a better user
experience and requiring minimal system resources.

5.1.2.6 Semantic reasoning
Semantic links are created in the catalogue to associate parts of different
models – typically Data Elements – to assert that they are similar in meaning
or use. This allows descriptions of meaning to be reused: by asserting: “this
element is the same as that one” a modeller may take advantage of definitions
in other models, reducing the effort in documentation. These links also give us
the formal notion of “semantic interoperability”: that data from two sources
may be combined for a particular purpose.

To reason about this semantic interoperability property, using off-the-
shelf reasoning tools, it is useful to view the data in terms of triples. In order to
do this, the D2RQ tool1 allows users to expose internal relational data as RDF
triples (see screenshot in Figure 5.9). Although the mapping requires some
further customisation for easier use, the mapping is sufficient to reason about
key properties of the semantic links: circularities in the transitive “same-as”
link, and contradictions in definitions using the “same-as” and “not-same-as”
links.

A side effect of making this representation available is that the catalogue
contents can be linked to other open datasets. For example, catalogue meta-
data may be linked to other published artefacts with Dublin Core, provenance
information may be attached with PROV, linking to existing tagging and

1http://d2rq.org

5.1 Model Catalogue 137

Figure 5.9 Screenshot showing RDF representation of catalogue contents.

folksonomies through the Modular and Unified Tagging Ontology (MUTO),
and design intent may be linked to model components using DIO.

To assist with this linking, namespaces can be added to metadata elements
within the catalogue. These can be used to indicate fields for linking in
the RDF representation, or can be used by plugins to configure generated
artefacts, such as adding constraints to systems generated with Semantic
Booster, or shaping XSD outputs to match existing specifications.

5.1.2.7 Automation and search
Previous implementations of metadata registries have shown that it can be
difficult to encourage users to carefully document the whole data model to
a level that is sufficient for potential users of the data. In particular, when
dealing with models at scale, even simple tasks like finding a data element in
another model to link to, or comparing multiple versions, can be complicated
and time-consuming. In order to improve usability, a number of features assist
modellers in using the tool effectively and efficiently.

At the heart of this effort is greater power in searching across many
hundreds or thousands of data elements, in order to find related items, create
semantic links between items, and import or reuse whole model components.
Lucene and Solr2 help with indexing, and allow faster and more flexible
searching using keywords, related terms and intelligent suggestions. The

2http://lucene.apache.org

138 Tools

speed improvements offered by these tools make the Model Catalogue as a
whole scalable for domains with large numbers of complex data models.

Finding similar elements to link to can reduce the time it takes to doc-
ument a data element. To allow users to find similar items, an autosuggest
feature will find potential matches across all models, or a particular model,
based on datatypes, element names, and text matching in the description.

Using the semantic reasoning described above can also assist users in
creating semantic links, using the transitive properties to help them find
related data elements not already explicitly linked. Such reasoning can also
help find relations between larger model components: for example, linking
two data classes where the component data elements of each class are already
linked.

Comparing different models is also something that users need extra
assistance with – especially comparing multiple incremental versions of the
same model. To aid users in this activity, there is a Web interface, supported
by back-end API methods. Viewing two models side by side, with differences
highlighted, provides a user-friendly experience that will be familiar to those
with experience using traditional “diff” style tools.

5.1.3 Semantic Booster

5.1.3.1 Introduction
The data belonging to an organisation is often its most valuable asset:
traditionally payroll information and customer details, but more frequently
entire business models are based on the gathering and dissemination of
information. The software responsible for maintaining the integrity of this
data, and its consistent interpretation, will be critical to the ongoing function
of the business. Moreover, organisations need to evolve and adapt, and it will
be essential for the software and data to follow changes to business rules, and
for the semantics of the data to remain clear and unambiguous.

Building software that is both robust and adaptable brings with it many
challenges. The typical development process for robust systems for use in
safety-critical applications will be slow and labour-intensive. Agile develop-
ment processes are key to maintaining and evolving software, but are not
effective when dealing with large complex datasets, or where the guarantee
of software correctness is reliant on more than simple testing.

Automation and abstraction provide some solutions to these difficult
problems. By automating part – or indeed all – of the code generation process,
the influence of human error can be reduced, and the subsequent speed-up

5.1 Model Catalogue 139

can decrease the time necessary to adapt or evolve generated, working code.
By using suitable abstractions to model the software’s intended function,
correctness may be more carefully clarified, and the scope of updates or
evolutions may be more immediately realised.

The MDE approach attempts to combine both automation and abstraction.
Models may be domain-specific: comprehensible to non-technical domain-
experts, with automated processes generating software components to match.
In practice, however, such MDSE tools are either too specific, where models
are used for not much more than customising or configuring a particular
software artefact, such as in the generation of embedded systems; or too
general purpose, where a wide variety of specifications may be expressed,
but without the formality required for robust implementation, and in most
cases where code generation must be supplemented by custom hand-written
code.

The Booster tool has been written in an attempt to find the sweet spot
between these two extremes. Models describe information systems: software
components focussed on the correct management of business-critical data.
The modelling language takes an object-oriented approach to modelling busi-
ness concepts, but is supplemented with a formal, mathematical notation for
describing relationships between entities, integrity constraints, business rules,
and constraints upon interaction with data. The compilation process is com-
plete: working implementations are generated with no manual intervention or
addition required.

In order to make Booster more widely applicable – in particular to the
domain of data-intensive systems – some key enhancements are necessary.
Booster models are mostly without semantics: the meaning of entities or
attributes is not recorded. This means that data collected and maintained
within a Booster system may not be immediately re-usable within a differ-
ent context. Although Booster is able to maintain and migrate data in the
face of changing specifications, the meaning or context of these data may
be lost. Booster has been integrated with the Model Catalogue, allowing
metadata to be linked to each data item stored. As well as increasing the
value and utility of the data, it allows domain experts to more carefully
specify the functionality of the system, as well as permitting new notions of
correctness.

5.1.3.2 Semantic Booster
The Booster tool takes as input a formal specification, written in the Booster
language, and generates a complete working implementation. The Booster

140 Tools

language takes inspiration from the UML, incorporating familiar object-
oriented notions of classes, attributes and associations. This language is
supplemented with a formal constraint language, inspired by the mathematics
notations of Z and B, used in formal methodologies. These constraints can be
used to define integrity constraints and business rules, in the form of class
invariants, and pre- and post-conditions for methods.

The Booster language is supported by a custom editor written for the
Eclipse IDE. This provides a number of features that aid developers, such as
syntax highlighting, auto-suggestion, document outline, and code validation
“as-you-type”. Figure 5.10 shows a Booster specification being edited within
the IDE.

Once a specification is completed, an automatic generator can be executed
to generate an implementation. The generator consists of a number of stages,
implemented as a pipeline (see Figure 5.11). In the first stage, the model is
elaborated – this flattens the class hierarchy and in-lines any references to
other parts of the model, essentially making explicit any default assumptions.
The second stage of the pipeline is to apply a number of heuristics, to generate
simple code from each constraint in the model. These heuristics have been

Figure 5.10 A Booster specification edited with the Eclipse IDE.

5.1 Model Catalogue 141

Figure 5.11 The Booster generation pipeline.

defined based on experience of developing information systems, and the code
itself is written in an abstract, mathematical notation suitable for subsequent
analysis.

The third stage of the pipeline is to generate additional code based on
all constraints across the entire model. This process is similar to a ‘weakest-
precondition’ calculation in formal methods and ensures the correctness of
the final system: all business rules and integrity constraints are guaranteed to
be considered and upheld in the final system.

The fourth stage of the pipeline is simplification: the previous steps
generate large amounts of code, and much of it may be simplified to produce
more efficient programs. The final stage is to generate a database implemen-
tation – the original implementation generates MySQL. This implementation
includes database tables to store the core information, stored procedures
to implement all data update methods, and additional system metadata to
provide an object-relational mapping suitable for external users to interact
with the system.

The completed database implementation can be used in conjunction with
a bespoke API and user interface to provide a complete working system. This
structure is shown in Figure 5.12; the Web-based Booster interface is shown
in a screenshot in Figure 5.13.

The Booster approach embodies an approach in which the integrity of
the data is all important. The rigorous calculations and code generation in
the development pipeline ensure that for any form of update to the data,
all business rules and constraints are considered, guaranteeing that no data
integrity constraints will be invalidated as a result of any subsequent change.

142 Tools

Figure 5.12 The architecture of a Booster information system.

Figure 5.13 The Booster Web-based user interface.

Access to the data is through a carefully managed API, which ensures that
data are only manipulated in the manner specified in the original model.

In order to apply the Booster toolset to data-intensive systems, a number
of enhancements have been made. By integrating Booster with the Model
Catalogue, the stored semantic metadata can be used to enrich and inform
the development of Booster specifications, and to ensure the consistency and
reusability of the data held within Booster systems.

5.1 Model Catalogue 143

Figure 5.14 Generating Booster systems from Model Catalogue models.

Booster specification generation from Model Catalogue models
The first enhancement has been to build functionality to generate Booster
specifications automatically from models described in the Model Catalogue.
By using model components from the catalogue in our specification, we can
ensure that the generated software can conform with existing data standards,
or UML specifications, or can match data formats described using XML
schema or OWL ontologies. This automation also allows domain-experts to
begin generating software components without the need for development
effort. Figure 5.14 shows the Semantic Booster pipeline, where platform-
specific representations can be loaded into the Model Catalogue, and Booster
systems generated via the Booster compiler, with no manual intermediate
steps.

The structure of a model in the Model Catalogue is in many ways similar
to the structure of a Booster specification. However, a number of transforma-
tions are required to take the tree-structured model and turn it into the flatter
specification required for Booster. As well as this structural transformation,
some more practical changes to Booster were required – in particular allowing
all specification constructs to take a human-readable name, in addition to the
standard identifiers required by the constraint language. By hiding system
identifiers below the API level, the resulting information system is easier to
use for subject-matter experts, and ambiguity may be reduced.

At the outermost level, a DataModel in the Model Catalogue is translated
into a System in Booster. Every EnumerationType within the DataModel
is converted into a Booster Set, using the human-readable names, and gen-
erating system identifiers if necessary. All DataClass components from the
model, at any level in the hierarchy are converted into Booster Class decla-
rations. Where one DataClass is contained within another in the catalogue
DataModel, a bi-directional optional-to-one association between the two

144 Tools

classes is created in Booster, corresponding to the notion of ownership, or
composition in UML.

Every DataElement in the catalogue is translated into an Attribute in the
Booster model, with multiplicities maintained. Those elements with a Prim-
itiveType datatype in the catalogue are mapped to the appropriate Booster
primitive type. Similarly, EnumerationType elements in the catalogue get
mapped to equivalent Set valued attributes in Booster. Finally, ReferenceType
valued attributes are converted to bi-directional associations to the relevant
class in Booster.

As part of this transformation, a basic collection of update methods is
generated. For each Booster class, methods are created for creating, updating
and destroying objects of that class. In addition, for every bi-directional
association created by the transformation, methods are created for adding
and removing links. Where these associations correspond to composition
or aggregation, appropriate constraints are added to maintain the ownership
properties. Figure 5.15 shows the generated specification for part of the
PROV-DM Core Structures model.

The resulting Booster specification is suitable for generating a functional
system capable of entering and storing data corresponding to the original
model. In many cases, this may be sufficient, in particular with the addition of
a bespoke user interface to enact particular workflows on top of the generated
methods. However, the specification may also be used as the basis for a more
elaborate Booster system, by using the Booster functionality for importing
and overriding through inheritance. In this way, constraints and business
rules may be added, along with additional methods and attributes, to provide
a richer implementation, but by the nature of inheritance in Booster, still
compliant with the original data model.

Model Catalogue information through the Booster interfaces
Once a Booster system has been used to capture and store data, it is important
that this information can be reused. In many cases, this may require an
understanding of the context of collection. This is especially helpful where
data are to be combined from multiple systems, and it is important that
only data items with similar definitions are combined. In order to allow
such contexts to be available alongside the data, Semantic Booster needs
to include functionality to allow integration with the data stored within the
Model Catalogue.

It is vital that the Model Catalogue remains as the single source for meta-
data, rather than copies of the data being moved into the Booster-generated

5.1 Model Catalogue 145

Figure 5.15 Excerpt from the Booster system generated from Prov-DM Core.

system. Although most parts of the metadata are frozen on publication
(and subsequent implementation), other metadata components such as com-
ments and links may be added after the system has been deployed. The
approach taken has been to create links between components in the Booster
specification such that the metadata can be seamlessly retrieved.

Metadata concerning the Model Catalogue itself is placed in a table
alongside the Booster data: the Web URL to locate the catalogue, the version
number and name of the catalogue, along with any lists of any user credentials
required to access private models. Each Booster specification component
corresponding to an element from the Model Catalogue is stored with a
GUID, a link to the relevant catalogue metadata, and the credentials required
for access. This includes the system itself, every class and attribute, datatypes,
and enumeration values.

This model catalogue data is stored in the database alongside the data,
but accessed through a bespoke set of SQL stored procedures. These are
exposed through the API layer so that external applications can access them.

146 Tools

Figure 5.16 Model Catalogue information in the Booster interface.

The data are also propagated through the Booster Web interface, so that users
of the data can access the appropriate metadata. A new REST API call has
been added to the Model Catalogue, displaying a snippet of HTML with a
link for more information. This is shown in Figure 5.16.

Semantic Booster: Booster data as triples
A key requirement of Semantic Booster is that system data must be accessible
as RDF Triples. Data systems generated by the original Booster tool have
employed a standard relational schema for data persistence, and standard
stored procedures for operations on data. In Semantic Booster, a new target
had been developed: “Generate Triple Map” is to be used alongside the
standard relational generation (Figure 5.17).

This additional transformation generates a mapping specified in the
W3 standard R2RML language.3 This mapping reflects the Booster spec-
ification, and includes standard simplifications for Booster constructs of
associations and inheritance, creating a lightweight wrapper for the Booster
database schema. The R2RML standard has made this extension tractable:

3https://www.w3.org/TR/r2rml

5.1 Model Catalogue 147

Figure 5.17 Semantic Booster – generation menu in the Eclipse IDE.

the functionality has been enabled using an additional transformation, rather
than a ground-up rewrite of the pre-existing transformations.

The R2RML schema can be used to present a ‘live’ view of the data or to
extract the whole dataset as a data ‘dump’. Furthermore, the data are opened
to a range of existing ‘semantic Web’ tools which can deal with the data in
this triple format.

In the live view, any changes made by Booster operations are auto-
matically available in the triples. No complex update or synchronisation is
required as the triple-view of the data is derived directly from the relational
data, and existing Booster functionality is not affected.

User-Specified semantic mappings
Typically, RDF triples have associated-type information in a semantic
schema, typically via an RDF schema or an OWL ontology. The schema gives
users a grounding by which to explore, classify, and query the objects, data
and relationships in a dataset. Typical queries over a semantic dataset might
find all elements with a particular semantic type, relationship type or a pattern
of types, using the SPARQL query language. The schema and types of a data
system are defined on a per-system basis by data engineers.

For a system such as Semantic Booster to be useful to data engineers, the
types and schemas of the system must be customisable. In an R2RML map-
ping, each element must have a type, and a default set of types is created by

148 Tools

Figure 5.18 Semantic Booster – generated R2RML file.

the “Generate Triple Map” target. A sample generated R2RML file is shown
in Figure 5.18. In Semantic Booster, the types of each element can also be
specified via annotations in the Booster specification. An annotation syntax
has been added to the standard Booster notation, as shown in Figure 5.19,
lines 6, 10–11 and 14–15. Annotations on each class, attribute and relation-
ship of a Booster specification can be specified by the engineer. The generated
R2RML mappings, and in turn the data, will hold the type information from
the annotation for those data elements. As with semantic data, URIs are used
for types and a prefix mechanism is provided so that URIs may be shortened
in a specification, shown in Figure 5.19 lines 3–4. This annotation mechanism
is itself extensible, so that enhancements to the R2RML specification may be
further customised to enhance the relational-triple mapping

Integration with the Model Catalogue
In order that the Booster tool can be applied in the context of large-scale data
engineering, it is important that data managed by a Booster system can be
adequately understood, re-purposed, and combined with other data sources.

5.1 Model Catalogue 149

Figure 5.19 Booster specification with semantic annotations.

To facilitate this, Booster is integrated with the Model Catalogue. A typical
software development process using the combined toolset might start with
the import of a data standard, or the metadata for an existing dataset, into
the Model Catalogue. These descriptions can be reused and extended in the
definition of a new data model, and exported as a new Booster specification.
Figure 5.20 shows Booster with Model Catalogue semantic annotations. The
Booster specification contains hooks back to the original definitions, such
that the generated system can store links back to the definitions, and provide
them to users at the data-entry interface. This can improve the quality of
data entry, and ensure consistency across multiple systems using equivalent
definitions. Finally, an existing Booster specification may be re-imported into
the catalogue and annotated for further reuse.

The round-tripping provided by this new functionality allows the Model
Catalogue to be used as an enhanced IDE for model-driven development. The

150 Tools

Figure 5.20 Booster user interface showing semantic annotations from the Model
Catalogue.

extended reuse of data components promotes greater reuse of data, and can
lead to improvements to the quality of data, and the adherence to standard
definitions.

Eclipse Booster IDE
During the second phase of the ALIGNED project, the Booster tool has been
upgraded to use the latest versions of the Spoofax language engineering work-
bench – from version 1.x to the newly released v2.0. Spoofax provides rich
editing support for Booster specifications inside Eclipse and includes syntax
highlighting, specification outline views and type checking. The upgrade
brings amongst other changes: improved compilation and transformation
times, simpler project layouts and support for running transformations with-
out Eclipse, via the Sunshine tool. Running Booster transformations outside
of Eclipse is a key component of the Semantic Booster Development and
Deployment Kit (sBDK) discussed in Section 4. The enhanced underlying
environment has allowed the development of more powerful editors and
syntax checking, and allows the Booster tool itself to be more easily updated
to meet new requirements or support further functionality.

Semantic Booster development and deployment kit: sBDK
In order to support developers and end users of Semantic Booster systems,
a number of features have been created and combined to form a Semantic
Booster Development and Deployment Kit (sBDK).

5.1 Model Catalogue 151

Semantic Booster Docker Container
Creating a useable system using Semantic Booster and Eclipse can be oper-
ationally challenging, requiring many non-trivial steps to setup a workable
system. The complexity has only increased since the additional developments
for the ALIGNED project partners. Several interdependent software packages
must be installed and configured correctly for a Semantic Booster system to
work as intended.

To simplify and streamline the creation and maintenance of data-intensive
systems with Semantic Booster, a Docker container has been developed.
Docker4 is a framework for building applications as containers, making them
portable and easily deployed without complicated configuration or system
set-up. Docker is used to automate deployment of all software needed for a
Semantic Booster system whilst isolating the software from the host operating
system. The container takes a single parameter: a Booster specification that
the user has previously created: either using the tool support provided in the
Semantic Booster Eclipse editor, or exported as an artefact from the Model
Catalogue. The Docker container will execute a number of scripts to configure
and create tools to access and manage the system. A Web-based Booster
editor is provided, along with the Booster Native Data exploration tool and a
number of semantic data exploration tools.

Additional parameters can be provided to the Docker initialisation to
perform additional system configuration, including the pre-population of
the generated Semantic Booster system and the ability to persist, backup
and restore the database between different runtimes of the system: features
vital to the smooth operation of the system within the ALIGNED use case.
Parameters have been added to the container to regenerate only the methods
of a Semantic Booster system. The Semantic Booster Docker container is
available on GitHub and is in use by the Wolters Kluwer IPG use case.

Semantic Booster web editor
A new feature for Semantic Booster is the Web-based editor for Semantic
Booster specifications. The editor is less sophisticated than the existing
Eclipse-based tooling and therefore is expected to only be used for iteration
to an existing specification or system. The Semantic Booster Web editor is
shown in Figure 5.21. The editor also provides automatic generation and rede-
ployment functionality, such that a system previously created by the Docker

4http://docker.com

152 Tools

Figure 5.21 Semantic Booster Web-based editor.

container can be recreated. This uses the Sunshine mechanism of the Spoofax
language, to execute Booster transformations outside the Eclipse IDE.

Default Booster web explorer
As well as the Web editor, the Docker container also deploys the default
Booster Web Data Explorer (Figure 5.22) from where the data in a Booster
system can be explorer and operations invoked. The data explorer can be con-
figured to link to a model catalogue for providing metadata annotations, and
is configured to expose information available through the semantic mappings.

Semantic data exploration: D2RQ, Snorql
The D2RQ semantic Web data exploration tool and the Snorql SPARQL
query tool (illustrated in Figure 5.23) are pre-configured in the Docker
container. These tools use the R2RML mapping created by Semantic Booster
to present the data in a Booster system as triples. This allows for interoper-
ability between the software engineering and data engineering worlds. D2RQ
provides a data browser – an RDF equivalent to the default Booster data
explorer. Snorql provides a standard SPARQL endpoint to the RDF triples:
as a W3C standard for querying semantic Web data, this allows a variety of

5.1 Model Catalogue 153

Figure 5.22 Default Booster data explorer.

standard semantic Web tools to interact with the data stored within a Booster
system.

The mapping generated is specific to the Booster specification and con-
siders the semantic mapping annotations defined for classes and attributes.
In addition, some simplifications are made to better represent Booster
inheritance and association.

Semantic data visualisation tool: D3Sparql
A second semantic Web-based data exploration tool has been included in
the Semantic Booster Docker container: D3Sparql. Semantic Web data, as
triples forms a conceptual graph of data. D3Sparql visualises the results of a
SPARQL query as an interactive graph, as shown in Figure 5.8. End users can
make use of the tool to interact with the RDF data: domain experts may make
use of pre-defined SPARQL queries to provide dashboard-style views or high-
level summary metadata; technical users may make use of the built-in Snorql
tool to develop complex queries for searching or investigation. Figure 5.24
shows D3Sparql in action.

154 Tools

Figure 5.23 D2RQ and SNORQL for exploration of Semantic Booster data.

5.2 RDFUnit 155

Figure 5.24 d3sparql for visual exploration of Semantic Booster data.

Semantic data validation tool: RDFUnit
The RDFUnit tool has been integrated into the Semantic Booster Docker
Container, as shown in Figure 5.25. RDFUnit is used for the validation of
data and allows end users to validate RDF triple data against a suite of
specifications of data quality constraints, written in SPARQL. The tool checks
that the constraints hold post-hoc, in contrast to the correct by construction
approach of Semantic Booster. RDFUnit is configured to use the D2RQ
endpoint, allowing constraints to be written against up-to-date Booster data.

5.2 RDFUnit

RDFUnit is an RDF validation framework inspired by test-driven software
development. The test case definition language of RDFUnit is SPARQL,

156 Tools

Figure 5.25 RDFUnit Web interface.

which is convenient to directly query for identifying violations. For rapid test
case instantiation, a pattern-based SPARQL-Template engine is supported
where the user can easily bind variables into patterns. RDFUnit has a Test
Auto Generator (TAG) component. TAG searches for schema information
and automatically instantiates new test cases. Schema information can be in
the form of RDFS or OWL axioms that RDFUnit translates into SPARQL
under Closed World Assumption (CWA) and Unique Name Assumption
(UNA). Other schema languages such as SHACL5, IBM Resource Shapes6

or Description Set Profiles7 are also supported. For a full overview of

5https://www.w3.org/TR/shacl/
6https://www.w3.org/Submission/shapes/
7http://dublincore.org/documents/dc-dsp/

5.2 RDFUnit 157

Figure 5.26 RDFUnit architecture.

RDFUnit’s data testing and verification capabilities see Kontokostas et al.
Figure 5.26 shows the RDFUnit architecture.8

5.2.1 RDFUnit Integration

The following subsections describe three ways RDFUnit-based data test-
ing and verification can be integrated into software engineering workflows.
The JUnit runner with annotations provides a very easy and well integrated
option but does not give room for flexibility beyond testing an input dataset
to a fixed schema. The JUnit XML Report gives room for greater flexi-
bility by utilising the complete RDFUnit command line options. Finally,
the custom Maven-based integration gives software engineers a way to
fine-tune the way they want to automate their data testing and verification
options.

JUnit Runner integration with Java annotations
JUnit allows other testing frameworks to extend JUnit with custom

Runners9 tailored for specific testing. A custom JUnit Runner was imple-
mented, RdfUnitJunitRunner10, which can be used to define JUnit tests for
validating RDF datasets against a schema, by adding Java annotations to
a JUnit test.

8D. Kontokostas, P. Westphal, S. Auer, S. Hellmann, J. Lehmann, R. Cornelissen, and A.
Zaveri. Test-driven Evaluation of Linked Data Quality, Proc. 23rd International Conference
on World Wide Web, pp. 747–758, DOI 10.1145/2566486.2568002, 2014.

9https://github.com/junit-team/junit4/wiki/test-runners
10https://github.com/AKSW/RDFUnit/tree/master/rdfunit-junit

158 Tools

An example RDFUnit/JUnit test is the following:
@RunWith(RdfUnitJunitRunner.class)
@Schema(uri = "schema.ttl")
public static class TestRunner {

@TestInput
public RDFReader getInputData() {

return new RdfModelReader(
RdfReaderFactory.createResourceReader(

"/inputmodels/data.ttl").read()); }
}

Where data.ttl is an RDF data file (using the @TestInput annotation) tested
by a JUnit test against schema.ttl (using the @Schema annotation).

For every automatically generated RDFUnit test, a separate JUnit test
is generated that validates the input dataset for a specific violation. The
reporting of validation errors is integrated with JUnit reports, thus providing
the means to display them through IDEs like IntelliJ or with build tools like
Maven.

5.2.1.1 JUnit XML report-based integration
JUnit uses a specific XML schema11 to communicate the test results to IDEs
or build tools. For cases when defining an RDFUnit/JUnit test is not an option
(i.e., the files are not accessible from the build system with Java code), the
RDFUnit results can be converted to the JUnit XML Schema. In these cases,
developers can run RDFUnit as a command line tool or through custom code,
expecting validation results in the JUnit XML Schema. Build systems, such
as Bamboo, can then be configured to look at specific locations for such XML
files and report the RDFUnit validation results with the existing unit test error
reporting tools.12 Figure 5.27 shows the RDFUnit report in the IntelliJ IDE.
Figure 5.28 shows the report in the Bamboo build system.

5.2.1.2 Custom apache maven-based integration
When the input data or schema graph are not simple input files, but generated
through custom procedures, the aforementioned methods are not easy to
apply. For those cases, RDFUnit can be used as a Java library, fine-tuned for
custom input or more sophisticated Jenkin reports. This was the case with the
JURION demo, where RDFUnit was used to validate if the output of specific
XSLT scripts adhered to the JURION Schema. All results were archived to

11https://svn.jenkins-ci.org/trunk/hudson/dtkit/dtkit-format/dtkit-junit-
model/src/main/resources/com/thalesgroup/dtkit/junit/model/xsd/junit-4.xsd

12https://github.com/AKSW/RDFUnit/wiki/Using-RDFunit-with-Bamboo

5.2 RDFUnit 159

Figure 5.27 RDFUnit report from the IntelliJ IDE.

Figure 5.28 Example Bamboo overview from an RDFUnit JUnit XML report.

160 Tools

Figure 5.29 Custom JUnit integration with RDFUnit as a library for JURION Use Case in
ALIGNED.

a triple store for post-processing analysis (see Image 3). A research paper
was published that describes this use case in detail.13 Figure 5.29 shows the
integration of RDFUnit in JURION.

5.2.1.3 The shapes constraint language (SHACL)
The Shapes Constraint Language is a language to validate RDF graphs against
a set of constraints. These constraints are formalised as shapes and other
constructs expressed in the form of an RDF graph. The language features
and approaches occurring in the current specification of SHACL were in
part inspired by the SPIN14 and Shape Expressions (ShEx).15 The current

13Dimitris Kontokostas, Christian Mader, Michael Leuthold, Christian Dirschl,
Katja Eck, Jens Lehmann and Sebastian Hellmann. Semantically Enhanced Quality
Assurance in the JURION Business Use Case. ESWC 2016, Crete. Available at:
http://link.springer.com/chapter/10.1007/978-3-319-34129-3 40

14http://spinrdf.org/
15E. Prud’hommeaux, J. E. Labra Gayo and H. Solbrig. Shape expressions: an RDF val-

idation and transformation language, 10th International Conference on Semantic Systems,
pp. 32–40, 2014.

5.2 RDFUnit 161

revision of the specification for SHACL is published by the W3C16 with
complementary material available in a GitHub repository.17

SHACL Core defines frequently needed features to formulate common
constraints for RDF graphs. SHACL Core Constraints are defined by param-
eterising Constraint Components that are templates for checks for a specific
required property of an RDF nodes (e.g., unique occurrence of a property
value associated with a specific property, for instance only one foaf:age value
for a given foaf:Person). One or several of such constraints are associated
with target RDF nodes to validate against in a SHACL Shape. SHACL Shapes
are expressed as RDF resources and aggregated in a Shapes Graph. An RDF
graph to be checked for conformance against a Shapes Graph (the Data
Graph) is provided to a Validation Engine that produces a Validation Report.
The Validation Report states whether the Data Graph conforms to the Shapes
Graph, listing violations of individual RDF nodes against shapes detected
during the validation process in case of non-conformance.

5.2.1.4 Comparison of SHACL to schema definition using
RDFUnit test patterns

The original declarative approach to create data tests with RDFUnit (i.e., for-
mulating data constraints without composing SPARQL queries or SPARQL
query fragments directly) involves selecting and parameterising an RDFUnit
Test Pattern. These test patterns bear several conceptual and functional
similarities to both SHACL Shapes and SHACL Constraint Components.
Test patterns also define parameters to be set to transform a test pattern into
a concrete test case. In contrast to SHACL, the parameters of an RDFUnit
test pattern do not only specify the expected constraints for applicable RDF
nodes but also often influence the sets of RDF nodes the test is applied to.
The clearer separation of these concerns in SHACL increases modularity
and thus allows more flexible reuse of parts of shape definitions. As an
additional advantage, SHACL Shapes can be defined recursively, i.e., more
complex shapes can be composed by combining simpler shapes. For example,
a shape S1 can define that all its values nodes for a property P must conform
to a shape S2. Also, multiple individual restrictions can be combined to a con-
junction (target nodes must conform to S1 and S2), different acceptable shape
alternatives can be expressed by disjunction (target nodes must conform to S1
or S2) and shape constraints can be inverted/negated (target nodes must not

16https://www.w3.org/TR/shacl/
17https://github.com/w3c/data-shapes

162 Tools

Figure 5.30 Overview for Fundamental Concepts of SHACL.

conform to S1). SHACL provides for a range of ways to define the focus
nodes for a shape, i.e., class membership, explicit nodes, subjects and objects
of a predicate. In the current set of RDFUnit’s test patterns, targeted notes are
predominantly only scoped by class membership or property appearance. In
general, however, scoping in RDFUnit is more flexible as it is defined directly
in SPARQL and there are no limitations. For example, there is no way to
define in SHACL the constraint that all entities must have a label. Figure 5.30
shows an overview of the fundamental concepts of SHACL.

5.2.1.5 Comparison of SHACL to auto-generated RDFUnit tests
from RDFS/OWL axioms

In addition to a direct instantiation of test patterns in manual test suites,
RDFUnit already offers capabilities to create data test suites automatically
from RDFS and OWL axioms pertaining to the vocabulary used in the RDF
data to be tested (Test Auto Generators). This approach enables utilisation
of modelling efforts of RDF vocabulary providers that specified aspects of
intended semantics of their vocabularies in RDFS or OWL. As both of these
modelling languages, when interpreted in line with the corresponding W3C
specifications, are more tailored towards inference as opposed to constraint
formulation, basic principles of the semantics and assumptions of the lan-
guage have to be modified for data quality testing scenarios (especially the
application of the Closed World Assumption and a weakened Unique Name

5.2 RDFUnit 163

Assumption). However, no unanimous and detailed specification for such
alternative semantics has been formulated and standardised to date.

In contrast, the semantics of each language element for SHACL Core is
clearly defined in the corresponding W3C Proposed Recommendation and
was designed specifically for the purpose of prescriptive constraint formu-
lation. Furthermore, SHACL semantics are solely based on the notion of
RDF Graphs, a conceptually much simpler and more approachable model
for new adopters of Semantic Web technologies compared to OWL based on
Description Logics.

5.2.1.6 Progress on the SHACL specification and
standardisation process

ALIGNED was actively involved in co-authorship and revision of the W3C
Working Group for SHACL. Since then, several stages of the W3C Recom-
mendation Track Process18 were passed, by opening the draft for reviewers’
comments, discussing or addressing these, and putting forward an implemen-
tation report19 about several prototypical implementations of SHACL. Hence,
SHACL is now documented as a W3C Proposed Recommendation.

5.2.1.7 SHACL support in RDFUnit
RDFUnit currently contains implementations for all non-complex core
constraint components (i.e., excluding logical constraint components and
qualified cardinality restrictions). All variants of target declarations are
implemented as well. This provides a substantial, albeit incomplete, subset
of SHACL Core that already allows formulating graph constraints for many
use cases. RDFUnit also supports SHACL SPARQL, i.e., defining custom
constraints and constraint components by SPARQL fragments. This approach
provides the whole flexibility and expressive power of that query language.

To evaluate both correctness of the validation logic of the implemented
SHACL subset, a runner for the SHACL test suite20 has been implemented.
The tests can be run via a custom JUnit Runner within an IDE for quick
feedback cycles about improvements or regressions on conformance during
the continued work for a complete coverage of SHACL feature in RDFUnit.
Additionally, an RDF document reporting on the test outcomes for the
SHACL test suite using the EARL21 vocabulary can be generated, in a format

18https://www.w3.org/2004/02/Process-20040205/tr.html
19http://w3c.github.io/data-shapes/data-shapes-test-suite/
20https://github.com/w3c/data-shapes/tree/gh-pages/data-shapes-test-suite/tests
21https://www.w3.org/TR/EARL10-Schema/

164 Tools

a doap:Project ;
a earl:So�ware ;
a earl:TestSubject ;
doap:developer <aksw.org/DimitrisKontokostas> ;
doap:name "RDFUnit" ;

.
[

a earl:Asser�on ;
earl:assertedBy <aksw.org/MarkusAckermann> ;
earl:result [

a earl:TestResult ;
earl:mode earl:automa�c ;
earl:outcome earl:passed ;

] ;
earl:subject <h�p://aksw.org/Projects/RDFUnit> ;
earl:test <urn:x-shacl-test:/core/complex/personexample> ;

].

@prefix doap: <h�p://usefulinc.com/ns/doap#> .
@prefix earl: <h�p://www.w3.org/ns/earl#> .

<h�p://aksw.org/Projects/RDFUnit>

Figure 5.31 Excerpt of an EARL test report for the SHACL test suite.

suitable to automatically generate a compliance overview for the implemen-
tation report for SHACL. Figure 5.31 shows a sample from an EARL test
report.

5.3 Expert Curation Tools and Workflows

Linked Data and semantic technologies enable the creation of rich, integrated
knowledge models which describe particular domains using standardised
languages such as RDF, RDFS and OWL. These technologies have obvi-
ous attractions for dataset curators as not only do they provide a range of
ways in which complex relationships between entities can be specified and
embedded in the data, but they also render the data amenable to sophisti-
cated analytic techniques such as inference and other automated reasoning
approaches and allow the construction of sophisticated queries which auto-
matically combine data from different sources into a unified knowledge
model. However, datasets are commonly curated by domain experts who have
an intimate knowledge of the real-world domain being modelled but rarely
have expertise or training in knowledge engineering or semantic technologies.
Furthermore, all indications suggest that semantic modelling is a skill that is
more difficult to acquire than computer programming, requiring considerable
investment of time and effort. If we want to make this technology accessible
to domain experts we need to develop paradigms, processes, workflows,

5.3 Expert Curation Tools and Workflows 165

APIs, and software tools which bridge the gap between their knowledge of
the domain and the complexities of the underlying semantic models that they
are manipulating.

This section describes the process and workflow models, developed
within the ALIGNED project that are designed to bridge the gap between
dataset curators, Linked Data and semantic Web technologies. The goal
of this work is to define semi-automated methods and tools that involve
human expert curators in the loop, while minimising their workload and the
requirement that they understand the underlying semantic technologies. It
builds upon and extends ALIGNED’s system integrity enforcement frame-
work by generating data curation workflows and dedicated user interfaces
where domain experts can efficiently verify and approve data as part of a
publication pipeline which incorporates both automated and human-based
quality controls. It uses and extends ALIGNED’s meta-modelling work,
utilising the metamodel’s schema validation ontology while providing fine-
grained workflow models for core curation activities (e.g., adding instance
data, updating schema, etc).

5.3.1 Requirements

This section defines the workflow requirements that a linked-data curation
system must support in order to support domain experts in curating high-
quality datasets. Common features identified in ALIGNED’s use cases have
been translated into the low-level system requirements necessary to provide
a data curation system which can support user-level requirements.

5.3.1.1 Graduated application of semantics
Much of the Linked Data available for harvesting is loosely structured,
often schema-free and based on reuse of terms from common vocabularies.
However, in order to provide dataset quality enforcement, it is necessary to
produce a rich, highly structured, and precisely defined schema and ensure
that all instance data comply with the schema. Therefore, a Linked Data
curation platform should provide support for the management of loosely
structured linked-data documents and their gradual transformation into highly
structured, schema-conformant high-quality knowledge graphs.

5.3.1.2 Graph – object mapping
Graphs are the knowledge representation form that underlies all Linked Data
and semantic technologies. However, when it comes to human management

166 Tools

of data, object models are ubiquitous – for example: entity relationship
models, UML data models, database records, structured JSON documents.
This amounts to a fundamental paradigm difference: in the object model a
dataset is conceived as a collection of objects/entities, each of which has a
collection of properties, which may be complex and may include links to
other objects in the dataset; in the graph model, the dataset is conceived of as
a collection of nodes with labelled, directed edges connecting them. In order
to support dataset management by non-knowledge engineers, it is necessary
to provide a curation interface which allows them to treat the dataset as if
it was a collection of objects and takes care of mapping these objects to the
underlying graph representation. This object interface should support, at a
minimum the following functions:

5.3.1.3 Object/document level state management and versioning
In order to provide a functional object-based data curation interface, the
system should provide basic state management and versioning support on
a per-object level. That is to say that the system should provide the dataset
curator with the ability to change the state of a data-object (e.g., by deleting it,
or publishing it) and have the system accurately map this to a modification of
the triples making up the object’s representation in the underlying knowledge
graph. It should also be possible to view and link to previous versions of
particular data-objects.

5.3.1.4 Object-based workflow interfaces
In order to allow curators to manage updates to the graphs that they man-
age, object-based user interfaces must be provided which should display
graph-updates as updates to specific data objects. Similarly control interfaces
must be provided which allow curators to change the state of specific data
objects and automatically translate that into graph updates.

5.3.1.5 Integrated, automated, constraint validation
A core focus of ALIGNED’s research has been the development of con-
straint validation and error detection services and tools to support automated
data quality analysis and enforcement. To make these services accessible
to domain expert curators, they must be integrated into workflows which
correctly trigger the appropriate validation processes in response to curator-
driven actions which cause updates to the underlying graph. These processes
should be, to as great an extent as possible, invisible to the curator.

5.3 Expert Curation Tools and Workflows 167

5.3.1.6 Result interpretation
The major exception to the above is that, in certain cases, the results of
constraint validation will indicate a situation which requires user-intervention
(e.g., an error in the dataset schema) and must be reported back to the user.
In such cases the system should, to as great an extent as is possible, map
the error from the underlying graph model into the object model used by the
curation platform.

5.3.1.7 Deferred updates
From a workflow point of view, automated and human tasks have very dif-
ferent characteristics: fast, synchronous, reliable (from an execution point of
view) and typically semantically simple, versus slow, asynchronous, unreli-
able and often semantically complex. The most basic feature that is necessary
to support these characteristics of human processes is deferred updates. That
is to say that the curation system should allow updates to curated dataset
to be deferred – stored and executed at a temporal distance which may be
considerable. This is necessary to support the most basic content approval
pipeline – where updates to the dataset must be approved by the curator before
they are actually carried out. Deferred updates complicate curation processes
considerably, because they can be invalidated by updates that happen between
their definition and their acceptance. However, they are necessary in order
to provide simple, efficient interfaces for curators, allowing them to, for
example, simply click approve, to enact a complex, multi-faceted graph
update that has been requested by another process in the system (whether
human or automated).

5.3.2 Workflow/Process Models

This section describes the system dynamic models that have been developed
in the ALIGNED project in order to produce a data curation system which
meets the above requirements and is capable of providing a practically useful
curation service for domain expert dataset curators. These models define how
human curation actions and activities are integrated with automated processes
to provide quality control of the dataset. Figure 5.32 shows the symbols used
in the following diagrams.

5.3.2.1 Process model 1 – linked data object creation
JSON objects submitted to the API are stored as objects in a Linked Data
document store and require approval by human curators and validation by the

168 Tools

Figure 5.32 Key to workflow/process models.

Figure 5.33 Process Model 1 – Object Creation.

automated Dacura Quality Service before being published to the triple-store.
This process model is shown in Figure 5.33.

5.3.2.2 Process model 2 object – linked data object updates
Process model 2 shows how updates to Linked Data objects which are
accepted by the curator but fail validation are either saved to the deferred
update queue (if the object is published) or executed on the Linked Data
object store (if not published). If the update passes validation, it is saved to
both the Linked Data object store and the triple-store. This allows objects to
be iteratively updated without having to pass DQS validation (DQS results
are returned in an informational capacity).

Updates to JSON documents are subject to curator approval. Those
updates which receive a ‘pending’ status from the approval process are saved
to the deferred update queue. Those updates which receive an ‘accept’ status
are processed by the automated DQS validation service. If the update receives
a ‘reject’ status from this process, and the document being updated is in a
‘published’ state, then the update is saved to the deferred update status. If
the update receives an ‘accept’ status, or the document being updated is not
in a published state, the update is executed on the document in the Linked
Data store. If the update receives an ‘accept’ status and the document is in
a published state, the update is executed on the triple-store version of the
document. This process model is shown in Figure 5.34.

5.3.2.3 Process model 3 – updates to deferred updates
Deferred updates which are approved by the human curator (state changed
from ‘pending’ to ‘accept’) are first analysed by an automated consistency

5.3 Expert Curation Tools and Workflows 169

Figure 5.34 Process Model 2 – Object Update.

Figure 5.35 Process Model 3 – Updates to deferred update.

checking process, which ensures that no intervening updates have rendered
the deferred update invalid. If the update is validated by this process, it is val-
idated by the DQS process. If it correctly validates or if the updated object is
not in ‘published’ state, the update is removed from the queue and the object
is updated in the document store. If the update is validated and the updated
object is in the “published” state, the graph representation of the object is
updated in the triple store. This process model is shown in Figure 5.35.

5.3.2.4 Process model 4 – schema updates
Schema updates received by the API are analysed by the automated ontology
dependency analysis process, which identifies the list of ontologies needed
to validate schema updates and the list of ontologies needed to validate

170 Tools

Figure 5.36 Process model 4 – Schema Updates.

instance updates. The validity of the resulting graphs is checked using the
automated Dacura Quality Service process and if successful, and the ontolo-
gies are published to the respective graphs. This process model is shown in
Figure 5.36.

5.3.2.5 Process model 5 – validating schema updates
Schema updates are validated by the DQS process in two stages. First, the
updates to the schema are validated by the DQS, with the schema graph
serving as the instance graph and the schema schema graph serving as the
schema. If this update is validated, the update to the schema is validated
against the instance graph, with the schema graph serving as the schema.
If either validation process fails (status: reject), the updates to the schema
schema graph are rolled back. If both successfully validate, the schema graph
is updated. This process model is shown in Figure 5.37.

5.3.2.6 Process model 6 – named graph creation
Instance data objects can be configured to map to a graph representation that
spans multiple named graphs. Each named graph needs a schema against
which the instance data will be validated. Temporary graphs are first con-
structed to validate the submitted ontology with the DQS, if it validates
successfully, three named graphs are created – and the relevant ontologies
are published to the schema schema graph and the schema graph. Updates to
the graph’s schema follow Process Model 4 – schema updates. This process
model is shown in Figure 5.38.

5.3 Expert Curation Tools and Workflows 171

Figure 5.37 Process model 5 – Validating schema updates.

Figure 5.38 Process Model 6 – Named Graph Creation.

5.3.2.7 Process model 7 – instance data updates and named
graphs

This process extends and specialises Process Model 1 and Process Model 2,
by providing fine-grained detail of the “update” triple-store operation.
Updates to instance data objects may map to a graph representation that
is distributed across multiple named graphs. Instance data updates to each
named graph are validated sequentially by the automated DQS service (using
the schema graph that has been configured for that named graph – see Process
Model 6 – Named Graph Creation). If the update is validated across all
graphs, and the updated object is in published state, the update is published

172 Tools

Figure 5.39 Process model 7 – instance data updates in named graphs.

to all relevant named graph instance graphs. This process model is shown in
Figure 5.39.

5.4 Dacura Approval Queue Manager

The Dacura Approval Queue Manager is a Web-based GUI tool which allows
dataset curators to interact with the object creation, object updating and
deferred updating processes. It allows curators to view the approval queue of
new objects and updates to objects and to approve or reject object creation
requests and object update requests in bulk. The Dacura Approval Queue
Manager can be seen in Figure 5.40.

5.5 Dacura Linked Data Object Viewer

The Dacura Linked Data Object Viewer is a Web-based GUI tool which
allows dataset curators to view the Linked Data objects that they are

Figure 5.40 Screenshot of Dacura Linked Data Approval Queue Manager Tool.

5.5 Dacura Linked Data Object Viewer 173

Figure 5.41 Screenshot of Dacura Linked Data Object Viewer Tool showing version
browsing toolbar.

managing, browse their history, and manage their metadata and contents on
an individual object basis, while maintaining a correct mapping to the object’s
underlying graph representation. The Dacura Linked Data Object Viewer can
be seen in Figure 5.41.

5.5.1 CSP Design of Seshat Workflow Use Case

We formally specified our workflow in CSPM, a dialect of CSP (Com-
municating Sequential Processes) with the assistance of FDR4 The CSP
Refinement Checker22. CSPM gives a very rich language for the specification
of processes and communication, but we limit ourselves in the model to a very
restricted subset with a view to later creating simple user-interfaces for the
specification of alternative workflow approaches. In addition, we hope to use
the specification to explore properties of the workflow model and potentially
create refinements with versioning in a later iteration.

In natural language, the document curation use case can be described thus:
A user may load a candidate object into the system. It is then in a

‘pending’ state. From the pending state, a candidate may be checked by the
DQS (Dacura Quality Service) server. The DQS server will either pass or fail
the candidate. If the candidate passes DQS’s inspection, it is sent to an ‘ok’
state. From the ‘ok’ state, it is possible to review or edit. If the user chooses to

22https://www.cs.ox.ac.uk/projects/fdr/

174 Tools

review, they may either accept as is and it is placed into an ‘accepted’ state.
From an ‘accepted’ state, the candidate may be published. If the candidate
reviewer likes, they may edit the document, sending it back to a ‘pending’
state. If the DQS system fails to pass a candidate, it is sent to a ‘fail’ state from
which the user must edit the candidate before it can go back to ‘pending’.
Additionally, from an ‘ok’ state which is edited, the candidate is passed back
to a ‘pending’ state.

5.5.2 Specification

We show in Table 5.1 the specification in CSPm of the above natural language
description. We show the model with only one document for presentation
purposes as little changes by increasing the number of available DOCIDS.

Table 5.1 CSPm specification of workflow
DOCIDS = {0 .. 2}
channel load, check, fail, edit,

pass, store, accept, decline, review, publish, unpublish
: DOCIDS
WFS(i) = load.i -> PENDING(i)

PENDING(i) = check.i -> DQS(i)

DQS(i) = fail.i -> FAILED(i)
|˜|pass.i -> OK(i)

FAILED(i) = edit.i -> PENDING(i)

OK(i) = edit.i -> PENDING(i)
[] review.i -> REVIEW(i)

REVIEW(i) = accept.i -> ACCEPTED(i)
[] edit.i -> PENDING(i)

ACCEPTED(i) = publish.i -> PUBLISH(i)
[] edit.i -> PENDING(i)

PUBLISH(i) = unpublish.i -> ACCEPTED(i)

CHOOSEDOC = |˜|i : DOCIDS @ WFS(i)
assert CHOOSEDOC :[deadlock free [F]]

5.5 Dacura Linked Data Object Viewer 175

Figure 5.42 Automatically generated workflow diagram from CSPm specification.

176 Tools

The specification can be read as having a number of states which are
parameterised by the document id which they refer to and having one or a
number of actions which can be taken from those states. In the case of DQS(i),
there are two possible actions which are chosen by an internal choice. In all
other instances, the choice is an external (user) choice.

The example of Figure 5.42 shows the automatically generated workflow
diagram from the CSPm specification. It is clear from inspection that the
document is always available for transitions to some new state and we can
see clearly how the workflow takes place.

5.6 Dacura Quality Service

The Dacura Quality Service (DQS) is a service for managing a triple-store
and ensuring its ongoing consistency. The triple-store is an RDF graph which
is stored using the ClioPatria server. ClioPatria provides a durable represen-
tation of the graph which can be accessed and updated transactionally. These
features constitute the ‘A’,‘I’ and ‘D’, of ACID (Atomic, Consistent, Isolated,
Durable) which are generally considered fundamental design principles for
enterprise databases.

DQS extends this feature set with the ‘C’, Consistency. Consistency of
the graph is described using OWL. This ontology is interpreted as constraints
over the graph. Failure to meet the constraints specified in OWL leads to
a counter-example of satisfaction of the constraints, or a witness of failure.
These witnesses are then reported over the API to the client which provides
the client with manual or automatic remedial actions.

The DQS software is provided as a plugin to ClioPatria and interac-
tion with DQS takes place over an HTTP (HyperText Transfer Protocol)
API (Application Programming Interface). The API exchanges information
about triples and witnesses of failure in the widely used JSON object
format.

The DQS service is used by Dacura to ensure that data quality of
curated data is consistent on an ongoing basis. Since the data must be
amenable to constant update by data practitioners, and the data must be
available for analytics in a consistent and coherent format, it is impera-
tive that basic data consistency constraints be maintained. DQS provides
a straightforward framework for assisting Dacura in maintaining these
constraints.

5.6 Dacura Quality Service 177

Dacura is the main consumer of the Dacura Quality Service. However, it
is completely modular and therefore could be used in other projects which
would like to manage consistency constraints using OWL ontologies.

5.6.1 Technical Overview of Dacura Quality Service

The DQS Service is implemented as a plugin for ClioPatria, which is written
in the prolog programming language. Prolog provides a seamless interface
to the RDF triple-store as a predicate which can then be combined for the
purposes of reasoning. A number of reasoning tasks are carried out by a
list of predicates, which can be accessed by calling a number of pre-defined
HTTP endpoints, carrying appropriate JSON POST variables which describe
the relevant graphs, updates to those graphs, and various reasoning activities
which should be undertaken.

Currently, the primary consumer of the DQS service is the Dacura plat-
form which provides a user interface to the service, allowing the user to select
the relevant ontologies, and instance data to be checked, and the various
constraints which should be checked. The interface for schema checking is
shown in Figure 5.43.

Figure 5.43 Dacura platform Quality Test Interface that calls the DQS.

178 Tools

5.6.2 Dacura Quality Service API

The API is structured as a series of HTTP endpoints which are accessed
through POST requests. The POST requests have a number of variables
communicated in JSON and with some standard translations for RDF URIs
and literals. We first describe this general format of RDF encoding in quads,
and then the specific format of some shared POST variables.

5.6.2.1 Resource and interchange format
Inserts and deletes in the DQS system are managed through supplying quads
which specify the RDF triples, and their associated graph. These are encoded
in JSON which is a widely accepted format.

5.6.2.2 URI
An RDF URI resource is described as a JSON string. For instance, the
following string represents the “label” property:
“http://www.w3.org/1999/02/22-rdf-syntax-ns#label”

5.6.2.3 Literals
Literals are composite objects which cannot be represented directly as a
string. The format for a literal is formatted as one of the two:
{“data”:“2015-06-08T12:30:00”,“type”: “http://www.w3.org/2001/XMLSc
hema#dateTime”}
or
{“data”: “This is a string”, “lang”:“en”}

5.6.2.4 Literal types
xdd:coordinatePolygon
The coordinate polygon type is represented in as a list of doubles. An informal
grammar is as follows:
xdd:coordinatePolygon := [float1, float2, . . . floatn]

xdd:coordinatePolyline
The coordinate polygon type is represented in as a list of doubles identically
to a coordinate polygon but with a semantics of a non-closed region. An
informal grammar is as follows:
xdd:coordinatePolyline := [float1, float2, . . . floatn]

5.6 Dacura Quality Service 179

xdd:gYearRange
The xdd:gYearRange is a (possibly degenerate) range of years, with the first
year smaller than or equal to the second.
xdd:gYearRange := [gYear] | [gYear1, gYear2]

xdd:integerRange
The xdd:integerRange is a (possibly degenerate) range of integers, with the
first integer smaller than or equal to the second.
xdd:integerRange := [integer] | [integer1, integer2]

xdd:decimalRange
The xdd:decimalRange is a (possibly degenerate) range of decimal numbers
of arbitrary precision, with the first number smaller than or equal to the
second.
xdd:integerRange := [decimal] | [decimal1, decimal2]

5.6.2.5 Quads
Quads are described as lists of strings or JSON representations of resources.

[
"resource1",
"resource2",
"resource3",
"graph"
]

[
"resource4",
"resource5",

{
"data": "Hello world",
"lang": "en-utf8"
},
"graph"
]

[
"resource6",
"resource7",
{
"data": "2015-06-08T12:30:00",
"type": http://www.w3.org/2001/XMLSchema\#dateTime
},
"graph"
]

180 Tools

5.6.2.6 POST variables
There are a number of post variables whose format is shared amongst the
various endpoints. Many endpoints require a “pragma” JSON object to be
posted in the post variables, which specifies the instance graph, “instance”,
the schema graph, “schema” and associated tests. It also takes a “commit”
flag, which will store the changes if the tests are successful.

pragma: {“tests”:“all”,“schema”:“schemaGraphName”,“instance”:“instance
GraphName”, “commit”: “true”}

In order to perform updates, we specify all quads (as described above) which
are to be deleted, and then inserted. Deletes happen prior to inserts. Modifi-
cation of either schema, instance or both, is possible merely by specifying the
appropriate schema and instance graphs.

update: {“insert”: QUADS, “delete”: QUADS}

Example:

update: {“insert”:[[“resource1”, “resource2”,“resource3”, “instance”],[“reso-
urce6”, “resource7”, {“data”:“2015-06-08T12:30:00”, “type”: “http://www.
w3.org/2001/XMLSchema#dateTime”}, “instance”]]}

5.6.2.7 Tests
A number of the API endpoints require that tests be passed to define which
constraints are considered when consistency is required of the triple store.
The tests are divided into two categories. One for schema constraints, all of
which are suffixed with “SC”, and one for instance constraints which are
suffixed with “IC”.

Users can specify a JSON list of constraints for the “test” field of a
pragma, or send the string “all” which will run every available test. Specifying
tests which are not available has no effect. We give the exhaustive list of tests
below.

5.6.2.8 Required schema tests
These tests for class cycles in the subsumption hierarchy for classes and
properties respectively. They are required for any further tests to take place
as non-cyclicity is assumed in the other predicates.

“classCycleSC”, “propertyCycleSC”

5.6 Dacura Quality Service 181

5.6.2.9 Schema tests
These three tests check to see if there is a class for a given URI, which does
not need to be inferred, or that a given property has a defined range and
domain which is not inferred.

“noImmediateClassSC”, “noImmediateDomainSC”, “noImmediateRangeSC”

These three tests check uniqueness of definitions. In particular, the first is
useful to avoid overlapping labels which can lead to confusion in interfaces
which utilise the labels for display.

“notUniqueClassLabelSC”, “notUniqueClassSC”, “notUniquePropertySC”

Does the schema contain blank nodes?

“schemaBlankNodeSC”

Annotations can be used to black out various properties such that they are not
reasoned over, but this test will issue an error if this is being done.

“annotationOverloadSC”

A class (property respectively) is used without definition (inferred or other-
wise)

“orphanClassSC”, “orphanPropertySC”

Check for invalid ranges or domains.

“invalidRangeSC”., “invalidDomainSC”

Check to see if domain and range subsumption leads to inconsistency.

“domainNotSubsumedSC”, “rangeNotSubsumedSC”

Check to see if properties are used as both datatype and object properties
simultaneously in violation of OWL.

“propertyTypeOverloadSC”

Instance Tests

Check to see if property has no defined domain (range respectively).

“noPropertyDomainIC”, “noPropertyRangeIC”

Check to see if blanknodes are being used?

“instanceBlankNodeIC”

182 Tools

Check to see if edges are valid under the given schema rules. Related classes,
properties and restrictions as well as a number of assertions are all checked
against the edges of the instance graph for conformance.

“invalidEdgeIC”

Check to see if instances have no defined class.

“edgeOrphanInstanceIC”

Check functional (inverse functional) property assertions for correctness rel-
ative the instance graph.

“notFunctionalPropertyIC”, “notInverseFunctionalPropertyIC”

Check that properties are defined.

“localOrphanPropertyIC”

5.6.2.10 Errors
The DQS API returns errors which are specified in a JSON format and which
are described in the Reasoning Violations Ontology (RVO). RVO has been
developed in the ALIGNED project and is fully described in Chapter 3 and is
available online23. Further details have been published at the third Workshop
on Linked Data Quality. 24

5.6.2.11 Endpoints
/dacura/schema
POST variables: pragma, update
Requires: pragma.schema, pragma.tests, pragma.commit

Endpoint for schema updates.

/dacura/instance
POST variables: pragma, update
Requires: pragma.instance, pragma.schema, pragma.tests, pragma.commit

Endpoint for simultaneous schema and instance updates.

23http://aligned-project.eu/data/rvo documentation.html
24“Describing Reasoning Results with RVO, the Reasoning Violations Ontology”, Bojan

Bozic, Rob Brennan, Kevin Feeney and Gavin Mendel-Gleason, 3rd Workshop on Linked
Data Quality, co-located with ESWC 2016, Crete, 30 May 2016.

5.6 Dacura Quality Service 183

/dacura/schema validate
POST variables: pragma
Requires: pragma.schema, pragma.tests

Endpoint for testing validity of an already existing schema

/dacura/validate
POST variables: pragma
Requires: pragma.instance, pragma.schema, pragma.tests

Endpoint for testing validity of already existing instance/schema pair.

/dacura/test
POST variables: N/A
Requires: N/A

Runs the internal testing suite.

/dacura/entity
POST variables: entity, schema, instance
Requires: entity, schema, instance

Returns all entities in the given instance graph for the given schema.

/dacura/entity frame
POST variables: class, schema, instance
Requires: class, schema, instance

Returns the frame associated with a given entity instance, filled with its
respective values. The ‘class’ post variable is the URI of a valid class in the
schema provided by the post variable ‘schema’.

/dacura/class frame
POST variables: class, schema
Requires: class, schema

Returns the frame associated with a given entity instance, filled with its
respective values. The ‘lass’ is the URI of a valid class in the given schema.

/dacura/class
POST variables: schema
Requires: schema

Endpoint for obtaining information on all defined classes in a given schema.

/dacura/dacura entity property frame
POST variables: schema, instance, property, entity
Requires: schema, instance, property, entity

184 Tools

Endpoint returns a filled frame for a given entity and property when supplied

with the entity URI, the schema and instance graphs and the necessary
property URI.

/dacura/subsumes
POST variables: schema,class
Requires: schema, class

Endpoint returns a list of all classes which are subsumed by the supplied class.

DQS is now relatively stable and most changes will involve bug-fixes.
The most recent source code is released open-source as a plugin, available
at https://github.com/GavinMendelGleason/dacura. The Dacura system will
continue to maintain and update the plugin as it is required for important data
curation functionality in Dacura.

5.7 Linked Data Model Mapping

5.7.1 Interlink Validation Tool

The Interlink Validation Tool is designed to be used in a scenario where
a specific source dataset is being maintained. This source dataset contains
interlinks to external target datasets. As the source dataset and the target
datasets evolve over time, the maintainers of the source dataset need to ensure
that none of the existing interlinks have become invalid due to the evolution
of the datasets.

The Interlink Validation Tool was initially validated in the ALIGNED
DBpedia use case. It was identified that DBpedia does not include interlink
validation during its release process (activities involved when a new version
of DBpedia is to be released). This can result in invalid interlinks being pub-
lished in the DBpedia release, reducing overall dataset quality. The Interlink
Validation Tool provides a lightweight approach to reduce the number of
invalid interlinks that could get published in a dataset. While the tool does
not repair interlinks, it does highlight, which interlinks have become invalid
and which resource (the source dataset resource or target dataset resource)
has caused it to become invalid. This information can then be used by other
tools in a software and data engineering toolchain, to help in the interlink
repair process. The tool was deployed in the DBpedia environment for the
v.2015-10 release and discovered 53,418 invalid interlinks25.

25https://sourceforge.net/p/dbpedia/mailman/message/34980754/

5.7 Linked Data Model Mapping 185

As an input, the tool takes a set of interlinks between the source dataset
and a target dataset. The resources in the interlinks are compared to their
respective datasets to discover which interlinks are still valid and which are
invalid. The tool outputs a set of valid and invalid interlinks along with
two log files. One log file is a human readable log indicating, which set of
interlinks have been checked and which interlinks were discovered as invalid.
The other log file records similar information but is encoded in RDF and uses
the ALIGNED Metamodel, especially the DLO and the DBpedia use case
specific ontology (crowd-sourced public datasets) to describe the activities,
entities and agents in the log. This means that the RDF logs (produced by
the Interlink Validation Tool) can be consumed by the ALIGNED Unified
Governance Tools in an ALIGNED tool chain.

The tool has already been deployed live in the DBpedia environment for
the v.2015-10 release and discovered 53,418 invalid interlinks26.

5.7.1.1 Interlink validation
The tool validates interlinks between two or more datasets through the use of
standard SPARQL27 query templates. RDF interlinks are typically expressed
as a single triple linking resources in one (source) dataset with resources in
another (target) dataset. Interlinks can be validated in two ways:

Source resources of the interlinks are only checked against their respec-
tive dataset. While this is useful when it is not possible to access the
target dataset, it does only validate the source resources meaning that target
resources could still be invalid.

Both source and target resources are checked against their respective
datasets.

Figure 5.44 shows the process of interlink validation. Since SPARQL
queries are used to validate interlinks, a SPARQL query endpoint and a local
triple-store are required. It is assumed that the interlinks to be validated are
stored in a named graph in the local triple-store and the source dataset is
stored in a separate named graph. The query templates work by accessing
the source resources (subject of the triple) and target resources (object of the
triple). Validation is done in the following way:

When only the source resources of the interlinks are to be validated, they
are compared to the source dataset to see, if those resources exist. If the source

26https://sourceforge.net/p/dbpedia/mailman/message/34980754/
27The query language for RDF, https://www.w3.org/TR/rdf-sparql-query/

186 Tools

Figure 5.44 Interlink Validation Process.

resource of an interlink does not exist in the source dataset, then that interlink
is classified as invalid.

When both the source and target resources of the interlinks are to be
validated, then these resources are compared to their respective source and
target datasets to see, if they exist. If either the source or target resource of
an interlink does not exist in their respective dataset, then that interlink is
classified as invalid. External target datasets can be accessed through loading
them temporarily into the local triple-store or through remote access via a
federated SPARQL query.

While this approach for validating interlinks is lightweight (relying on
standard SPARQL queries), it does have a drawback. This approach cannot
detect interlinks that have become invalid due to a resource merge or resource
split event,28 that can occur to resources in evolving datasets. A resource
merge is done, when two or more resources from a dataset merge into a
single resource and a resource split is done, when a single resource splits into
two or more resources. A situation can arise where a resource merge or split
takes place and the original resource identifier does not change. Therefore, a
resource may have changed semantically, but is syntactically still the same.
It is this particular situation, where a resource changes semantically but not
syntactically, where this approach for detecting invalid interlinks will fail. In
practice, given the dynamic nature of data on the Web, supporting distributed
maintenance of data, without detecting resource merge or split events is still
very valuable.

28Dos Reis, J. C., Pruski, C., Da Silveira, M. and Reynaud-Delaı̂tre, C. “Analyzing and sup-
porting the mapping maintenance problem in biomedical knowledge organization systems.”
In Proc. of the Workshop on Semantic Interoperability in Medical Informatics collocated with
the 9th Extended Semantic Web Conference, pp. 25–36, 2012.

5.7 Linked Data Model Mapping 187

Figure 5.45 Operation of the Interlink Validation Tool. The arrows indicate the flow of
information/data among the different components.

5.7.1.2 Technical overview
In this subsection, the operation of the tool is described. Figure 5.45 displays
the operation of the tool and its different components.

The interlink validation tool reads in two configuration files. The first
configuration file contains parameters about accessing the source dataset in
the local-triple-store and some details about the source dataset itself (that
will be used in the log files). The second configuration file is where a user
specifies the details about each set of interlinks (between the source dataset
and multiple external target datasets) that are to be validated. The parameters
in this file are described in detail in the next section but they allow a user to
set: the name of the external target dataset, the location of the interlink set to
be validated, flags specifying validation behaviour and scope, and federated
SPARQL query details.

When all the parameters are set, the tool can be run. The tool first gets
the location of the interlink set from the second configuration file and loads it
into a named graph in the local triple-store.

Next, based on the third parameter in the second configuration file, a
SPARQL query template is generated – for example, if the external dataset
is to be accessed via a federated query, then a federated query call will be
included in the query template, with the external SPARQL endpoint URI
provided by parameter 4.

If the third parameter specifies that an external dataset is to be accessed
from a dataset dump file, then this dump file is retrieved and loaded into a
named graph in the local triple-store.

Next, the template processor sends the query template to the SPARQL
endpoint of the local triple-store for execution. The source resources are
always checked against the source dataset. The execution results are then

188 Tools

returned to the template processor, which sends the results to the log
generator.

Then based on the parameters specified in both configuration files, and the
execution results sent from the template processor, two log files are produced.
One log file is a human readable log, describing which set of interlinks have
been checked and which interlinks were discovered as invalid. The other log
file records similar information, encoded in RDF and uses the ALIGNED
Design life cycle Ontology to describe the logs.

Finally, the tool removes all temporary created data loaded into the local
triple-store. The tool will repeat this process for all interlink sets specified in
the second configuration file.

User guide
This subsection provides a guide on how to use the Interlink Validation Tool.

The tool is a Java program designed to be run in a UNIX environment via
the command line. The current prototype of the tool is designed to be used
with a Virtuoso29 triple-store only. The tool consists of three files and three
directories:
The ‘interlink_validator.java’ file
The ‘iv_config.txt’ file
The ‘external_datasets.txt’ file
The ‘valid’ directory
The ‘invalid’ directory
The ‘temp’ directory

5.7.1.3 Configuration via iv config.txt
The iv config.txt file contains seven parameters that need to be set. These
parameters are:
Parameter1 (p1=): The file path to Virtuoso’s isql utility. This is necessary to
be able to load data into the local triple-store and execute SPARQL queries.

Parameter2 (p2=): Virtuoso’s dba password. Similar to the above point, this
is needed in order to access Virtuoso’s triple-store.

Parameter3 (p3=): The graph name where the local dataset is stored in the
triple-store. This specifies the location of the local dataset where the source
dataset resources in the interlinks to be validated will be compared against.

Parameter4 (p4=): The file path where the (human readable) log file will be
generated. If this parameter is not the log file, then it will be generated in the
same directory as well.

29http://virtuoso.openlinksw.com/

5.7 Linked Data Model Mapping 189

Parameter5 (p5=): The file path where the RDF log file will be generated. If
this parameter is not the log file, then it will be generated in the same directory
as well.

Parameter6 (p6=): A URI to provide reference to the source dataset. This is
used to refer the source dataset and is used in the RDF log generated by the
tool.

Parameter7 (p7=): A URI to provide reference to the source dataset can
be accessed. The reference can be a Web page containing dump files or a
SPARQL endpoint. This is also used in the RDF log generated by the tool.

Each parameter is to be provided on a separate line in this file.

5.7.1.4 Configuration via external datasets.txt
The external datasets.txt file contains parameters to be set. Up to six param-
eters can be set for each set of interlinks that are to be validated:

Parameter1 (p1=): Provide a name for the external dataset that will appear in
the log files.

Parameter2 (p2=): Provide a URI or file path to the file containing the
interlinks that are to be validated.

Parameter3 (p3=): State whether the external dataset will be accessed
through:

A federated query {F}.

A federated query with a named graph {FG}

A named graph {G] in the local triple-store.

A dump file {D}

None {N}, which means that only the source dataset resources in the inter-
links will be validated.

Parameter4 (p4=): Depending on the setting done in p3, the following options
are available:

If “F” was stated for parameter 3, provide the external dataset SPARQL
endpoint URI.

If “FG” was stated for parameter 3, provide the external dataset SPARQL
endpoint URI along with the named graph URI (see Parameter5).

190 Tools

If “G” was stated for parameter 3, provide the graph name where the external
dataset is stored, in the local triple-store.

If “D” was stated for parameter 3, provide a URI or a file path to the dump
file of the external dataset.

If “N” was stated for parameter 3, parameter 4 can be left blank.

Parameter5 (p5=): Depending on the setting done in p3, the following options
are available:

If “FG” was stated for parameter 3, then provide the named graph URI, where
the external dataset is stored.

Parameter6 (p6=): [Optional Parameter] Provide a URI to reference the
external target dataset. This will be used in the RDF log generated by the
tool.

One set of parameters must be provided per line in the file and each parameter
must be separated by a “ ” (blank space).

5.7.1.5 Execute the interlink validator tool
When the two configuration files (iv config.txt and external datasets.txt) have
been configured, the tool can be executed. To execute the tool, use the
following command:

java InterlinkValidator

After a successful execution, two log files will be generated in the specified
location. In addition, files containing the valid interlinks and the invalid
interlinks will be generated in the respective directories.

5.7.2 Dacura Linked Model Mapper

The Dacura Linked Data Model Mapping service has been developed to help
users to create rich ontological models from semi-structured HTML input and
then to automate the harvesting of instance data that conform to the model,
again sourced from semi-structured HTML input. This process involves a
series of structural and semantic mappings to be applied on both sides – in
generating the model and generating the instance data input mapping.

The service is designed to be used in a scenario where a data model is
implicitly defined in a HTML page with markup used to identify labels of

5.7 Linked Data Model Mapping 191

properties (e.g., <h3> or tags). This is a common scenario where a
wiki or other CMS is used to collate a structured dataset. Unfortunately, from
a machine’s point of view, the data are semi-structured at best – the structure
is designed primarily to be human-interpretable and we cannot even assume
that the HTML is well-formed, never mind that there will be consistency in
tags used or their attributes. Nevertheless, in almost all real cases, it will be
possible to identify some pattern used in the HTML that can be mapped to a
feature of the model.

The service was developed to support the ALIGNED Seshat use. Seshat
researchers have collected a large quantity of data using a wiki. The data as a
list of variables, organised into sections delineated by a variety of HTML tags
(Figure 5.46) with variables identified by a label between special characters
and variable values having a special syntax, which captures uncertainty
and disagreement and temporal scoping, followed by free html containing
citations and commentary on the value.

The wiki worked well as a tool for collecting a large volume of data by
a distributed team of researchers – over 150,000 facts were collected on the
wiki. However, the process of extracting and cleaning data from the wiki for
analysis became overwhelming over time. Thus, the goal of the Linked Data
model mapper service is to automate the process of importing both the model
and the instance data from the wiki to generate a structured, semantic format
that is ready for analysis.

The tool allows users to map from a semi-structured wiki data-model to
a rich structured semantic model. However, it cannot create structure from
nothing – thus if the user wishes to use a highly structured data model with
complex containment relationships, this should be defined by the user before
importing the model by creating the necessary classes and properties to bind
the object’s basic containment structure together.

When the service is used to add a new property to the data model, the
system generates a location pattern which is associated with the property.
This pattern is then used to locate and import instance data elsewhere on the
wiki. The service uses ALIGNED metamodel ontologies RVO, PROV, and
the Seshat domain ontology. The tool has been deployed live in the Seshat
use-case and was used to create Seshat’s first public release of data in April
2017.30

30http://dacura.scss.tcd.ie/seshat/

192 Tools

F
ig
ur
e
5.
46

E
xa

m
pl

e
of

se
sh

at
co

de
bo

ok
pa

ge
.

5.7 Linked Data Model Mapping 193

5.7.3 Model Mapper Service

This section provides an overview of the service: first, we outline how the
modelling tool creates mappings between a model and HTML patterns.
Then we outline how the harvesting tool uses these patterns to automate the
harvesting of semi-structured data.

5.7.3.1 Modelling tool – creating mappings
Dacura’s Modelling tool, shown in Figure 5.47, enables users to create the
structure of the dataset from existing sources. In this case, we used the Seshat
code book page as the basis of our model. Dacura associates the imported
properties with the pattern of the HTML that they were imported from. It
uses this pattern later to automatically find and import data from the rest of
the wiki into the structured model, as shown in Figure 5.48.

5.7.3.2 Importing semi-structured data with data harvesting tool
The Dacura data harvesting tool can be run on any Web page. When it loads, it
attempts to fit the data on the page to the shape of the model using the patterns
associated with the model that were created upon import. It uses Dacura’s
quality control API to test different possibilities in order to identify the best
fit, as shown in Figure 5.49. It can even automatically correct mistakes.

Figure 5.47 Importing a model from semi-structured HTML source.

194 Tools

Figure 5.48 Process for associating property definitions in a model with a pattern within a
semi-structured HTML page.

Figure 5.49 Process for using patterns to extract data from semi-structured html pages.

5.8 Model-Driven Data Curation 195

Figure 5.50 Screenshot showing results of automated importing of semi-structured HTML
data into structured model.

It rewrites the Web page to show the user what the data would look like
if it were imported into Dacura, as shown in Figure 5.50. This allows users
to visualise and refine the mappings to ensure that as much data as possible
can be imported. Once the user is happy with the mapping, they can import
all the data from the entire wiki with a single click.

5.8 Model-Driven Data Curation

The model-driven data curation interfaces provide tools for the automatic
generation of data-curation interfaces. These interfaces enable the creation
of ontological models and the update of data, which respects these models
with a high level of agility and flexibility of model.

The interface specifications, known herein as frames, are generated
automatically from ontologies.

These ontologies are specified in RDF/OWL. The frames are generated
by the Dacura Quality Service.

These frames are consumed by the Dacura platform, which utilises it
both for its back-end management and for the more user-focussed Dacura
console. Utilising the Dacura console, users can introduce new data or
edit existing data from DQS via entry forms generated by javascript from

196 Tools

the frame specification. Additionally, the model itself can be incrementally
updated from the Dacura console in architect mode (for users with suitable
permissions).

The software facilitates the Seshat use-case, which requires that we are
able to import, track, update and delete from a large existing dataset (on a
wiki) which is highly unstructured, into a highly structured format suitable for
mathematical analysis of various historical trends. The software has already
been utilised in modification of the ontologies developed in ALIGNED and
has improved the agility of our model development, and consequently the
automatically generated user interfaces.

Highly structured Linked Data often suffers from poor quality. Hence, the
software helps to guarantee strong data quality standards by the structure of
the user interface itself. Furthermore, it can be enhanced by quality checks
after data have been constructed.

While this code is used in the Seshat use-case, its flexibility makes it
broadly applicable to a wide range of data-curation uses. This would include
any use case in which there needs to be model flexibility and data entry via the
Web and especially collection of human or automatically facilitated collection
of information from highly unstructured data sources.

The current implementation is a basis for further development, which will
include enriching the user interface with additional data entry types, which
enhance the user experience of data entry. This will include the ability to
describe territories on maps, the inclusion of data ranges and autocomplete
comboboxes for entering pre-existing objects. Additionally, richer constraints
will be checked on the client side using code auto-generated from restrictions
given in frame specifications.

We begin with the specification of frames which are generated by DQS.
We then describe the production of the user-interface elements from these
frames.

5.8.1 Dacura Quality Service Frame Generation

The Dacura Quality Service has been extended to produce frames, which con-
stitute specifications for user interfaces derived automatically from ontolo-
gies, which are described using RDF/OWL. The service is structured as a
plugin to the ClioPatria semantic Web server and providing a number of new
API endpoints which allow clients to interact with the ontology.

We briefly describe the structure of frames, which are detailed as abstract
datatypes using JSON. We will then describe the API which is used to obtain
frames and the data associated with them for a given ontology.

5.8 Model-Driven Data Curation 197

All code and API endpoints documentation for DQS is available on
Github.31

5.8.2 Frames for UserInterface Design

Frames are specified using JSON32. This provides a useful interchange format
for Web APIs, for which there is tool support available in virtually every
modern programming language.

Frames give information about an object, the classes they are associated
with and which properties are accessible to them given the ontological
specification. Since, in general, it is possible for the entire RDF graph to
be transitively accessible to a given class, we further restrict the generation
of frames to truncate the graph at any object which has been described as
a dacura:Entity (that is, the given class is an owl:subclassOf dacura:Entity).
This gives us a fragment of the graph which is amenable to the creation of a
usable dataentry interface.

In every case, we give the domain and range of the properties associated
with a given class. If the range is a class which is not a dacura:Entity type
then we include the frame associated with that class. If it is a datatype, we
give back sufficient information to aid in the construction of the userinterface
element. This includes the datatype, which is entered along with a potential
restriction on that type, which further constrains its behaviour.

5.8.3 SemiFormal Frame Specification

In Table 5.2, we demonstrate the grammar of frames in a variant of EBNF,
which describes the JSON objects that are produced by the DQS framework
in accordance with a given ontology.

First, we describe some of the idioms used in our EBNF, which has been
modified to reflect the use of JSON as the objects of interest. This should be
considered indicative of the actual format useable by software engineers who
are working with the object, rather than as a strictly formal specification.

There are two primary formats that are returned for frames. One is the
purely abstract empty object associated with a class for use as a template for
user interfaces, and the second is a filled frame, which is a frame that fills

31Dacura Quality Service Cliopatria plugin https://github.com/GavinMendelGleason/dacura
32The JavaScript Object Notation (JSON) Data Interchange Format RFC 7159

http://rfc7159.net/

198 Tools

such an abstract object with concrete triples from the instance graph for the
given class.

In Table 5.2, the Frame syntactic element provides the toplevel object
which is returned in JSON format by the endpoints. The dominValue and

Table 5.2 Dacura Quality Service Frame Grammar

Language := "en" | ...
XSDType := "xsd:integer" | "xsd:gYear" | ...
Literal :=

{ "lang" : Language,
"data" : "..."}

| { "type" : XSDType,
"data" : "..."}

OwlProperty := URI
OwlClass := URI
Op := "and" | "or" | "not" | "xor"
PropertyRestriction :=

true
| { "type" : Op, "operands" : [PropertyRestriction] }
| { "mincard" : N, "valuesFrom" : OwlClass }
| { "maxcard" : N, "valuesFrom" : OwlClass }
| { "card" : N, "valuesFrom" : OwlClass }
| { "hasValue" : OwlClass }
| { "allValuesFrom" : OwlClass }
| { "someValuesFrom" : OwlClass }

Property :=
{ "type" : "objectProperty",

"domain" : OWLClass,
"property" : OWLProperty,
"range" : OWLClass,
<"label" : Literal >, <"comment" : Literal >,
<"domainvalue" : Value(PropertyType) >,
<"frame" : FRAME >,
<"restriction" : PropertyRestriction > }

| { "type" : "datatypeProperty",
"domain" : OWLClass,
"property" : OWLProperty,
"range" : OWLClass,
<"label" : Literal >, <"comment" : Literal >,
<"domainValue" : URI >,
<"rangeValue" : Literal >,
<"restriction" : PropertyRestriction > }

| { "type" : "restriction",
"property" : OWLProperty,
"restriction" : PropertyRestriction }

PropertyFrame := [Property]
LogicalFrame := {"type" : Op, "operands" : [Frame]}
OneOfFrame := {"type" : "oneOf", "elements" : [URI]}
EntityFrame := {"type" : "entity", "class" : URI, <"domainValue" : URI>}
Frame := LogicalFrame | PropertyFrame | OneOfFrame | EntityFrame

5.8 Model-Driven Data Curation 199

Figure 5.51 Graphical Representation of ontology fragment.

rangeValue elements are optional, and are only returned when querying for
filled frames.

Schematically, Frames are used to produce empty forms with the appro-
priate userinterface elements for the data, while filled frames are used to
create prepopulated entry forms, in the event that the data for an object is
already known.

The optional “label” and “comment” fields are not essential in all cases,
but are used in the automatic production of userinterface element labels and
tool tips when present. Figure 5.51 shows an ontology fragment.

5.8.4 Frame API Endpoints

We briefly note here API endpoints used in the DQS for the generation and
manipulation of frames.

/dacura/entity frame
POST variables: class, schema, instance
Requires: class, schema, instance
Returns: Frame |Error

Returns the frame associated with a given entity instance, filled with its
respective values. The ‘class’ post variable is the URI of a valid class in the
schema provided by the post variable ‘schema’.

/dacura/class frame
POST variables: class, schema
Requires: class, schema
Returns: Frame |Error

200 Tools

Returns the frame associated with a given class. The ‘class’ is the URI of a
valid class in the given schema.

/dacura/element annotation
POST variables: schema, instance, property, element
Requires: schema, property, element
Returns: Frame |Error
The endpoint returns a Frame associated with a given annotation in the
annotation graph given by ‘instance’ and associated with the data element
‘element’.

