
6
Use Cases

Kevin Feeney1, Christian Dirschl2, Andreas Koller3, James Welch4,
Dimitris Kontokostas5, Pieter Francois4, Sabina Łobocka6

and Piotr Bledzki6

1Trinity College Dublin, Ireland
2Wolters Kluwer Germany, Germany
3Semantic Web Company, Austria
4University of Oxford, UK
5University of Leipzig, Germany
6Wolters Kluwer Poland, Poland

6.1 Wolters Kluwer – Re-Engineering a Complex Relational
Database Application

6.1.1 Introduction

The publishing industry is – like many other industries – undergoing major
changes. These changes are mainly based on technical developments and
related habits of information consumption.1 The world of the customers has
dramatically changed and as an information service provider, Wolters Kluwer
wanted to meet these changes with the best solutions for the customers and
their work environment.

Wolters Kluwer has already engaged for a couple of years in new solu-
tions to meet these challenges and to improve all processes of generating good
quality content in the backend on the one hand and to deliver information and
software in the frontend that facilitates the customer’s life on the other hand.

One of these frontend applications is a platform called JURION2 – an
innovative legal information platform developed by Wolters Kluwer Germany
(WKD) that merges and interlinks over one million documents of content and

1See e.g., this article about the information consumption in the US http://hmi.ucsd.edu/
pdf/HMI 2009 ConsumerReport Dec9 2009.pdf

2https://www.jurion.de/de/home/guest

201

202 Use Cases

data from diverse sources such as national and European legislation and court
judgements, extensive internally authored content and local customer data, as
well as social media and Web data (e.g., from DBpedia). In collecting and
managing this data, all stages of the Data Life Cycle are present – extrac-
tion, storage, authoring, interlinking, enrichment, quality analysis, repair and
publication. On top of this information processing pipeline, the JURION
development teams add value through applications for personalisation, alerts,
analysis, and semantic search.

The JURION use case is addressing both software life cycle and data life
cycle. Therefore, their combination and integration is a key challenge within
this use case. Still, currently both life cycles are highly independent from each
other, which lead to a lot of errors and inefficient use of resources.

In order to address this challenge in a practical and pragmatic way, we
have developed based on our daily operational experience two dedicated use
case scenarios that shed a first light on the challenge and also on our view
how to address it.

We have deliberately chosen one use case scenario that is triggered by
the data life cycle and a second scenario triggered by the software life cycle.
We also tried to describe common, yet not too complex situations, so that we
could cover them in a sufficient granularity.

6.1.2 Problem Statement

JURION is an innovative legal information platform developed by Wolters
Kluwer Germany that merges and interlinks over one million documents
of content and data from diverse sources such as national and European
legislation and court judgements, extensive internally authored content and
local customer data, as well as social media and Web data (e.g., from
DBpedia). In collecting and managing this data, all stages of the Data Life
cycle are present – extraction, storage, authoring, interlinking, enrichment,
quality analysis, repair and publication. On top of this information processing
pipeline, the JURION development teams add value through applications for
personalisation, alerts, analysis and semantic search. Based on the FP7 LOD2
project, parts of the Linked Data stack have been deployed in JURION to
handle data complexity issues (see Figure 6.1). Currently, the software devel-
opment process and data life cycle are highly independent from each other
and require extensive manual management to coordinate their parallel devel-
opment, leading to higher costs, quality issues and a slower time-to-market.

6.1 Wolters Kluwer – Re-Engineering a Complex Relational Database 203

Figure 6.1 JURION Content Pipeline and Semantic Search.

By adopting the ALIGNED methodology and tools, software development
and data processing pipeline maintenance will gain integrated governance
mechanisms. These mechanisms will provide unified views of software and
data engineering tasks enabled by linked enterprise Linked Data represen-
tations of both engineering teams. This will build on a common system
specification language that produces and maintains links between data entities
and code, executable code and program transformations that take account of
how both systems co-evolve. The engineering process for both systems will
be improved by the presence of new tools to integrate bug tracking and test
results in both systems. ALIGNED methods and tools will streamline the
processes for data acquisition, data processing, and data integration. These
are all data curation activities that will be supported by workflows, model-
driven generation of dataset-specific curation interfaces, automated data unit
test generation, execution and reporting, data quality frameworks, and rule-
based data integrity gateways. ALIGNED will enable JURION to address
more complex business requirements that rely on tighter coupling of software
and data.

204 Use Cases

6.1.3 Actors

Role Description
CMS Expert responsible for the technical correctness of process and data
Content Architect responsible for the overall process and schemas
Legal Domain
Expert

responsible for ensuring that legal data are correct

Legal Editor responsible for editing legal information
Product Owner wants the best possible product
Quality Manager responsible for data quality assurance
Schema Expert responsible for executing and documenting schema changes

The requirements on which the JURION use case was based are detailed in
Appendix A.

Architecture

Based on the FP7 LOD23 project, parts of the Linked Data stack have been
deployed in JURION to handle data complexity issues (see Figure 6.2). The

Figure 6.2 Distribution of the Linked Data stack components w.r.t. Linked Data Publishing
cycle.

3http://lod2.eu/Welcome.html

6.1 Wolters Kluwer – Re-Engineering a Complex Relational Database 205

FP7 LOD2 project aimed at developing novel, innovative Semantic Web
technologies and also at the expansion and integration of openly accessible
and interlinked data on the Web. WKD acted as a use case partner for these
technologies, supported the development process of semantic technologies
and integrated them to support the expansion of Linked Data. WKD also
published some domain specific datasets.

The software development process and data life cycle at WKD are highly
independent from each other and require extensive manual management
to coordinate their parallel development, leading to higher costs, quality
issues and a slower time-to-market. This is why the JURION use case in
ALIGNED is located both within the software engineering as well as in the
data processing area (see Figure 6.3).

In the initial prototype implementation, we aimed at the creation of a
stable prototypical environment, in which we can start testing and evaluating
implementations to encounter the current issues. In this first phase, we con-
centrated mainly on the enhancement of data quality and repair processes.
Based on requirements, we started to work on data transformation issues and
the improvement of data quality processes in PoolParty.

Figure 6.3 ALIGNED Use Cases.

206 Use Cases

6.1.4 Implementation

6.1.4.1 PoolParty notification extension
Development and maintenance of controlled vocabularies such as thesauri
is mostly a manual and thus error-prone process. Especially in environ-
ments where multiple contributors are allowed to perform changes to the
vocabulary, structural complexity increases, which makes it harder for indi-
viduals to maintain an overview. Furthermore, conflicting opinions arise and
lead to inconsistent description, meaning and structure of the thesaurus’
concepts. This problem is even more important when using software that
allows for collaborative vocabulary development or publishing vocabularies
as Linked Data.

Furthermore, maintaining an overview is not only necessary for thesaurus
development, but also for curators responsible for datasets published as
Linked Data on the Web serving various use cases. Users are allowed to
change or add information (metadata) to existing data anytime. Therefore,
errors can be introduced and hence manual review is required.

6.1.4.2 rsine notification extension
In order to address certain scenarios, the rsine4 notification service as well as
its integration into PoolParty had to be extended. The changes incorporated
into rsine’s code dealt with support for persistence transaction and attach-
ing rsine to receive notifications from other PoolParty repositories than the
default vocabulary repository. Regarding the former change, multiple triple
changes that are written into rsine managed triple store as one transaction are
now combined and treated by rsine as one changeset. This allows for easier
formulation of notification subscription documents and more robust notifica-
tions. On the PoolParty side, we added integration code that forwards changes
to, e.g., the custom schema repository or the user account repository to rsine,
so that it is also possible to get notified on schema and user account changes.
However, this is just a temporary solution as we aim to get PoolParty working
with a single repository and organise all other information in separate named
graphs. Once this has been accomplished, also the rsine integration code can
be simplified.

6.1.4.2.1 Results
To cover the most important scenarios, we implemented five new rsine
notification subscription documents that enable notifications for

4See https://github.com/rsine/rsine

6.1 Wolters Kluwer – Re-Engineering a Complex Relational Database 207

Figure 6.4 Notification message.

• Creation of a new custom class
• Creation of a new custom schema (see Figure 6.7)
• Deletion of a custom schema
• Creation of a new user account
• Creation of a new project

The other scenarios can be covered with similar subscriptions. Up to now, the
details covered in the notification messages sent out to the users cannot cover
information like

• who (username) created a custom schema or user account, and
• the name of the newly created schema

The reason for this is that (i) this information is not available in the
persisted data or (ii) the repository holding the data is not available for
querying through a SPARQL endpoint. Figure 6.4 shows a sample notification
message.

6.1.4.3 RDFUnit for data transformation
As part of the core, CMS tasks within JURION each WKD XML document
that is checked-in through internal workflow functionality and is converted to
RDF based on the Portal Content Interface (PCI) ontology. The PCI ontology
is a proprietary schema that describes legal documents and metadata in OWL.
Due to change requests and new use cases for the RDF metadata in the
ontology, the conversion logic or both the conversion logic and ontology
need amendments. In these cases, we need to ensure that the RDF data that
are generated from the WKD XML documents still comply with the PCI
ontology for quality assurance.

Current Situation

As a gatekeeper to avoid loading flawed data into the triple store, each result
of the conversion from WKD XML into PCI RDF is sent to a proprietary
dedicated Validation service that inspects the input and verifies compli-
ance with the ontology. This approach assures that the conversion results

208 Use Cases

are verified but comes with some major issues. The three most important
ones are:

• The current service can only process larger data packages. This makes
error detection on single data units quite difficult and one error blocks
the whole processing pipeline

• the service is a SOAP-based Web service that works asynchronously
with many independent process steps, which imposes high complexity
on its usage

• it depends on other services and requires permanent network access and
therefore is potentially unstable

To improve these issues, we want to implement unit test scenarios that can
be run directly coupled to the conversion project development environment
(this project hosts XSLT logic to convert WKD XML into PCI RDF). The
tests should be run both automatically on every change in the project, but
also be able to be manually triggered. Tests should be easily extendable
and expressive enough to easily spot issues in the conversion process. The
feedback loop should be coupled as tight as possible to the submitted
change.

Implementation

To allow comparable and reproducible test results with suitable execution
time, a number of WKD XML reference documents have been selected,
against which the actual conversion into PCI RDF is executed and each
resulting RDF dataset is verified individually.

The prototyped solution (see Figure 6.5) integrates RDFUnit as the core
driver of the tests. The integration is currently based on auto generated tests,
which are generated from a current version of the PCI ontology every time
the test suite is run.

It also integrates seamlessly into the general development toolchain. Any
change in the conversion project automatically leads to an entire build of the
project including validation. As the test suite is integrated in the underlying
standard test mechanisms, a developer can trigger this test chain manually on
his local workstation to retrieve direct feedback at any time.

As a proof of concept RDFUnit’s test results (the validation model based
on the Test-Driven Data Validation Ontology5) linked to this test is stored into
Virtuoso triplestore to enable future analysis/reviews of historical data.

5See http://rdfunit.aksw.org/ns/core

6.1 Wolters Kluwer – Re-Engineering a Complex Relational Database 209

Results

Each of the test results manifests in the validation model, which is based
on RDFUnit’s Test-Driven Data Validation Ontology. As we currently rely
on RDFUnit’s auto generators, all statements are spotted that outcast rules
that have been derived/interpreted from the ontology. These are especially
cardinality and domain/range violations.

In any case, a summary of the test results is presented to the user. As this
is always in the context of a concrete RDF-dataset (in the form of a file) one
can immediately spot issues on the exact resource, which avoids unnecessary
lookups and helps to identify the defective part of the conversion.

The integration of RDFUnit into the development cycle and build pipeline
(see Figure 6.5) enabled the following possibilities that were entirely missing
before:

• run automated tests based on the ontology
• steadily monitor project health
• capture metrics

Figure 6.5 Transformation process with RDFUnit.

210 Use Cases

In the past, most issues aroused after the changes to the conversions have
been released without proper and reliable testing – as this was only possible in
manual developer tests. Moving forward, we can make sure that reproducible
tests are run with each change especially before releases. Tests and tested
documents can be easily extended to increase coverage of corner cases.

Figures 6.6 and 6.7 shows some of the test results, which can easily be
stored and used on a regular basis in current and future QA reports.

Early and quick feedback on changes to the project are very valuable to
assure that the project is in good health and existing functionality meets the
defined expectations. Good coverage with automated tests prevents bugs from
slipping in released functionality which may have bad side effects on other
parts of the system.

RDFUnit enables possibilities but still needs a tighter integration as a
library with our existing toolchain to improve reporting capabilities and make
its feedback even more useful.

RDFUnit proves as being very useful and will be a fixed component of
the operational tech stack within WKD JURION from now on.

We will provide further requirements to improve RDFUnit’s integration
into our development pipeline. At a later point in time, we will utilise
RDFUnit to enable monitoring the existing data store to implement quality
assurance on operational side.

target/test-classes/junit7523938743608749278/output/baulast_13211.meta.rdf

[ERROR] http://wolterskluwer.de/ceres/wk-
de/lexdb/181634/baulast_13211#Hinweis01bea53a31ad369b9dabd6a4704230ef
. Cardinality of http://wolterskluwer.com/ceres/concept-v1.0/anchorId
different from 1 (is 0) for type http://wolterskluwer.com/ceres/content-
warehouse-v1.0/BlockAnchor
. Cardinality of http://wolterskluwer.com/ceres/concept-v1.0/anchorId
different from 1 (is 0) for type http://wolterskluwer.com/ceres/concept-
v1.0/Anchor

[ERROR] http://wolterskluwer.de/ceres/wk-de/lexdb/181634/baulast_13211
. http://wolterskluwer.com/ceres/wk-
de/referenceInformation.ChapterReference does not contain a literal value
(http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral)
. http://wolterskluwer.com/ceres/wk-

de/referenceInformation.ChapterReference has rdfs:domain different from:
http://wolterskluwer.com/ceres/ltr-v1.0/ReferenceInformation
. http://wolterskluwer.com/ceres/wk-de/searchTuningKeyword has rdfs:domain
different from: http://wolterskluwer.com/ceres/concept-
v1.0/InformationClass
. http://wolterskluwer.com/ceres/content-warehouse-
v1.0/isDocumentInstanceOf has rdfs:domain different from:
http://wolterskluwer.com/ceres/concept-v1.0/FileResource

Figure 6.6 RDFUnit results.

6.1 Wolters Kluwer – Re-Engineering a Complex Relational Database 211

Figure 6.7 Jenkins-CI Test Report.

6.1.4.4 PoolParty external link validity
WKD document metadata and controlled vocabularies are linked to sev-
eral external sources. These sources are mainly DBpedia6 and thesauri like
Eurovoc7, Thesoz8 or STW9. On a larger scale, we plan to include more of
these kinds of sources to connect with additional internal and external data
for the enhancement of several services. To control the process of change and
to evaluate what kind of effects this can have on the quality of data, we want
to control changes of Linked Data that can cause problems.

In addition to the validity of external links, we also aim to monitor
the validity of internal links between different projects and datasets as also
internal WK sources will need validity control.

Current Situation

Currently, we have no effective overview over the validity of linked sources.
This causes, for example, frontend problems in the published vocabularies
(see Figure 6.8). Currently, the only way to evaluate the quality is to analyse

6See http://de.dbpedia.org/
7See http://eurovoc.europa.eu/drupal/
8See http://www.gesis.org/en/services/research/thesauri-und-klassifikationen/social-science-

thesaurus/
9See http://zbw.eu/stw/version/latest/about.en.html

212 Use Cases

Figure 6.8 Validation Data stored for Analysis.

the frontend representations of the linked sources or to follow a link to detect
a missing source. There is in general no process in place to control the validity
of external sources. Figure 6.9 shows a sample defect.

Implementation

To check the validity of external links, we use the same technique as
qSKOS.10 All URIs used in the vocabulary that do not point to the local host
are dereferenced and the remote server’s response is checked. If the HTTP
status code is 200, the link is considered valid. In case redirects occur, they
are followed properly. All other responses are to be classified as invalid.

Results

URI checking can be invoked from the PoolParty user interface in the current
experimental version. The result overview (see Figure 6.10) shows the URIs
of the violated links and the total number of checked links as well as the
number of violated links. The quality manager can use these links to change
or delete the respective relations.

However, since each URI gets resolved and duplicate URIs are not omit-
ted, this process can take a lot of time. In future versions of PoolParty, we

10See https://github.com/cmader/qSKOS

6.1 Wolters Kluwer – Re-Engineering a Complex Relational Database 213

Figure 6.9 Example defect: the Image file of the external source does not exist anymore11.

11See frontend http://vocabulary.wolterskluwer.de/court/10592.html

214 Use Cases

Figure 6.10 Validation Results.

will investigate ways of running these kinds of checks in the background and
notify users on the results.

6.1.4.5 Statistical overview
As we are integrating more and more controlled vocabularies and custom
schemas in the metadata management tool PoolParty, we are in need of
solutions that give an overview of existing relations between projects and
external data and schemas. Besides, the number of user roles is growing so
that we need a solution that enables a best overview for a number of different
users with different purposes. By different queries and enhancements, we
want to get an impression about the relations between projects and the usage
of specific custom schemas.

Current Situation

Connections of projects and schemas are not easily traceable. Owners of
vocabularies need to document everything so that others can also understand
the projects and its relations and possibilities. Without this documentation,
it is hard to analyse the different projects. Within the tool, the user can only
analyse the individual concepts for relations to investigate any relations with
schemas. For linking to other projects it is possible to get a list of links. This
list does not provide the number of links and specific numbers for different
kinds of linking. These figures need to be searched manually.

Implementation

We currently implemented two different kinds of statistical metrics and
integrated them into the PoolParty UI (i) checking for external links validity

6.1 Wolters Kluwer – Re-Engineering a Complex Relational Database 215

and (ii) links to other PoolParty projects on the server. These metrics differ in
the methodology they are evaluated. Checking the validity of external links
cannot be done using SPARQL and requires external tool support (e.g., Java
code, see section 6 on external link validity). Reporting links to PoolParty
projects can be achieved in a similar way than checking for data consistency
violations. Each statistical property can be formulated as a SPARQL query,
which is executed on the relevant project data, i.e., the current project data
and metadata as well as all linked project data and metadata.

Results

The checking of project relations can be invoked from the PoolParty user
interface in the current experimental version. The results (see Figure 6.11)
show the kind of used relations, the frequency of these relations, the detailed
list of linked resources and the total number of linked resources.

This way users can check how and to which extent projects are related to
each other and they get an overview of used relations.

6.1.5 Evaluation

The Jurion Use case is split into two sections within the ALIGNED project:
(1) the Jurion platform, and (2) the Jurion IPG tool. The developments
concerning the Jurion platform took place in the first half of the project, based
on the respective categories of measurement and will be repeatedly described
here for completeness.

For the prototype of the JURION platform use case, we focussed on the
data development processes.

The ALIGNED tools that were used for this prototype are RDFUnit and
PoolParty. We had four major features for the initial prototype.

Figure 6.11 Statistical checks.

216 Use Cases

• RDFUnit for Data Transformation
• Notification Service in PoolParty
• Project Linking Statistics in PoolParty
• ELV in PoolParty

The methods of collection are divided into three categories, namely produc-
tivity, quality, and agility, as follows in Figure 6.12.

Tasks Comment Productivity
(Prototype
testing)

Quality (Prototype
Testing, expert
evaluation/
interviews)

Agility
(expert
evaluation)

RDF
Transformation

quality
test of data
transformed
from XML
to RDF

Time
Measurement
for Quality
Checks Time
Measurement
for Error
Detection
Need for Manual
Interaction

number of
detected error
categories
test coverage
expert
evaluation

Time to include new
constraints/adapt
the testing to new
requirements

Notification notification
about
predefined
changes

Number of
Scenarios
Time
Measurements
Usefulness

Notification
completeness
expert
evaluation

Time to include
new
constraints/adapt
the testing to
new requirements
User roles that
can modify
Notifications Time
to configure a new
Notification
Integration of a
customized
Notification
Configuration
Time to configure
new requirements

Statistics Statistics
about
relations of
projects

time
detected
links

usability
aspects
result
consistency

Detection Issues
Integration of
Statistics Time to
configure new
Requirements
Extension

External
links

quality of
external
links

checked links

violations time

usability aspects
expert
evaluation/inter
correctness of
results

Scope of
External Link
Checks
Integration of
Internal Link
Checks
Time to
configure new
Requirements
Extension

Figure 6.12 JURION: Overview.

6.1 Wolters Kluwer – Re-Engineering a Complex Relational Database 217

The evaluation of the prototype showed clearly that during the Jurion
prototype development, we have achieved our aim to improve the productivity
and quality of data processes within the data life cycle. With the presented
features, these improvements could be made visible. Performance and qual-
ity/error rates of the test results were satisfactory. Nonetheless, evaluation
outcomes suggest further improvements are possible, especially with regard
to usability, performance, integration of functionalities and required details
that are not yet fully optimised.

6.1.5.1 Productivity
In summary, the productivity of data processes is clearly improved by the
Jurion prototype. The data transformation service enables a testing that points
directly to the detected error source and improves the bug fixing process this
way. The notification service provides notifications as soon as an action is
executed. This is a helpful tool to ensure quality analysis and data monitoring.
Nonetheless, there needs to be a solution that helps to send the notification
precisely where it is needed to avoid spamming. The statistics and ELV
functionalities can help to save much time by replacing time-consuming
manual work with efficient data overviews.

6.1.5.2 Quality
Concerning the quality of the prototype functionalities, the results are very
satisfying. For notifications and ELV, there are only few issues. For the data
transformation with RDFUnit and the statistics part, there needs to be further
investigation to enable comprehensive and extensive data testing results.
Usability issues need to be tackled in all the features for a better operational
implementation. As this is only an initial prototype, usability was less of a
priority.

6.1.5.3 Agility
The testers’ feedback for agility of features is quite positive. The agility
of RDFUnit is seen as satisfying as the automated service allows the
implementation of new requirements easily. With regard to notification,
adaptations are dependent on the specific notification use case and the
respectively available data. In the same way, the agility of statistics fea-
ture is highly dependent on the availability of required underlying data.

218 Use Cases

ELV has a reasonable agility and is planned to be done by an external
application to address performance issues.

The evaluation of the Jurion tasks was done in an early phase of the
project, based on an earlier evaluation approach. We will analyse one on of
the tasks based on the latest suggested method to show the adaptability of the
test results for this approach. Task 4 ELV service serves as a good example
for this analysis.

6.1.5.4 Measuring overall value
JURION is a legal information platform that merges and interlinks over one
million documents of content and data from diverse sources such as national
and European legislation and court judgements, extensive internally authored
content and local customer data, as well as social media and Web data
(e.g., from DBpedia). The JURION development teams add value through
applications for personalisation, alerts, analysis and semantic search. Rev-
enue is generated by customers paying for the platform content and related
services.

PoolParty serves as the metadata management tool of controlled vocab-
ularies that are used for specific search functionalities and the develop-
ment of further functionalities in applications. The ELV is a PoolParty
functionality.

ELV is a new feature that evaluates the links to external sources and
informs the user in case the sources are not available anymore. Previously, it
was only possible to check the links manually in random samples. Therefore,
it provides a fast and efficient curation service to guarantee an error-free
linking to external sources. A measure of value could be curation cost of
maintaining a given quality of service as measured by revenue. The saving of
time needed for the error detection is the most important parameter for this
calculation.

6.1.5.5 Data quality dimensions and thresholds
Data accuracy, completeness and consistency are essential for this task. Jurion
Customers pay for the curated information and related services so that high-
data quality is a major requirement. Data accuracy was analysed in the
evaluation by analysing the errors – 100% of the found errors have been data
inconsistencies. In average, 81% have been outdated links, we were looking
for. Nineteen per cent have been unexpected inconsistencies that exceeded

6.1 Wolters Kluwer – Re-Engineering a Complex Relational Database 219

our expectations. Completeness was checked via mapping the errors that were
found manually, against the system results. All manually detected issues have
been detected by the links.

6.1.5.6 Model agility
As the functionality is embedded in Poolparty, the assessment of the Pool-
party use case is also valid in this case. With regard to the functionality,
the configuration of new requirements for the ELV is possible. Determining
which URIs should be resolved can be done either with the methods SPARQL
provides or within the Java resolution algorithm. In each case, the effort for
change is low, allowing for agile reaction on changed requirements. However,
changes to the current configuration require recompilation and redeployment
of PoolParty.

6.1.5.7 Data agility
As the functionality is embedded in Poolparty, the assessment of the Pool-
party use case is also valid in this case. Based on the pattern to detect
URI patterns for links to be checked, the solution can also be used for
(or constrained to) “internal” links. Therefore, appropriate methods must be
evaluated.

6.1.6 JURION IPG

6.1.6.1 Introduction
The Jurion IPG system is a commercial intelligence system, providing a
means for business contractors to perform due-diligence queries, serving
historical data about companies and their relationships with other companies,
responsible individuals, and business documents. As a reliable provider of
credibility and financial information for over five million entities, the integrity
and consistency of the data is of vital importance, and increasingly hard to
manage at scale. In this use case, we are deploying the ALIGNED tools to find
problems in the existing data and to improve the integrity of data submitted
in the future. ALIGNED tools are also helping increase the scope of the data,
by enabling the linking of data stored within the system to external related
datasets.

Figure 6.13 shows the flow of content through components of the system.
Source data are manually imported or acquired through crawling non-
formatted data sources, and pushed into a relational data store. Metadata is
extracted and enriched, before being entered into a separate RDF data store.

220 Use Cases

Figure 6.13 JURION Content Pipeline, showing ALIGNED tools integrated with existing
functionality and datasets.

The schema for the relational data store is versioned and updated through an
instance of the Model Catalogue; and data integrity is maintained through
Semantic Booster-generated stored procedures. This relational data may also
be viewed in an RDF format, where the RDFUnit tool may be used for further
data validation. External metadata is managed through use of the SWC’s
PoolParty thesaurus manager and linked with the RDF representation of the
core dataset. Existing end user interfaces to the data will be supplemented
with an administrative interface automatically generated by the Semantic
Booster tool.

New software integration points can be found where ALIGNED tools
interact or communicate. In particular, such interactions occur between the
Model Catalogue and Semantic Booster, where Booster models are gener-
ated from the Model Catalogue, and where metadata in the catalogue is
used to supplement the end user interfaces. Further integration is between
Booster and RDFUnit, where the D2RQ tool is used to help convert relational

6.1 Wolters Kluwer – Re-Engineering a Complex Relational Database 221

data into RDF: the configuration for this may again be parameterised by a
transformation of the model in the Catalogue. The ALIGNED vocabularies
are used to standardise these interactions.

Use Case
Figure 6.14 shows the problem space and more specifically the complexity of
the JURION IPG system. The utility of the JURION IPG system is dependent
on the maintenance and evolution of a large, semantically consistent dataset.
Huge amounts of daily processed data originally from pdf sources; and main-
tenance through a proprietary, obsolete CMS makes the IPG case extremely
suited as an ALIGNED use case. Business value of the system is dependent
on the maintenance and evolution of a large, semantically consistent dataset.
The overall goal is to ensure the quality of the system used to enter and
maintain the data and to improve the value by linking to external datasets. To
provide this solution by implementing ALIGNED tools, we used in parallel
two approaches including Semantic Booster first and Dacura afterwards. For
the purpose of the Jurion IPG use case, we have chosen to concentrate on a
number of key critical concerns:

Figure 6.14 IPG problem statement.

222 Use Cases

• The use of Semantic Booster will allow a wider range of semantic
integrity constraints and business rules to be applied to the data upon
entry, ensuring high-quality data. The automatic data-migration tools
provided with Booster will minimise the impact of upgrading and
evolving the underlying data model whilst maintaining data consistency.

• The administrator interface in the IPG system currently requires manual
development each time the database changes; increasing the cost of
evolving the data store. The model-driven Booster default interface can
be used: either in its entirety, or components reused to save development
effort. (Figure 6.14)

• The existing data store is currently stored in a relational format. Whilst
Booster can help enforce a range of integrity constraints, there are some
consistency checks which would be more reliably performed using RDF
reasoning; some additional constraints may be enforced in a less severe
manner: not enforced globally but treated on a case-by-case basis. We
will use the existing D2RQ12 tool to convert data stored within a Booster
database into RDF format, making it available to the RDFUnit testing
tool. D2RQ is a platform and language for accessing standard relational
data, as that found in Booster, as triples. It is the basis from which the
R2RML13 W3C standard was developed. In D2RQ, each element of a
Linked Data schema can be mapped to data from a relational database,
using standard SQL queries, embodied in a mapping file in the D2RQ
formalism. The additional testing and monitoring this enables will also
provide insight into productivity and quality gains through use of the
ALIGNED tools.

• Semantic integrity of the data can be compromised by a lack of under-
standing of the model. Here the Model Catalogue can be used to provide
accurate descriptions of data fields, including those from linked external
data sources. Such descriptions can aid correct data entry, and permit
additional reuse of the data within the organisation. The Catalogue will
also serve as a provider of models to the generated tools, and an environ-
ment where new versions of the data model can be created and evolved.

In the ALIGNED use case, the IPG domain model is edited and versioned
within the Model Catalogue: Figure 6.15 shows a screenshot including
a subset of the model. The model can be used as the foundation for a
model in Semantic Booster, but the Catalogue is also able to generate

12http://d2rq.org/
13https://www.w3.org/TR/r2rml/

6.1 Wolters Kluwer – Re-Engineering a Complex Relational Database 223

Figure 6.15 Screenshot of a subset of the IPG model in the Model Catalogue.

documentation files, data interchange specifications (such as in XML), and
other useful system components.

The Booster model may be further edited within the Eclipse-based IDE
(Figure 6.16) to extend concepts with further business rules and update
methods. The Booster generation system is then used to generate a database
with stored procedures for updates, a programmatic API, and a Web-based
administrative interface (Figure 6.17).

The data within the Booster system can be extracted in RDF format
using the D2RQ tool. These RDF data are now suitable for linking to
external datasets, or further reasoning. The RDFUnit tool can be used for

224 Use Cases

Figure 6.16 The Eclipse-based Booster tool.

Figure 6.17 Screenshot of the Booster administrator interface for the JURION IPG system.

performing extra validity checks on these data (Figure 6.18) – checks that
might be hard to describe or perform within a relational framework, or
properties concerning relationships with external data.

6.1 Wolters Kluwer – Re-Engineering a Complex Relational Database 225

Figure 6.18 Results of using the RDFUnit tool against data from a Semantic Booster
database.

Dacura provides several services to software engineers developing soft-
ware that utilises the data curated by the system. These include reliable access
to data models, change notifications and the automatic production of simpler
formats, which are more familiar to developers.

In order to verify the effectiveness of both approaches – Semantic Booster
and Dacura – we created a list of unsolvable issues existing in the current
Jurion IPG system. Based on the results of an evaluation, we will be able to
determine from a business point of view, which approach suits best for a real
business use case.

6.1.6.2 Architecture
Figure 6.20 shows the architecture of the platform that was constructed to
support the Jurion IPG use case. The IPG system is shown on the left. It
consists of a CMS and an SQL database, upon which a suite of Business Intel-
ligence services have been developed – some of which access the database
directly and some of which use the API provided by the CMS. In this sce-
nario, we compare two alternative approaches to solving the IPG problems.

226 Use Cases

Category ID Problem
Information is not there
or is wrong

1 The lack of the trustee in bankruptcy proceedings

Information is not there
or is wrong

2 Member of management board in companies where
management board doesn't exist

Information is not there
or is wrong

3 Member of management board without function in
board e.g. board chairman, vice chairman

Information is not there
or is wrong

4 Commercial proxy without type of proxy e.g. joint
commercial representation

Information is not there
or is wrong

5 Proxy without type of proxy

Information is not there
or is wrong

6 Lack of additional information about way of
appointment of a trustee

Information is not there
or is wrong

7 Limited partner without limited liability amount

Information is not there
or is wrong

8 Are there multiple shareholders if company is labeled
as „Sole Shareholder”

Information is not there
or is wrong

9 Information about the suspension of a member of the
management board - only YES or NO

Information is wrong 10 The same person in management board and as
commercial proxy

Information is wrong 11 Member of management board is a member of
supervision or a commercial proxy, a official receiver,
a trustee

Information is wrong 12 Receiver is a member of supervision or a trustee
Information is wrong 13 Official receiver is a member of management board or a

member of supervision ,a trustee, an appointed person
Information is wrong 14 Trustee is a receiver or an official receiver, a member of

management board
Information is wrong 15 There should be at least one person (natural or legal) in

representa�on (management board, partners, trustee)or
receiver / official receiver at any moment in �me.

Information is not there
or is wrong

16 Partners without information like amount of shares

Information is not there
or is wrong

17 Do value of partners shares at every moment in time
is equal or lower than capital value.

Information is not there
or is wrong

18 Lack of amount of capital value in joint stock
company and limited liability company

Information is not there
or is wrong

19 Lack of information about way of formation of a
company only information about circumstances of
formation

Information is not there
or is wrong

20 Lack of information about circumstances of formation
of a company only information about way of formation

Information is not there
or is wrong

21 Did a company publish multiple annual reports.

Information is not there
or is wrong

22 Lack of the post office in company address when is
not the same like the place where headquarter is

Information is not there
or is wrong

23 Lack of a date of validation of expunging company
from the court registry

Information is not there
or is wrong

24 Lack of title of organ - supervisory board

Information is not there
or is wrong

25 PESEL No. with less digits than 11 when first digit is
0

Information is not there
or is wrong

26 Email and web page address with space

Information is not there
or is wrong

27 Lack of @ in email address

Information is not there
or is wrong

28 @ in webpage address

Informa�on exists, but is
hardly understandable

29 Complexity of the data model in the table describing
attributes for company and relationship – the table
szczegol_instyt_watrosc

Informa�on exists, but I can’t
do anything with that – no
process for consuming info

30 Information from the legal notice about a ban on
economic activity and ban to be a member in
representation (management board), supervision
(supervisory board or audit committee)

Process exists, but isn’t
working or is too slow so
solu�on is unknown

31 Find out relationship at specific moment in time
between company and company, company and
person, person and person

Information exists, but is
difficult to get

32 Cycle loop - find out if company A is owner of
company B, than company B is owner of company C
where C is owner of company A

Figure 6.19 Jurion IPG unsolvable issues.

6.1 Wolters Kluwer – Re-Engineering a Complex Relational Database 227

Figure 6.20 Jurion IPG use-case architecture showing integration across all major project
tools and partners.

The first approach is provided by a configuration of the Oxford MDE
approach. A booster specification is created (1) which generates SQL state-
ments to extract the data from the legacy SQL DB and saves it in a format that
can be managed by the Model Catalogue tool (2), the booster specification
should ensure that these extracted data are correct by construction according
to the booster specification. Then, these data are made available as RDF via
Semantic Booster.

The second approach is provided by a configuration of Dacura services
developed at Trinity College Dublin. The Model mapping tool (4) transforms
the SQL schema of the legacy DB into an OWL ontology which is then used
by the schema checking tool (5) to ensure that all data conform to the model.
The curation and workflow tools (6) allow data managers to change the model
and migrate the data and manage the process.

In order to properly compare the results of the two approaches, the RDF
that they produce must be mapped to a common model – the UnifiedViews
tool (7) provides this service and saves the resulting data to a triplestore.
Finally, RDF Unit is used to test the output against the 32 unsolvable scenar-
ios shown in Figure 6.19 to evaluate the success of the competing results.
As RDFUnit supports arbitrary SPARQL queries, it is possible (although
sometimes inconvenient) to encode all the evaluations as RDFUnit tests.

6.1.6.3 Tools and features
The tools and features used in the JURION IPG system are detailed in
Figure 6.21.

228 Use Cases

PoolParty Pla�orm X X X X RDF(S), PROV,
SKOS

Model
Catalogue

Pla�orm X RDF(S), OWL, PROV

RDFUnit Command
line tool

X X X RDF(S), PROV,
DQV,
DataID, SHACL,
RUT,

Seman�c
Booster

Command
line Tool

X X RDF(S), OWL, PROV

So�ware Type RESTful
API

Triple
Store

SPARQL Linked
Data

Shared Ontologies
supported

Figure 6.21 Integration Paradigms and vocabularies supported by ALIGNED tools and
platforms.

6.1.6.4 Implementation
Modifying Seshat Schema: Dacura provides tools to allow users to edit and
modify ontologies on the fly (Figure 6.9). Using the Dacura browser plugin,
users can browse the current Seshat code book and create properties and
objects, adding them to the Seshat ontology and allowing researchers to
collect information on these newly added properties.

Data complexity: Wolters Kluwer has managed and is still managing
a tremendous business transformation process from a publishing house
to a global information service provider (Figure 6.22). This development
requires that high value-added services like IPG are also transformed from
a traditional monolithic technical environment to a modular, flexible and
sustainable infrastructure. Due to its data complexity and data quality
issues (e.g., the main added value lies in the complex relationship model),
ALIGNED tools can heavily support this transformation process.

Semantic Booster and the Model Catalogue. Semantic Booster has its
strengths in the automatic model and software code creation process. It has also
strong quality constraints so that no invalid data get into the transformation
process. This approach was augmented by using RDFUnit for further data
quality checks and which is the prerequisite to connect external open datasets
to the IPG application in an easy and sustainable way (see Figure 6.23).

A booster specification is created which creates a model from the SQL
database, along with formal constraints, which ensure that the data remain
correct by construction. The Model Catalogue tool is then used to manage
this data model. Semantic booster is used to make these data available as
RDF via an API.

6.1 Wolters Kluwer – Re-Engineering a Complex Relational Database 229

Figure 6.22 Complexity of the Jurion IPG use case.

Figure 6.23 Integrating Semantic Booster and the Model Catalogue.

230 Use Cases

Figure 6.24 IPG Data Error detection and correction using Dacura.

Dacura provides an alternative method of achieving the same results
(Figure 6.24). Firstly, the model mapper tool is used to generate an OWL
ontology from the IPG SQL table structure (Figure 6.25). This ontology
is deployed as the schema for the graph into which the instance data are
imported.

Dacura’s curation tools provide user interfaces which enable the data
manager to view and modify the data and to analyse it for validation errors
(Figure 6.26). The manager can use these tools to change the schema to
include complex constraints on data quality. The results are provided as a
cleaned, schema conformant RDF dataset and a list of errors expressed using
ALIGNED’s RVO ontology.

Unified Views: in order to ensure that the results of the validation pro-
cesses carried out by Dacura and Semantic Booster can be evaluated, they
must be mapped to comparable schema for testing. The Unified Views tool is
used to manage this mapping and transformation and to save the transformed
data to a triple store.

RDFUnit: Each of the unsolvable issues is encoded as RDFUnit scripts,
which run SPARQL queries against the final data to check whether the issues
are still present in the data. These queries are run against both the data

6.1 Wolters Kluwer – Re-Engineering a Complex Relational Database 231

Figure 6.25 Ontology generated from IPG SQL database by Dacura’s Model Mapper Tool.

Figure 6.26 Using Dacura’s curation tools to analyse the IPG data model.

232 Use Cases

produced by Dacura and by Semantic Booster. In situations where issues still
remain, RDFUnit can be used to fix some of these outstanding issues.

Conclusion: The platform produces a result set which describes the errors
that have been found in the data which can be passed back to the DB
administrators for correction.

6.1.6.5 Evaluation
Measuring Overall Value

The IPG database supports a variety of business services for customers which
provide revenue to Wolters Kluwer – a very clear measure of the value
provided by the system. The most important metrics in this case are: firstly,
the curation cost of maintaining a given quality of service as measured by
revenue; and secondly, the cost of improving the overall quality of service
to provide more value and increase revenue, for example, by adding new
features and new business services to the system. As the scale of the system –
both in terms of the size of the database and the complexity of the services
consuming the data – has increased, the curation costs have increased to such
a stage that the cost of improving Quality of Service may be greater than the
increase in business value that will accrue.

Data Quality Dimensions and Thresholds

Accuracy of certain information is very important in a commercial intelli-
gence system. For example, accurate identification, accurate contact infor-
mation and accurate shareholder and other relationship information are all
significant in terms of the overall value provided to customers by the system.
Users will tolerate some errors, but there is a threshold at which they will lose
confidence in the value provided by the system.

Model Agility

The existing data model in the IPG SQL database have evolved to a stage
where it is difficult to understand. Database access is heavily optimised
and any changes to the structure require modification of caching and other
optimisations. In addition, if we change any part of the structure of the
database, we will likely break existing programs which use that part and
it is very expensive to change the code of existing programs. Rather than
attempting to modify the existing data model, a path to migrating to a new
and easier to understand data model is required. In this case, the task is to

6.1 Wolters Kluwer – Re-Engineering a Complex Relational Database 233

create a new data model that is easier to understand than the existing model
without increasing the overall complexity of the system.

Data Agility

Once again, scale is the obstacle to overcome in enabling data agility in IPG.
The overall system is highly optimised, and it requires significant effort to
integrate any changes into existing infrastructure, testing, and so on, before
we can safely ensure that the new service will not negatively affect the overall
QoS of the system. Particularly problematic are queries that contain many
complex joins and programs that make repeated round trips to the database,
for example by executing a query in a loop, as they can put high load on the
server and decrease the QoS across the entire system. To evaluate the overall
system’s data agility, the task is to create a new application, based on existing
data, which identifies illegal relationships between people and companies.

Task 1: Curation

Identify and correct 10 different types of significant errors in the database.

Before ALIGNED

• Write queries to extract all the fields to be analysed from the database
• Write and maintain functions to analyse the extracted fields for the

various types of errors identified and apply auto-correction where
possible.

• Develop and maintain a system which allows users to view and correct
identified errors

• Operate this system until the error rate has fallen below the desired
threshold.

• Write queries to insert the corrected values back into the database.
• Either of:

◦ Trace the source of errors back to the programs that produced them,
fix and redeploy the programs

◦ Periodically test the Database and rerun the process if quality levels
have fallen below minimum thresholds.

Task 2: Model Agility

Create a new, easier to understand model and deploy it so that all new services
can use the new model while existing services still use the old model, with

234 Use Cases

state being shared between them, without increasing the overall complexity
of the system, increasing the data curation costs or reducing agility.

Before ALIGNED

What makes this problem hard is that, with current technologies (SQL), this
requires a complete refactoring of the database and all the services that use it
and the solution, at best, slightly improves the problem by slightly increasing
the scale limit at which agility drops to zero. If we allow the existing data
model to remain untouched, so that we do not have to change the code of
existing services, and use middleware or an ORM architecture to create a new
model for new data and link it to the existing model through code, we do not
solve the problem at all – it actually makes it worse by introducing another
layer of code that must be understood and maintained in order to understand
or change the data or model. Thus, the only real alternative, using current
technologies, is a complete refactoring of the database and re-engineering of
the entire system and all of its services to use the new database schema.

Carry out complete system refactoring, with new, simplified schema,
existing data mapped to that schema and all software services updated to use
new model.

Task 3: Data Agility

Implement a new application which uses the IPG data to identify several
different types of ‘illegal’ relationships between people and companies.

Before ALIGNED

• Write, test and maintain complex recursive SQL queries using CTE or
CONNECT BY syntax to identify relevant instances.

• Write and maintain program to execute queries against database and
return results

• Write and maintain program to browse and display result

6.1.6.6 Experimental evaluation
We used ALIGNED tools to address 31 unsolvable problems identified by
IPG. This required us to complete the following tasks:

• Create a semantic model to represent the entities and relationships
referenced in the IPG unsolvable problems.

• Create a mapping from the IPG SQL schema to the ontology

6.2 Seshat – Collecting and Curating High-Value Datasets 235

• Import the data to the ontological version and analyse it using the 22
quality constraints represented statically in the ontology

• Run a set of queries against the knowledge base to identify 8 of the 31
problems that could be expressed as graph queries.

We measured the time and effort required to complete these steps and identify
all constraint violations in the SQL data, covering 30 of the 31 problems.
The vast bulk of the effort was expended on scaling our reasoner and storage
engine and toolchains to handle the scale of the data, as, when transformed
into semantic representations, the IPG database amounted to tens of billions
of triples.

We established a pipeline which lifts IPG’s SQL schema to an OWL
ontology and then converts SQL row data into triples. We then transform
the data triples using our Dacura mapping tool into an ideal schema. At this
point, the instance data are checked for consistency with the ontology.

The results of the consistency check are reported as a file of JSON objects
which elaborate the problem and its source. After running the consistency
check, we found an initial set of 2,103,583 errors. A high proportion of a
sample of these errors are genuine and have been verified (>95%), but since
work on the project is ongoing, the number of false positives has not been
completely determined.

The ontology design phase took around two days of expert ontology
designer time. Since most of the importation is automatic, the process took
around one day of developer time. Mapping of triples into the ideal schema
took an additional one day. The total development time is then around one
working week of effort.

Since IPG’s original use case described “unsolvable” problems, i.e., prob-
lems deemed too difficult to solve given the state of the current software and
database setup, setting a baseline is somewhat difficult.

However, these problems are not genuinely unsolvable in abstract but
simply too time intensive and expensive to solve. We can estimate the time
that it would take in excess of one month of developer time, and very likely
6 months in order to find the ∼2 million errors. This gives a range of speedups
from using our methodology of between 400% and 2400%.

6.2 Seshat – Collecting and Curating High-Value Datasets
with the Dacura Platform

The Seshat: Global History Databank is an international initiative of human-
ities and social science scholars to build an open repository of expert-curated

236 Use Cases

historical time-series data. The Seshat project began by selecting a sample of
30 areas from around the world. For each area, they recorded all societies that
had controlled it throughout history, and answered over a thousand questions
about each – describing its population, technology, religion, infrastructure,
and so on. This made it possible to answer a wide range of questions about
each of them – describing its population, technology, religion, infrastructure,
and so on. The Seshat has been designed to test theories about the evolution of
social complexity, from the point of view of historians and anthropologists.
The databank extracts data from a combination of databases, Linked Data,
websites, academic publications, and human experts.

A special code book defined the full list of questions, and researchers
added data to the system by creating a copy of the code book page for
each society, and adding data points using a special syntax that encoded
uncertainty, disagreement, and temporal scope, along with comments and
citations in relation to domain-specific provenance information. In the initial
stages of the Seshat project, a wiki was used to collect the data. The system
amassed over 200,000 data points on hundreds of civilisations, but whilst the
unstructured wiki data store allowed great flexibility at the start of the project,
it did not scale to the number of contributors, data users, data points, or the
complexity of the data.

The Seshat evolved to encompass new areas that were not originally
anticipated. In particular, this involved recording societies from the prehis-
toric past, which required a collection of archaeological data. It soon became
obvious that many Seshat variables were unsuitable for capturing this part
of human past. There was also a lack of relevant proxies that would allow
translation of archaeological evidence into coding templates. Accordingly,
the Archaeological Seshat code book was designed and developed in order to
fill in the gap, and the data were collected independently.

A wiki-based approach, used in Seshat for the data collection task, posed
numerous problems, in particular for the verification of data correctness, and
the extraction of data in usable forms. As the dataset grew and the focus
moved from collection to integration and analysis, several other significant
problems emerged. The fundamental problem is that a wiki is designed for
human presentation and editing of data. To a machine, it is semi-structured,
which lacks any type information and the meaning of the elements depends on
their context within a jumble of HTML. Without any support for validation,
errors proliferated.

The limitations of the wiki also impacted agility. As the Seshat code
book was rapidly evolving, any changes needed to be manually copied to

6.2 Seshat – Collecting and Curating High-Value Datasets 237

all existing data pages was a costly and error-prone task. There was also no
easy way to express spatial data through the wiki, so these data were stored
in separate GISs. This solution also offered no support for publication, while
the scraping tool could extract the raw datapoints, citations, and comments
were also important but were encoded in totally unstructured HTML.

Productivity suffered as increasing resources had to be devoted to curation
and cleaning. Some of the corrections were not copied back to the wiki, and
spreadsheets became the authoritative source for some sections of the data.
Moreover, there was no way of incorporating third-party data into Seshat
dataset.

6.2.1 Use Case

6.2.1.1 Problem statement
A group of researchers, distributed geographically and across multiple teams
and disciplines are collaborating on the compilation of the Seshat dataset
describing human social evolution since Neolithic times. The goal is to
record geo-temporal time-series datasets describing how hundreds of vari-
ables describing social complexity changed with time and place. The Seshat
researchers are currently using a wiki and a polity-based template, which
includes a simple syntax for encoding machine-readable variable values, to
collect the data. The Seshat researchers can currently be roughly broken down
into three roles:harvesters – typically RAs who are paid to input data to fill
the datasets on a per-polity basis;experts – scholars with specific expertise in
particular geo-temporal slices of human history, their role is to correct, inter-
pret and validate the data for their particular areas of expertise;architects – the
core Seshat editorial team, who are responsible for designing and modifying
the dataset Schema. The high-level goal of ALIGNED in this use case is to
produce tools for the Seshat researchers which will increase productivity and
data quality and improve the availability of data for analysis.

Actors

Role Description
Harvester non-technical users who add and update data
Editor moderate, correct and manage the data in the system over time
Expert use domain-specific knowledge to analyse and interlink data in the

system
Architect make changes to the schema and manage transitions between schema

versions

238 Use Cases

The requirements on which the Seshat use case was based are detailed in
Appendix A.

6.2.2 Architecture

Figure 6.27 shows the architecture of the system that was developed to
support the Seshat use case trials, highlighting the places where common
ALIGNED integration paradigms and ontologies were exploited. The system
demonstrates integration between three of the project’s major suites of tools,
and three of the project’s use cases.

The full suite of Dacura tools form the core of the system, importing
the data, ensuring it meets consistency requirements, automatically producing
user-interfaces and curation tools to allow the expert contributors to use the
system without any knowledge of the underlying semantic technologies being
used, and finally publishing the data and making it available to software
engineers.

The Model Catalogue tool was used to help develop and manage the
ontologies used by the system – it supports OWL models and provides
a RESTful API to support easy integration with third-party tools and
incorporating into complex workflows.

The Unified Views tool, developed as part of the SWC’s PoolParty
semantic suite was used to manage the integration of datasets from third-
party datasets into the Seshat dataset. In this case, the DBpedia knowledge
base was the data source being exploited.

Figure 6.27 Seshat Use Case Trial System Architecture, showing the tools provided
to different Seshat users, the use of ALIGNED integration standards and interoperation
paradigms.

6.2 Seshat – Collecting and Curating High-Value Datasets 239

The final platform thus directly incorporated the research outputs of six
of the seven research groups involved in ALIGNED and demonstrated inte-
gration across three of the use cases – DBpedia provided data and the Pool-
Party use case provided tools and expertise in establishing the data import
pipelines.

In April 2017, this platform was used to prepare and publish the first
public release of data from Seshat, which in an attractive and well-structured
format for appraisal by other researchers – particularly focussed on scientific
reviewers who needed to evaluate the data on which several of the major
Seshat publications were based. Since then, the project’s major focus has
been made to deploy the system in a software engineering context, which
has involved making the RDF/OWL data stored within the system available
in simpler forms, such as GeoJSON and JSON-LD available to software
engineers.

The platform has been constructed to support the following Seshat data
curation tasks:

• Importing the large volume of wiki data that they have accumulated in a
semi-structured form, into a structured, rich semantic format according
to a pre-defined model, that is amenable to statistical analysis and
automated quality control.

• Analysing the data to identify a large number of new constraint vio-
lations – e.g., datatype constraints, referential integrity constraints,
cardinality constraints. In the current Seshat data collection workflow,
such problems only show up at data-analysis stage and it requires a very
significant manual effort to amend them at that late stage.

• Providing approval pipelines and workflow tools to allow moderators to
inspect and correct problems identified in the data and to give them the
agility to be able to use lower-skilled data collectors with higher error
rates without sacrificing overall quality.

• Providing model rapid prototyping tools to allow our archaeologist
partners to experiment with the definition of large new segments of
the Seshat schema to allow them to define semantic mappings between
entities at different levels of abstraction and time-depth. This supported
the accumulation of archaeological evidence and extended the time-
depth of the Seshat ontology which was initially conceived primarily
to investigate societies that were historically known.

• Importing data from third-party datasets such as DBpedia and Pleiades
historical gazette and integrating it with the existing Seshat data.

240 Use Cases

So�ware Feature Used for
Model Catalogue Model Defini�on User Interfaces Model Prototyping
Model Catalogue Model Export to OWL Model Integrity Enforcement
Dacura Model Mapping Tool Impor�ng wiki data
Dacura Real-�me Instance Data Valida�on Tes�ng imported data
Dacura Model Generated User Interfaces Correc�ng imported data
Dacura Cura�on Workflow Tools Update approval queues
PoolParty Unified Views ETL Import third party data

Figure 6.28 Features of the ALIGNED tools used to support the Seshat trials.

6.2.2.1 Tools and features
Figure 6.28 shows which features of the ALIGNED software tools have been
deployed in order to support these scenarios.

6.2.3 Implementation

6.2.3.1 Dacura data curation platform
The Dacura Linked Data curation platform1 is developed at Trinity College
Dublin. Dacura provides support for dataset capture, curation, and publica-
tion. The major components of Dacura in the context of the Seshat use case
are shown in Figure 6.29.

In the initial prototype developed for Seshat four of the components
from Figure 6.29 are used: (1) the wiki data entry/validation tools (top left
in the figure) which are user-facing data curation widgets; (2) the schema
management tools which include the Model Catalogue tool in the demo;
(3) the data quality controls (lower middle of the figure) which perform
schema and data integrity checks and act as a data quality gatekeeper for
the RDF triple store; and (4) the data export tool or wiki scraper which can
transform Seshat data into the TSV file dumps required by statistical analysts
within Seshat.

6.2.3.2 General description
Dacura provides tool support to improve the efficiency and accuracy of
Seshat’s data collection processes.

• The wiki data entry/validation tools make data entry easier for Seshat
researchers. This also assists in collecting more complex data and data
validation at the point of entry.

• The schema management tools check that OWL-based schemas are
consistent and correct as they grow.

6.2 Seshat – Collecting and Curating High-Value Datasets 241

Figure 6.29 The Dacura platform in the context of the ALIGNED Seshat use case.

• The data quality controls ensure that both data entered through widgets
and data already entered in the Seshat wiki is checked for conformity
with the Seshat schema before it is added to the triplestore.

• The data export tool allows multi-format data publication. It also allows
Seshat administrators to get a first look at how their dataset is growing
and evolving.

• The Seshat OWL ontology developed for this demonstrator and used by
our tools enables more structured information to be captured than the
original Seshat.

6.2.3.3 Detailed process
This section describes the use of each of the components developed for the
demonstrator system, along with a screenshot of the components in use where
applicable.

Dacura data entry validation tools (Figure 6.30) are embedded in the
Seshat wiki, allowing researchers to validate previously entered data and add
new variables to the dataset. Researchers can validate or enter data directly

242 Use Cases

Figure 6.30 Screenshot of TCD’s Seshat Data Entry/Validation tool in Demonstrator
System.

from the wiki page. These tools reduce the complexity of entering data in
the wiki, as the need for complicated syntax is reduced and any errors in data
will be immediately revealed. A version of this tool that supports validation of
data entered into the wiki has already been deployed in the live Seshat system.

Modifying Seshat Schema: Dacura provides tools to allow users to edit
and modify ontologies on the fly (Figure 6.31). Using the Dacura browser
plugin, users can browse the current Seshat code book and create properties

Figure 6.31 Modifying Seshat Schema.

6.2 Seshat – Collecting and Curating High-Value Datasets 243

Figure 6.32 Screenshot of TCD’s Schema Management component using the prototype
integrity enforcement framework in the Demonstrator System.

and objects, adding them to the Seshat ontology and allowing researchers to
collect information on these newly added properties.

Triplestore integrity enforcement (Figure 6.32) is a key feature of Dacura.
Preventing data that are not in accordance with the schema or preventing
a malformed schema from entering the triplestore ensures that all data are
of high quality. This reduces the need for Seshat researchers to spend time
correcting errors in the dataset. Dacura checks that imported vocabularies
are consistent before allowing them to enter the triple store and constrain
instance data.

The schema management components (Figure 6.33) in Dacura allow
changes to the schema to be analysed to ensure that the schema remains
consistent. Checks are performed on schemas before they are used in the
data store, highlighting errors and potential issues for attention. A range of

244 Use Cases

Figure 6.33 Screenshot of TCD’s Schema Validation Service in Demonstrator System.

checks are performed using a constraint-based interpretation of the Seshat
OWL ontology.

Finally, the wiki export component (Figure 6.34) extracts the historical
data entered in the Seshat wiki, parses them, and produces a TSV of these
values ordered by date. This allows Seshat administrators to perform analyses
without needing to manually extract the values from the large and constantly
growing dataset. It also produces error reporting, allowing researchers to
identify errors in the dataset and see how the data are evolving.

The introduction of the Dacura data validation component into the
live Seshat data collection process has reduced the rate of errors in the
Seshat wiki. Despite a large increase in the size of the wiki of 29% (from
56,160 to 72,252 data points) between March and June 2015, the absolute
number of errors has decreased by 19%. The rate of errors per variable has
decreased by 42%, from 0.035 errors per variable to 0.02 errors per variable.
This shows the positive impact of deploying data quality/data curation tools
on the Seshat workflows. This trend is shown in Figure 6.35.

Managing complex workflows: The Dacura approval queue allows
dataset administrators to monitor added data for quality and completeness
(Figure 6.36). Administrators can approve, deny, publish and unpublish the
Linked Data objects submitted by Seshat researchers.

6.2 Seshat – Collecting and Curating High-Value Datasets 245

Figure 6.34 Screenshot of TCD’s Wiki Export Component.

Importing third-party datasets: The Unified Views tool (Figure 6.37)
allows data to be imported via SPARQL from third-party datasets, in this case,
DBpedia is used as a source of data. Unified Views allows the establishment
of processing workflows to automate the importation of such data.

Publication: The Dacura system allows the generation and publication of
processed and curated data in easy-to-use forms. Casual users can browse
Web pages (Figure 6.38 which lay out the information in a simple and
structured manner). Seshat team members looking to perform analysis on

246 Use Cases

Figure 6.35 Seshat Errors per variable.

the data can access it in structured forms, which can be easily imported into
analysis software.

Software Engineering support: The Dacura system provides several ser-
vices to software engineers developing software that utilises the data curated
by the system (Figure 6.39). These include reliable access to version con-
trolled data models at a well-known URL, change notifications and the
automatic production of simpler formats which are more familiar to tradi-
tional Web-developers. In this case, a GeoJSON stream is automatically made
available describing all the features in the dataset that have a geographical
location associated with them.

6.2.4 Overview of the Model Catalogue

When dealing with large, complex datasets, it is important to have tools to
help collaborators understand what each data point means, how it has been
collected, and how groups of data points may be interrelated. Typically,
a large number of tools are used for this kind of metadata management:

6.2 Seshat – Collecting and Curating High-Value Datasets 247

Figure 6.36 Managing Complex Workflows.

data dictionaries for storing information about variables and allowed values;
data manuals or procedures for describing the intended meaning of data
points; specifications of forms describing how data are to be collected; or
diagrams describing relationships between groups of data points. The Model
Catalogue toolkit is being developed at Oxford University for the purposes
of collaborative editing and sharing of such documents within a common
framework. Based on previous work on international standards for metadata
registration and previously explored in the context of clinical research, the
tool is now being developed and extended to support the Seshat use case.

The tools have been built with a model-driven software development
process in mind: programmatic interfaces allow communication between the

248 Use Cases

Figure 6.37 Importing data to Seshat from DBpedia with Unified Views.

Figure 6.38 Publication.

catalogue and other systems; a number of export tools have been written to
automatically produce or configure software artefacts such as databases or
data messaging schemas from data model descriptions stored in the catalogue.

The extended tool is initially designed to support two key use cases –
for the Seshat editors and data managers to cooperate in the incremental
evolution and description of the Seshat data model or code book; and for
researchers interested in using the Seshat data to understand which data
points have been collected and their meaning and provenance. To support

6.2 Seshat – Collecting and Curating High-Value Datasets 249

Figure 6.39 Services to support software engineering.

Figure 6.40 The Model Catalogue user interface showing a section of the code book.

the first use case, the toolkit provides facilities for automatic import of
existing documents and software artefacts to initialise data models, and
uses careful structuring to minimise the amount of user input required.
The Web-based editing environment (see Figure 6.40) promotes collabo-
rative editing of modes, with processes for publication and versioning. To
support the second use case, the Web interface allows exploration of data
models, and the creation of user-friendly reports or exports. Data points can

250 Use Cases

be linked to provide additional meaning or context and can be compared
to understand differences between different datasets, or a single dataset
over time.

6.2.4.1 Model catalogue in the demonstrator system
This section describes the Model Catalogue components deployed in the
demonstrator system. The section starts with a discussion of the Seshat
use cases addressed by the components and then provides a description of
the model curation processes supported by the Model Catalogue compo-
nent. Finally, there is a subsection presenting some initial results from the
deployment of the components.

General description

The Seshat databank is a complex dataset comprising more than 1,000
variables categorised into approximately 100 groups or classes. A code book
describes each group and variable: a description about the intended meaning,
or semantics, of the data points collected against it; a selection of possible
values that the data point may take; links to related or similar variables in
another category.

Furthermore, this set of variables has been evolving and expanding; in
3 years, more than 300 revisions to the code book have been made: variables
have been added, removed, or extended; descriptions have been enhanced;
the permitted range of values may have items added or removed.

This code book holds the key to understanding how data points should
be collected and stored and how potential users of the data can make sense
of what is made available. Until this point, the Seshat code book has been
encoded into a wiki page. This has served the purpose required, but in order
to scale, a new approach may be required. The Model Catalogue built by
OxSE is intended to support:

• Collaborative editing of the code book as a curated data model
• Annotating variables and linking to related datasets or standards
• Versioning and publication life cycles for change management
• Informed reuse of data collected, through discovery and exploration and

comparison of data models and variables
• Automated import and export of models into other data formats
• Generation or configuration of software artefacts within an iterative

development approach

6.2 Seshat – Collecting and Curating High-Value Datasets 251

The Model Catalogue prototype makes progress towards schema evolution.
The “Expert” and “Architect” user roles can modify the schema, allowing
view-only access to the schema for “Harvester” and “Editor” user roles. There
is also some progress towards addressing expert interpretation, where experts
can us the Model Catalogue to understand and modify the code book to
improve support for capturing complexity in the Seshat databank.

Detailed Process

The Model Catalogue stores concrete models such as dataset descriptions,
form designs, database schemas, and so on. alongside an abstract repre-
sentation common to all models. Each Data Model contains a number of
Data Classes, which in turn may contain sub-classes and Data Elements, in
our case representing the variables of the Seshat code book. This structure
provides easy interoperability between models, and allows a simple tree-
view for viewing and exploring models, such as in the screenshot shown in
Figure 6.41. This view is useful for those exploring the structure of a data
model: users interested in requesting or working with items of data, or editors
wishing to make changes to the structure.

Figure 6.41 Screenshot of the Model Catalogue Web interface, showing the ‘tree view’ and
a section of the Seshat code book.

252 Use Cases

Data models and their components may be linked with a number of
different relationships describing the type of similarity between them. A
plugin for discourse has been integrated: this allows users to comment on
parts of a data model in a familiar fashion. Comments may include links
to other data elements, or mention of other users, who can be prompted to
respond. Attachments can be added too: links to websites, or file attachments
giving more information about the meaning of a variable.

For prospective users of the data, it is important to understand how
data collected against different versions of the code book may be related.
Figure 6.42 shows a screen written for this purpose: highlighting differences
in descriptions, sub-components (for models and classes), and datatypes (for
data elements). Sophisticated search functionality allows data elements to
be found within all models; all finalised models, or within the currently
displayed model.

Model importers allow existing structures to be imported into the cata-
logue without manual transcription. One such importer has been written to
ingest the OWL description of the Seshat code book, extracted by the TCD
team for use in Dacura. Although written with Seshat in mind, this component
may be re-configured for use in the other ALIGNED use cases during the next
phase of the project.

Figure 6.42 Screenshot of the Model Catalogue Web interface showing the comparison
between two versions of the Seshat code book.

6.2 Seshat – Collecting and Curating High-Value Datasets 253

6.2.5 Seshat Trial Platform Evaluation

6.2.5.1 Measuring overall value
Ultimately, the most important metric for the Seshat project is the cost
of going from a hypothesis to a published scientific paper presenting an
empirical evaluation of that hypothesis. Everything else is a means to that
end. The nature of the variables chosen and the data collected are explicitly
designed in order to enable computational analysis of particular hypotheses
against historical evidence. The validity and significance of the analysis is
then validated by the peer-review process of the world’s top scientific journals
[1, 2]. The best proxy for the value delivered by the overall system is the
number of papers that are published in top-tier scientific journals.

6.2.5.2 Data quality dimensions and thresholds
seshat has unusually high Data Quality requirements across a large number
of separate dimensions. The Seshat researchers need to be able to analyse the
data statistically, which imposes high thresholds for syntactical accuracy and
structural integrity. Furthermore, the historical accuracy of the data is also
extremely important – as the Seshat researchers want to be able to identify
patterns in long term historical processes in order to make predictions – these
predictions can only be as good as the accuracy of their data. Because it
is often the case that historical facts can only be known probabilistically,
uncertainty must be incorporated into the data in such a way that statistical
analysis can still be applied. Furthermore, it is the norm in top-tier scientific
journals that datasets are scrutinised closely by reviewers. Because Seshat is
pioneering new data-driven methods in the social sciences, it is thus particu-
larly important that published datasets are robust in the face of expert scrutiny,
as any significant errors risk undermining the credibility of the approach and
not just the individual publication.

In terms of data agility, the most important requirements for Seshat are
the ability to make data, of the required quality, available for analysis with
the programs used by Seshat’s data-analysts (R, Mathematica) and to make
the data available for inspection for academic reviewers in whatever format
will make the best impression upon them.

In terms of model agility, the most important requirements for Seshat is
the ability to make changes to the ‘code book’ to reflect the input of new
experts and experience. The Seshat code book has changed many times over
the last few years as the community has grown and more expert opinion has
been incorporated into the selection of variables and proxies to collect.

254 Use Cases

The Seshat data collection effort started some 2 years before the start
of ALIGNED and has continued for almost 5 years at this stage. There are
currently two major papers which are under review for publication in major
top-tier scientific journals (both resubmitted with changes, as advised by the
editorial committees). All the data that went into these publications were
collected, curated, cleaned, and analysed using methods that pre-date the
introduction of ALIGNED technology, with one exception – the publication
of data for the reviewers. This provides us with a very good baseline measure
with which we can evaluate the impact of ALIGNED technology: the total
cost of producing these two papers – including all the cost that went into
producing the final publication and associated datasets.

We can break it down into the following tasks:

1. Running expert workshops to identify interesting hypotheses and suit-
able proxy variables to form the dataset’s schema.

2. Employing and training research assistants to fill in data on a wiki for
each historical society of interest

3. Soliciting reviews from volunteer experts to validate the data entered
in 2.

4. Developing and maintaining programs to extract data from the wiki,
identify syntactical errors, make it available as a CSV for analysis and
then transform it into the format required for each analysis and then,
finally, perform the analysis and produce the results.

5. Employing and training research assistants to correct data entered in 2
in response to errors identified in 4, and reviews received in 3, to ensure
that it remained accurate and true to the schema over time, as the schema
changed to reflect the outputs of 1.

6. Developing and maintaining a program for publishing the data for
appraisal by the general public and reviewers.

All these tasks were necessary for the production and publication of
the journal papers and their associated datasets and must be included in
the consideration of the system’s productivity before the introduction of
ALIGNED tools and methods. Furthermore, by looking at the cost of achiev-
ing required data quality levels as the schema was changed over this period
and the cost of making data available in new ways, we can gain a reasonable
estimate of the likely future productivity of the system. In order to demon-
strate the impact of our tools and methods, therefore, we would ideally repeat
the process from start to finish with our tools, starting from a new set of
hypotheses and compare the overall cost of the two.

6.2 Seshat – Collecting and Curating High-Value Datasets 255

In December 2018, at a Seshat workshop in Oxford, in association with
the ALIGNED general meeting, we began such an evaluation. In this study,
we apply our tools and methods to the entirety of this process – from
modelling tools to support 1, curation interfaces to support 2 and 3, data
manipulation tools to support 4 and 6, error detection and correction tools
to support 5. We have identified a set of new hypotheses that we wish to
test and we will measure the total cost of transforming these hypotheses into
published scientific papers. However, this is an irreducibly time-consuming
task due to the nature of the domain. In particular, experts are a scarce
resource and it inevitably takes considerable time to elicit all the domain
knowledge necessary from the relevant experts for any particular historical
question. Therefore, the full results of this comparison will not be known
until the entire process is complete, which will be beyond the timeframe of
ALIGNED.

However, what we can do in a short space of time is to measure the impact
of our innovations on steps 4, 5, and 6 of the process and compare it with the
existing system. The Seshat wiki contains several sections of data that have
been collected by RAs and approved by experts but have not yet been cleaned,
analysed or published. We choose one of these sections, comparable in terms
of size and complexity to the datasets that were used to publish the first two
papers. Starting from this point, we extract, clean, analyse and publish the
data to the same level of quality as was achieved with the already published
datasets and we measure the total cost in doing so, in terms of both time
and money. This comparison will provide us with a minimum valuation of
the benefits of our technology to the system’s curation costs. As these are
all necessary steps, any productivity gains in this section will be realised
generally.

In order to measure the likely future value and productivity that the
system will exhibit, we need to estimate the likely cost of changing the
schema and repurposing the data for new uses. For schema changes, we can
simply use those changes that were introduced during the compilation of the
published papers, measure how much it cost to achieve the required data
quality levels after those changes and repeat the experiment with the new
system. For data agility, we can measure the cost of making the data available
for review with our tools and estimate the amount of effort that this would
have required had our tools not been available – as this was the one part of
the process of publishing the initial two Seshat papers that our tools were
responsible for.

256 Use Cases

Together these three measures provide a very comprehensive way of
evaluating and comparing the performance of the two alternative systems of
interest – Seshat before and after ALIGNED tools were introduced. By look-
ing at the likely evolution of scale of the system, we can provide reasonable
estimates not only about the current value provided by our tools and methods,
but the future value that they will provide.

Thus, in this document, we evaluate the system that was introduced by
ALIGNED against the existing wiki-based system in terms of the cost of
three particular tasks:

Curation

Extract, clean, and analyse a new section of wiki data to test a hypothesis so
that the quality of the data and analysis is considered ready for publication.

Data Agility

Publish the data in a form that allows reviewers to evaluate all the data
that went into the analysis, complete with sources, citations, uncertainty, and
disagreement.

The major task that required data agility in Seshat was the publication
of data for reviewers. The requirements were that the reviewers should be
able to browse the dataset, view every individual datapoint with citations and
indicators of uncertainty and disagreement, and that they, or any member of
the public, could provide feedback on each individual datapoint. This was
deemed important as a way of signalling to the research community that
expert feedback and corrections were invited and taken seriously. This task
was never competed with pre-ALIGNED methods, ALIGNED tools were
entirely responsible for the dataset that was published to support the first
major Seshat publication in April 2017. However, it is possible to provide
a reasonably accurate estimate of how much it would cost using a standard
software engineering approach:

• Develop and maintain custom program to transform Seshat extracted
CSV into interactive website.

Model Agility

Change the schema by adding, removing, and changing the definition of
variables, adding complex relationships between entities and returning the
system to the quality level it had before the schema was changed.

6.2 Seshat – Collecting and Curating High-Value Datasets 257

For all schema changes, we need to carry out the following tasks:

1. Update Seshat code book wiki page
2. Copy updates to every wiki page that uses that section of the code book.
3. Update, test and deploy publication program to reflect changes in

schema
4. Update and test script to transform CSV into analysis-ready format

Experimental Deployment

On 21 December, 2017, the first major paper was published utilising the full
power of the Seshat data in the Proceedings of the National Academy of
Sciences.14 ALIGNED tools were used to model, harvest, correct, improve,
enrich, and publish the full data describing social complexity for 416 different
historical polities that were used for the analysis. The analysis which formed
the basis of the paper was carried out using the old – before ALIGNED –
process. Upon publication, the published data were fully migrated to the
Dacura platform and the processes where compared to evaluate the relative
productivity, agility and quality – and the overall cost – of the process with
and without the ALIGNED tools.

On 17 January, 2018, all of Seshat’s social complexity data were imported
into a semantic model from the Seshat wiki. Figure 6.43 presents a summary
of the results. The results are grouped into two groups – the WS30 group
which represented the data that had been used to make the analysis and the
Macrostates group which had not yet been analysed and therefore represented
a more ‘raw’ version of the data with less effort expended in data quality
control and analysis. The two groups were used to evaluate the impact of our
tools when starting from different stages of an existing workflow.

14Turchin, P., T.E. Currie, H. Whitehouse, P. François, K. Feeney, D. Mullins,
D. Hoyer, C. Collins, S. Grohmann, P.E. Savage, G. Mendel-Gleason, E. Turner,
A. Dupeyron, E. Cioni, J. Reddish, J. Levine, G. Jordan, E. Brandl, A. Williams,
R. Cesaretti, M. Krueger, A. Cecceralli, J. Figliulo-Rosswurm, P. Peregrine, A. Marciniak,
J. Preiser-Kapeller, N. Kradin, A. Korotayev, A. Palmisano, D. Baker, J. Bidmead, P.
Bol, D. Christian, C. Cook, A. Covey, G. Feinman, Á. D. Júlı́usson, A. Kristinsson, J.
Miksic, R. Mostern, C. Petrie, P. Rudiak-Gould, B. ter Haar, V. Wallace, V. Mair, L.
Xie, J. Baines, E. Bridges, J.G. Manning, B. Lockhart, P.-J. Tuan, A. Bogaard, and C.
Spencer. 2017. “Quantitative historical analyses uncover a single dimension of complexity
that structures global variation in human social organization.” Proceedings of the National
Academy of Sciences of the United States of America. doi: 10.1073/pnas.1708800115.
http://www.pnas.org/content/early/2017/12/20/1708800115.full.

258 Use Cases

Process Before Service Provision Costs
1 Use valida�on tool to iden�fy

and fix syntax errors on each
wiki page

Develop and maintain custom valida�on tool code
Opera�ng valida�on tool and fixing errors
iden�fied

2 Use scraper tool to extract data
from wiki pages into CSV

Develop and maintain custom scraper tool service

3 Use script to transform CSV into
required format for analysis

Develop and maintain transforma�on scripts

4 Analyse data and iden�fy any
remaining errors in the data.

Operate sta�s�cal analysis tool and inspect the
results to iden�fy anomalies, outliers, missing
values and errors which might impinge upon the
accuracy of the result.

5 If possible, correct all errors in
CSV, complete the analysis, and
copy correc�ons back to wiki
from CSV

Iden�fy and record all errors in the data and carry
out known correc�ons. Manually copy all the
correc�ons back to the wiki.

6 If impossible, deploy RAs to
correct the data in the wiki
manually and return to step 1.

Iden�fy and record all errors in the data.
Collect the correc�ons in the wiki.
Carry out another itera�on of the process.

Figure 6.43 Seshat: Comparison.

WS30 Macrostates Total
Polities 416 54 470
Variables 301,288 33,100 334,388
Non-empty variables 162,200 (54%) 10,779 (33%) 172,979
Imported variables 27,693 (17% of nonempty) 2,487 (23%) 30,180
Triples 995,580 75,716 1,001,296
Syntax Errors Detected 4 2 6
Semantic Errors Detected 218 117 335
Semantic Errors Corrected 86 (39%) 18 (15%) 104
Semantic Errors Remaining 132 99 231
Entity References 658 28 686
Correctly Imported 214 (33%) 5 219
Incorrectly Imported 444 23 467

These results then fed into our curation workflow, where provenance
information was used to identify errors that had been detected but not cor-
rected for manual correction. By far the biggest problem detection was in
correctly identifying entity interlinks due to the lack of a consistent naming
convention. Significantly, it was possible to identify 218 new errors that had
evaded the human analysts and it was possible to automatically correct 39%.
Nine days of RA labour was expended on fixing the problems identified,
completed on January 29th 2018. The publication of the full dataset is

6.3 Managing Data for the NHS 259

scheduled for the first week of February 2018, and the full evaluation results
will be published in a paper that is under preparation.

6.3 Managing Data for the NHS

6.3.1 Introduction

Oxford University Software Engineering researchers have been involved
in four separate projects involving health research data, which have made
extensive use of the Model Catalogue and components of Semantic Booster.

In the first application, the National Institute for Health Research (NIHR)
commissioned the Health Data Finder – an online tool for discovering
national healthcare datasets (Figure 6.33). These datasets primarily contain
routine hospital data for audit and economic reasons, but may be made avail-
able to researchers in academia and industry with appropriate governance
approval. The datasets are maintained by a number of separate organisations,
and so data users wishing to discover data and request access may have to
make a number of requests, often with inconsistent results (Figure 6.32).

In the second application, the NIHR Health Informatics Collaborative,
five of the largest teaching and research hospital trusts in the country have
been asked to share routine clinical data in five therapeutic areas. Each trust
maintains data to differing standards and semantics, and rather than unifying
data to a lowest common denominator, sites are asked to build their own data
warehouses for a federated data store. Users of the data can make a request
to the hospitals, and data can be linked and unified on a per-usage basis,
taking the research purpose into account. This allows hospitals to maintain
ownership of their data and ensures data quality is as high as possible for
any given research study. The model catalogue is used to document national
data standards in each of the therapeutic areas, alongside local differences
for each hospital trust. Models in the catalogue are used as the source for the
generation of MS-Word documentation, and for data transfer specifications
in the form of XML Schema.

A third application of the catalogue, and related technologies, has been
made in the UK 100,000 Genomes Project. As in the Health Informatics
Collaborative project, the catalogue has been used for the collaborative, itera-
tive development of models for sample tracking, cancer and rare disease data
models, and the generation of non-technical documentation, XML Schema,
and also Case Report Forms, compatible with a commonly used clinical
trials management system. In the pilot phase of the project, the models in

260 Use Cases

the catalogue were also used to generate relational databases, sufficient for
storing data collected according to the specification.

The fourth application of the ALIGNED tools is in the construction of
a data warehouse for Oxford University Hospitals Foundation Trust. This
instance of the catalogue acts as a detailed asset register for the hospital,
detailing field-level metadata about databases and spreadsheets of patient data
around the hospital, as well as describing dataflows and message-passing
between systems, and specifications for audit and research datasets. It is
planned that these models can be used as part of a data-science platform for
the trust: allowing clinical researchers to request data, and be automatically
guided through governance processes, as well as provided with the data
presented in a secure environment.

6.3.2 Use Case

6.3.2.1 Quality
In all four applications, reuse of existing data without detailed documenta-
tion can be problematic: researchers are unable to make good use of the
data without understanding its semantics: linkage between datasets may be
inaccurate; transformation of data into different formats may be incorrect;
interpretation of statistical results is error prone. In the Health Data Finder
example, such data reuse is minimal: researchers do not know what data may
be available to them; different providers may return inconsistent results on
data governance, and data must be re-interpreted each time, which may result
in costly errors.

In similar projects preceding the Health Informatics Collaborative
and 100,000 Genomes projects, collecting comparable data from multi-
ple hospitals has proven difficult. Precise specifications have been hard to
produce, mechanisms for data capture and transfer have been manually
programmed, often by non-technical domain experts, and inconsistencies
have resulted in data that are often incomplete, incomparable, or completely
unusable.

6.3.2.2 Agility
The quality and accuracy of data documentation is difficult to maintain
during an iterative process. In all the health data research projects, datasets
are continually evolving, data specifications are continually being improved.
Without careful version management and automation, it is very easy for the
documentation to get left behind.

6.3 Managing Data for the NHS 261

Similarly, software artefacts must keep pace with the changes in require-
ments: changes to the data or the software specifications must invoke updates
to the XML schema, database schema, or Case Report Forms. Manual coding
slows the iteration process, which in turn can result in outdated or inaccurate
specifications.

Productivity

Domain experts find it difficult to provide documentation or simple modelling
because of the technicalities involved: XML schema and Case Report Forms
require specialist technical knowledge: domain expertise is often left out, or
modelling is undertaken poorly.

Implementing efficient database structures requires a lot of repetitive
works: implementation of a domain class will involve a familiar pattern of
tables, association tables, keys, and indexes. Such work is time-consuming
and error prone, yet ripe for automation.

Data scientists looking to reuse health data currently spend a lot of time
searching for usable datasets, often requiring long periods of interaction
where inventories and documentation are not available online. Applying for
governance, asking technical questions, and retrieving data in a suitable
format often require further time and energy. Interpretation and curation of
the data is a typically manual task, which may be repeated and reproduced by
every scientist receiving a data extract.

6.3.3 Architecture

In each project, ALIGNED technologies are being used in slightly different
ways.

In the NIHR Health Data Finder, the model catalogue is the central
resource, holding the master copy of models and documentation. A REST-
based API provides services used by the front-end website that provides
shopping-cart and dataset overview functionality. Metadata is imported into
the catalogue by means of a bespoke spreadsheet-based format, which is
suitable for domain experts and data curators to populate.

In the NIHR Health Informatics Collaborative, each site hosts its own
instance of the model catalogue, documenting their own data landscape: a
data warehouse, source patient record systems, research systems and local
data flows. A central installation of the catalogue contains the shared data
specifications, along with local variations, and relevant national specification.

262 Use Cases

Local catalogue installations can automatically import the latest version of the
central models, and the central catalogue is used to generate XML schemas
for use by all partners.

In the UK, 100,000 Genomes Project, the architecture of the pilot is of
particular interest: information is provided by the hospitals in the form of
XML, matching a schema generated by the Model Catalogue, or manually
through online Case Report Forms, hosted in a system called OpenClinica.
Information is extracted via an ETL process from OpenClinica, and combined
with a shredded form of XML, and stored in a matching relational database,
generated by a component of Semantic Booster.

Finally, the architecture of the OUH data warehouse follows a similar
pattern to the right-hand-side of Figure 6.44. Almost 100 local databases and
data specifications are modelled within the catalogue, along with the design
for the main data warehouse. The catalogue is used to document field-level
metadata, summary metadata, and dataflows, and this information will be
used in the construction of research data extracts and for generating hospital
auditing and service improvement metrics.

Figure 6.44 Health Informatics Collaborative system architecture.

6.3 Managing Data for the NHS 263

6.3.4 Implementation

6.3.4.1 Model catalogue
Whether you have a small spreadsheet, or a large federated data warehouse,
the key to making the most of your data is understanding its semantics. In
order to share your data with others, to reuse it for a different purpose, or
to link it to other data stored elsewhere, you have to know what it means.
At its simplest, this is just knowing a datatype, and having a description
of how those data have been collected. But you may also know how the
data have been curated, where it was created in the context of business
processes, or how it relates to recognised standards. To do this at scale
requires automation: tools that can do the hard work for you and allow the rest
to be done collaboratively. Our metadata catalogue tool provides a common
framework in which to store descriptions of data alongside data standards,
terminologies and dictionaries, providing common reference points by which
to describe data.

The catalogue is able to automatically import models – structured descrip-
tions – from relational databases, XML schema, spreadsheets, and UML
diagrams. A collaborative editing environment allows the iterative develop-
ment of models in a clean, simple fashion: just suitable for domain experts to
really focus on the things that are important. The catalogue facilitates reuse of
data models: parts of one model can be dropped into another. This will make
it easy to reuse data in the future and can help to proliferate data standards.
Describing data is made easy: links to existing descriptions are automatically
suggested; classes of data can be described in a single place, and creating
new versions of models maintains any semantics already expressed. Finally,
the models can then be exported in a variety of different formats: as relational
databases for storing data, or as XML schema for data transport, or as forms
for collecting data from scratch. Models for software engineering tools can
also be generated – for example by generating specifications for our Semantic
Booster tool, we enable the complete, automatic generation of working infor-
mation systems. In this way, the catalogue can be used as an IDE for an agile,
model-driven approach to software- and data engineering. Figure 6.45 shows
the catalogue interface.

6.3.4.2 NIHR health informatics collaborative
We now illustrate the advantage of the catalogue with three case studies. In
the first, the Oxford team have led the coordination of the Health Informatics
Collaborative – a project funded by the National Institute for Health Research

264 Use Cases

Figure 6.45 The front page of the catalogue interface.

to promote the sharing of healthcare data in the UK. Five of the largest
research hospitals in the country – across London, Oxford, and Cambridge,
were asked to share routine clinical data on five therapeutic areas: in critical
care, ovarian cancer, acute coronary syndromes, hepatitis and renal transplan-
tation. Clinicians at the hospitals were asked to collaborate on the definition of
a new dataset, suitable for addressing a wide range of research issues within
each clinical specialty, and the hospitals were asked to share anonymised data
matching these data specifications. The metadata catalogue provided tools for
collaborative editing of dataset specifications, maintaining older versions for
reference. XML schema were generated for data transfer between the sites,
and the catalogue was able to generate Excel spreadsheets for documentation.

One of the main problems with data sharing amongst healthcare providers
in the UK is that each site may record their data points differently. Here the
catalogue provided another useful feature – allowing each site to document
their own variations, and details of any transformations required to translate
data from one format into another. Each of the five data models had, on
average 250 data points of interest, and we were able to map relationships
between the NHS’s own data dictionary, as well as existing standards and
audits in each area. The project has created combined datasets for the first
time in these areas of clinical interest, enabling new research and, in some
cases, better treatment. Figure 6.46 shows the project in action.

6.3 Managing Data for the NHS 265

Figure 6.46 Data comparison in the Health Informatics Collaborative.

UK 100,000 Genomes Project
In the last couple of years, Oxford has also been involved in a large genetics
programme – the UK 100,000 Genome Project. The project was set up to rev-
olutionise personalised medicine in the UK, starting with the whole genome
sequencing of NHS patients with key forms of cancer, as well as patients and
family groups with rare inherited diseases. Again, the catalogue was used
by the scientists to develop new datasets for routine clinical data, and brand
new, bespoke models for each of nearly 200 rare diseases. The metadata
catalogue was again used to generate XML schemas for data transfer, but
also for electronic case report forms, compatible with a widely used clinical
trials management software. These forms were built to include terms from
existing medical ontologies, including the Human Phenotype Ontology, and
SNOMED CT. For the pilot studies, the catalogue was also used to build
databases, used to store the clinical and sample-tracking data on submission.
These databases were entirely generated by the data model: a change to the
model in the catalogue resulted in a new schema for the database, along with
an appropriate data upgrade. Figure 6.47 shows the catalogue.

The project is now halfway to completion and would not have succeeded
without the catalogue’s provision of a central data model. The national
Genomics Medicine Centres rely on the catalogue as the specification for
prospective data collection, and those interpreting the data rely on its descrip-
tions to make sense of the data collected. Initial results include confirmed
diagnoses for patients with unspecified rare-diseases, and the refinement of
lab processes for processing DNA samples at scale.

266 Use Cases

Figure 6.47 Data elements in the UK 100,000 Genomes Project catalogue.

NIHR Health Data Finder

A final example of where the catalogue has been providing benefit is the UK’s
Health Data Finder. This instance of the metadata catalogue, commissioned
by the National Institute for Health Research, provides a portal for healthcare
researchers in industry and academia, allowing them to discover national
datasets. These datasets, collected at scale across the whole health service,
are primarily collected by a number of different bodies for commissioning
or audit purposes, but are of great value because of their size. There was no
easy way to inform potential users exactly what those datasets contained, and
the process for requesting data was time-consuming and prone to error. The
catalogue now provides element-by-element descriptions for over 3,000 data
points, across more than 20 datasets. It stores summary metadata and usage
information, sufficient for researchers to understand whether the data will
help them answer a particular question before starting to request any of the
valuable data. We are currently streamlining the process for requesting data,
by using the catalogue as a ‘shopping cart’, allowing researchers to select
a set of data points to request, and generating queries to return those data
points once sufficient governance checks have been made. The shopping cart
is shown in Figure 6.48.

The catalogue has provided a number of benefits to healthcare projects
across the UK, but is continuing to be developed and extended. Figure 6.49
shows the catalogue in the Health Data Finder. We are increasing the range
of models that can be imported into the catalogue, and we are continuously

6.3 Managing Data for the NHS 267

Figure 6.48 An example shopping cart in the Health Data Finder.

Figure 6.49 The model catalogue in the Health Data Finder.

improving the usability for non-technical domain experts – including graph-
ical editing tools, automated search and suggestion, and new visualisations.
We are especially interested in using these models as the basis for MDE, and
so plugins are being written to generate or configure software components so
that reuse of models can really instigate reuse of data. Figure 6.50 shows an
example of catalogue metadata. The catalogue has been extensively used in
the domain of healthcare, but is fundamentally nonspecific to any particular
domain – our work with the ALIGNED partners is helping us prove the

268 Use Cases

Figure 6.50 Dataset metadata in the NIHR Health Data Finder.

technology in other domains. Our experiences with the tool show that it can
be invaluable for software engineers and data engineers alike.

6.3.5 Evaluation

In the Health Data use case, the Model Catalogue has been deployed in four
main projects: The UK 100,000 Genomes project, the NIHR Health Data
Finder, the NIHR Health Informatics Collaborative (HIC), and the Oxford
Biomedical Research Centre’s data warehousing activity. In all four projects,
the catalogue has provided functionality that was not previously available,
or automated tasks that were previously undertaken by hand. The utility of
the ALIGNED tools can be measured by their usage: if the tools are used
frequently, then they provide a valuable service.

Across the four projects, the model catalogue was primarily used for two
separate use cases: firstly the management and documentation of existing
data assets – allowing potential data users to search and discover datasets
of interest; secondly the collaborative development and publication of new
data standards – reusing existing definitions where available. The Health Data
Finder and Oxford BRC Data Warehouse projects are primarily focussed on
the cataloguing of existing datasets or databases, and the Health Informatics
Collaborative and UK 100,000 Genomes Project are primarily concerned
with the development and publication of new data standards in a number of
medical therapeutic areas.

6.3 Managing Data for the NHS 269

For each of the measures: “Productivity”, “Quality” and “Agility”, we
will consider each of the four projects and assess the impact made in these
areas. In most cases, quantitative measures of improvement are not easily
obtained: the Health Data use case was a late addition to the project and the
relevant baseline measures were not taken; however, the use of the catalogue
in all four cases does not replace any existing functionality or tool provision –
originally any software or data engineering tasks were carried out by hand or
not at all.

6.3.5.1 Productivity
The NIHR Health Data Finder was set-up to be a single portal for
researchers – both academic and in industry – to find out about existing
national audit datasets that can be requested for research purposes. Before
the introduction of the Model Catalogue, this could be a painful process:
the datasets are held by one of a number of public health bodies: NHS
Digital, Public Health England, the Clinical Practice Research Datalink, the
National Institute for Health Research, and the Medical Research Council.
Each maintained their own documentation for the datasets, usually stored
in non-computable formats, and, in general, not made publicly available.
If a research data user required data, they would have to first find out
whether such data existed, and telephone a help desk to ask any questions
about the data; detailed questions could take weeks to be answered. Request-
ing the data would require a different governance process for each provider,
and data would be provided in different formats by each provider. All data
are anonymised before being conferred: if data from multiple providers
were required to be linked before anonymisation, this would increase the
complexity of this largely manual process.

The Model Catalogue provides a solution to some of these problems, and
forms part of a greater plan to streamline all data requests. The catalogue
provides a single portal where all datasets are described, datapoint-by-
datapoint, with information about the scope, coverage and completeness for
each dataset. Information pertaining to ‘frequently asked questions’ is stored
alongside each data element, and adherence to national standards is recorded.
As well as advanced functions for browsing and searching, the catalogue
provides a ‘shopping cart’ function which allows users to compile requests
made up from multiple datasets.

The time saved by the use of the catalogue tool is hard to quantify, as each
request is different. However, the site has been used more than 4,200 times
in 2 years since its launch, with an average of six visitors per day. Of these,

270 Use Cases

approximately 40% are returning visitors, indicating some degree of success
on their first visit. The average ‘session’ duration for all visitors is well over
3 min, suggesting that a lot of users are taking the time to browse and explore.
Although the number of visitors has dropped since the first launch of the site,
the numbers remain stable.

In the Oxford BRC Data Warehousing project, a team of developers are
building a large warehouse of patient data, extracts of which will be made
available to local researchers for specific purposes. In order to maintain
an asset register and to provide documentation to potential users, every
data source and data flow is being documented. Before the introduction of
the catalogue, this documentation would have been maintained in a series
of spreadsheets and shared (perhaps in a source control system) to allow
collaboration. The catalogue provides plugins that automate the transcription
of database metadata, and descriptions can be collaboratively edited via the
online interface – a vast improvement to productivity. There are currently
12 developers and data engineers using the catalogue – some on a daily basis –
and allowing access to Oxford University researchers is planned in 2018.

In the Health Informatics Collaborative, and in the UK 100,000 Genomes
project, a key output is the development of new data standards – to facilitate
the transfer of clinical data from a number of different hospitals to a cen-
tralised location. In such projects, collaboration is required from a range of
different people: those with clinical expertise to assess the availability of data;
those involved in research to assess the requirements for each data point, and
technical people at each hospital who can assess the feasibility of providing
data. Previously such collaboration may not have happened or taken place
via email and teleconferences; with the use of the Model Catalogue such
collaboration is much easier, and can reduce the number of iterations required
to reach a viable data specification.

In the UK 100,000 Genomes project, complex models for Cancer and
over 200 Rare Diseases have been developed and published, iterating through
a number of intermediate versions. In the NIHR HIC project, models for
five therapeutic areas have been developed: originally using spreadsheets and
email; latterly using the catalogue. The catalogue has reduced the amount
of communication required and simplified the task of development and
documentation of the model; a further five new therapeutic areas are to be
addressed with new models in the NIHR HIC project, during the first quarter
of 2018.

6.3 Managing Data for the NHS 271

Figure 6.51 Screenshot from the NIHR HIC Model Catalogue.

6.3.5.2 Quality
In the UK 100,000 Genomes and NIHR HIC projects, as well-documented
data standards, key outputs are software components to allow the storage
and transfer of data according to the standard. Without automation, it would
be very easy for mistakes to be made in the development of tools such as
XML schema or database schema: differences between the standard and
the tools could result in data not being transmitted or stored correctly. The
plugins developed for the Model Catalogue allow these components to be
generated automatically. In the early stages of the HIC project, when such a
manual process was in place, discrepancies arose frequently, and this caused
delays and frustration as errors had to be corrected, new standards or tools
re-tested, published and distributed. The introduction of the catalogue has
seen a complete reduction in these errors, and also reduces development
effort (Figure 6.51). In the UK 100,000 Genomes project, further components
were required to configure off-the-shelf software, and suitable plugins were
developed to ensure that these also remained consistent with the standards.

In the Oxford BRC Data Warehousing project, data quality can be
improved by allowing those entering the data to see the descriptions of the
intended values – so they know how to complete fields correctly – or to see
the data already submitted – in order to fix any problems with existing data. In
its current state, running metrics on the existing data has identified a number
of potential issues with the data and other local reporting, and so the Model

272 Use Cases

Catalogue has become a useful tool for the reporting and discussion of these
issues.

In the Health Data Finder project, an improvement has been made, not
in the quality of the actual data, but in the linking and usage of the data.
With detailed descriptions of every data point, researchers are better able to
make decisions on how to use the data – in many cases preventing mistakes
in analysis, or, where previously the semantics of data points were unknown,
preventing researchers having to collect new data from scratch to ensure its
validity for the particular purpose.

6.3.5.3 Agility
One of the key advantages of the catalogue product is the ability to create new
versions of a model with ease, ensuring that all participants can be kept up-to-
date, and by using plugins to generate software components, updates to a data
model can be reflected in changes to the related software much more quickly.
In the NIHR HIC project, this is an essential requirement: the XML schema
required for transferring data between sites can be made available as soon as
the new data model is finalised – giving technical staff the maximum amount
of time to adapt to the new model. Previously, delays in the generation of
XSDs (and subsequent fixing of any errors), could delay the timely collection
of data. A similar improvement has been made in the UK 100,000 Genomes
project, where without the use of the Model Catalogue, manual approaches to
collaborative model evolution, publication and software development would
result in a much slower turn-around time.

In the Health Data Finder and Oxford BRC Data Warehousing projects,
the key notion of agility is in the time taken to update the documentation
in response to a new version of the database schema. Again, the plugins
have proven invaluable in this respect: the importer plugins can automatically
import the new structures, and existing descriptions can be copied, meaning
that minimal effort is required from domain experts.

6.4 Integrating Semantic Datasets into Enterprise
Information Systems with PoolParty

6.4.1 Introduction

PoolParty Semantic Suite is the SWC’s platform for enterprise information
integration based on Linked Data principles. Since it was created, the product
has evolved to include entity extraction from unstructured information. To

6.4 Integrating Semantic Datasets into Enterprise Information Systems 273

align product development with ongoing technology trends, market monitor-
ing and trend scouting features have been incorporated. Atlassian Confluence
is used to support the requirement engineering process while Atlassian JIRA
is used for issue tracking, including an external system for customers.

The developers of the SWC’s software have numerous sources of infor-
mation that is relevant to their product development role – bugs, feature
requests, usage information, and so on. They would like to ensure that the
information relevant to any particular development task is made available
to the relevant developers in as timely, well-structured and meaningful way
as possible, regardless of the source. Customers of PoolParty would like to
integrate a variety of models, schemata, ontologies and vocabularies into
their PoolParty knowledge bases. In many cases, they do not have a deep
understanding of semantic technologies and would benefit from as much
assistance as possible in understanding what they need to do to integrate their
models into PoolParty.

To support and document the development process, SWC operates instal-
lations of Atlassian Confluence and JIRA. Confluence is used for drafting,
specifying and discussing new features and requirements in a text-based
format which is only structured visually with headings and paragraphs. Most
requirements captured in Confluence follow a defined structure: they declare
the high-level goal (or summary), which is a description of the functionality
the application should provide so that the requirement is met. The require-
ments document breaks down this description into multiple “user stories”
which are detailed descriptions of how the application should behave from
a user perspective. They also add preconditions, acceptance criteria and test
scenarios so that the responsible developer can identify what changes need to
be performed and infer JIRA tickets for each of them. A requirements docu-
ment also defines various stakeholders, i.e., people and their responsibilities
and roles they fulfil in the course of processing the requirement.

JIRA defines a data schema to hold the details of each ticket, like type,
description, priority, or assignee. On the most general level, tickets (also
sometimes called issues in this section) are assigned to various “spaces”.
A space is used to classify issues by project (e.g., LOD2 or ALIGNED),
product (PoolParty Thesaurus Manager PPT or PoolParty Extractor PPX)
or general kind (ideas, which are “nice-to-have” features or improvements
for which it is not yet decided if and how they will be implemented). Each
ticket can only be assigned to one space and the space, to some degree, also
influences the properties that can be assigned to a ticket. For instance, valid
types that can be assigned to a ticket are, e.g., “bug”, “task”, “epic” or “story”

274 Use Cases

in the PPT space while “epic” or “story” cannot be assigned to tickets in the
PoolParty Support space. Besides the affected software components, status,
resolutions methods and much more, also metadata is attached to the ticket
like creation and last-updated date. The properties mentioned above which
are relevant for querying in the ALIGNED use case(s) are modelled in the
Design Intent Ontology (DIO) by OxSE, which is used for publishing the
data held by Confluence and JIRA as RDF.

6.4.2 Problem Statement

The developers of the SWC’s software have numerous sources of information
that is relevant to their product development role – bugs, feature requests,
usage information, and so on. They would like to ensure that the information
relevant to any particular development task is made available to the relevant
developers in as timely, well-structured and meaningful way as possible,
regardless of the source. Customers of PoolParty would like to integrate a
variety of models, schemata, ontologies and vocabularies into their PoolParty
knowledge bases. In many cases, they do not have a deep understanding of
semantic technologies and would benefit from as much assistance as possible
in understanding what they need to do to integrate their models into PoolParty.

6.4.2.1 Actors

Role Description
PPT Developer performs software development work on the PoolParty platform
PPT User uses PoolParty
PPT Taxonomy
Developer

responsible for developing taxonomies for PoolParty

PPT Admin responsible for administering PoolParty services
Requirements
Engineer

responsible for defining and maintaining software requirements

SWC System
Administrator

responsible for administering SWC assets

The requirements on which the PoolParty use case was based are detailed in
Appendix A.

6.4.3 Architecture

Figure 6.52 shows the different roles (orange figures), tools (green rect-
angles), repositories (cylinders), and files (parallelograms) involved in the
PoolParty architecture and workflows. On the left side, the diagram describes

6.4 Integrating Semantic Datasets into Enterprise Information Systems 275

F
ig

ur
e

6.
52

Po
ol

Pa
rt

y
A

rc
hi

te
ct

ur
e.

276 Use Cases

the direct interaction of the customers (taxonomists) with the PoolParty
application. The taxonomist creates controlled vocabularies using both the
thesaurus editor and the custom schema editor. Currently, there are two
components where data consistency needs to be satisfied: (i) when per-
sisting vocabulary and schema data to the underlying triple store using a
custom SWC-developed RDF Mapping Framework and (ii) when changes
to the controlled vocabulary are performed which violate certain qual-
ity criteria (validated by the SKOS Quality Checks component). The
RDF mapping framework converts instances of annotated Java domain
classes into an RDF representation and vice versa. However, data con-
sistency violations between the triple store(s) and the application via the
RDF mapping framework can occur because in the application code, the
framework is sometimes bypassed and data changes are written directly
to the store. Furthermore, changes to the domain classes may require
migration scripts which can easily be forgotten to develop and run.
Also note that the data importer component which retrieves data either
from the LOD cloud or from imported files currently persists these data
directly to the triple store, which in many cases violates data consistency
requirements.

6.4.4 Implementation

The demonstrator system consists of four components, which we shortly
outline in the following paragraphs:

• Consistency violation detector
• RDFUnit test generator
• PoolParty integration
• Notification adaptations

6.4.4.1 Consistency violation detector
We implemented the consistency violation detector as a separate component
that can be either invoked on the command line or integrated into PoolParty
as a library. It takes as input the id(s) of the consistency violation check(s) it
should detect as well as an arbitrary number of RDF files that contain all
necessary data for performing the check(s). All these RDF data are then
added to a local in-memory OpenRDF repository, together with the RDF
definition of the SKOS data schema. All but one of the identified consistency
violations can be detected by using SPARQL queries over the provided

6.4 Integrating Semantic Datasets into Enterprise Information Systems 277

RDF input files. The one constraint where SPARQL queries do not suffice
is the validation of external links. This is done by a Java algorithm that
dereferences all URIs (that do not reference localhost) and checks if the
HTTP response code indicates an error (i.e., other than 200).

6.4.4.2 RDFUnit test generator
Test cases for RDFUnit are expressed in RDF as resources of, e.g., type
http://rdfunit.aksw.org/ns/core#ManualTestCase. Our demonstrator system
can generate the test cases for RDFUnit automatically, based on the SPARQL
queries we defined for each data consistency check. Currently, four of the 16
data consistency violation checks can be automatically converted to RDFUnit
tests. The RDFUnit test cases can then be executed on the in-memory repos-
itory mentioned above and a HTML report page is generated by RDFUnit
which shows the results (success or failure) of each test case.

6.4.4.3 PoolParty integration
For the demonstrator, we integrated the consistency violation detector into
PoolParty’s data import functionality. The current implementation checks for
violations of any of the 16 identified data consistency constraints. Therefore,
it first collects the data of all linked projects, the project metadata, and custom
schema data and passes it to the consistency violation detector. The generated
textual report is then displayed to the user, along with the option to view the
HTML page that has been generated by the RDFUnit test run.

6.4.4.4 Notification adaptations
We improved the rsine notification system1 which has been originally
developed in the course of the LOD2 project (see Section 5, Improved
Notifications, or the project’s GitHub page for additional information) to:

• Be transaction-aware: Due to improvements on how PoolParty invokes
data changes, rsine can persist them as a transaction. This enables us to
write easier and more powerful notification subscriptions.

• Support of project management, custom schema, and user repositories.

Until now, only changes to the taxonomy project repository were communi-
cated to the notification service. We changed that so that it is also possible to
subscribe for changes to the project management, custom schema and user
management repositories to, e.g., receive notifications on creation of new
projects, new custom classes, or new PoolParty user accounts.

278 Use Cases

6.4.4.5 RDFUnit
RDFUnit is integrated in PoolParty RDF Validation for performing constraint
checks. The checks are defined as RDFUnit test cases using RDF. These test
cases can also be run by RDFUnit independently of PoolParty on external
data. For each of the constraint checks, there is an RDFUnit test case which
is based on a SHACL constraint or a SPARQL query that identifies resources
that cause violations.

UnifedViews is an ETL tool for RDF data developed as part of the
PoolParty semantic suite. Using this tool, we extracted data from Atlassian
Confluence and JIRA and transformed it into RDF using a DPU devel-
oped for ALIGNED. The transformed data are annotated with the PoolParty
Knowledge.

Graph using the extractor DPU and finally similarity scores are calculated
based on the annotated data.

The Issue Integration feature is integrated in PoolParty product, which
allows user to automatically create JIRA support tickets whenever an internal
server error occurred in the application.

Similarity scores are calculated on development artefacts using the anno-
tations of the PoolParty Knowledge Graph Thesaurus as a basis. Two algo-
rithms are implemented that represent a lexical and a graph-based approach
to similarity.

Graph Search, a faceted search application and part of the PoolParty
product, is used to analyse the development artefacts. We integrated simi-
larity retrieval into GraphSearch to find duplicate bugs and relations between
issues.

6.4.4.6 Validation on import
General Description

Currently, users can import any RDF data into a PoolParty thesaurus project.
In the best case, invalid data just lingers in the triple store where PoolParty
stores all the data it operates on and consumes memory or hard disk space.
However, these data also can cause problematic behaviour such as incon-
sistency in the user interface and a corrupt data model, manifesting in fatal
exceptions in the PoolParty Thesaurus Editor. We can identify three different
PoolParty functionalities where data consistency is required:

• Basic internal operations: The thesaurus editor expects certain properties
for the various controlled vocabulary resources, such as concepts or
concept schemes

6.4 Integrating Semantic Datasets into Enterprise Information Systems 279

• Schema-specific: SKOS or other data schemas impose custom restric-
tions on the data or encourage conformance with best practices that are
not formally stated

• Reasoning: PoolParty asserts and expects class membership information
to controlled vocabulary resources and interprets them with constraint
semantics.

Addressed Challenge

The main challenge is to match the imported data, which follow the open
world assumption with the local data model required by PoolParty. This is
basically a challenge each application that consumes open data from the Web
faces. Because these data are very volatile, efficient methods have to be in
place that allow transition of data scraped from the Web into a meaning-
ful local representation that can be further processed by the application’s
business logic.

Identify Sample Set of Data Consistency Violations

We can break down this challenge to a set of sub-goals we want to solve in
the course of the ALIGNED project:

• Provide full coverage of data consistency constraints
• Identify repair strategies
• Invoke repair strategies and fix constraint violations either automatically

or based on user input

Proposed Approach

We plan to support the import use case with a two-step semi-automatic sce-
nario: in the first step, the imported data must be checked against PoolParty’s
internal data model and requirements on the data and any non-conformance
must be reported. In a second step, users should have the option to adjust the
imported data in order to fulfil PoolParty Thesaurus Editor’s requirements.
Based on the kind of data consistency violation, various repair strategies may
be invoked. Some violations can be fixed automatically and some require
additional input from the user. It should also be possible to fix similar kinds
of consistency violations in one go so that it is possible to deal with a large
number of violations.

280 Use Cases

Identified Data Consistency Constraints

For demonstrating the problem domain and working towards the implemen-
tation of an approach that tackles the addressed challenge, we first focussed
on the sub-goals 1 and 3. We extracted 16 data consistency constraints, i.e.,
requirements for RDF datasets so that they match the internal PoolParty
Thesaurus Editor (PPT) data model. Violations of these constraints can vary
in severity: some constraints must never be violated (ERROR), some can be
tolerated (WARNING) and some are just of informative value (INFO). For
each of the identified consistency constraint, we propose one or more repair
strategies that describe possible ways to fix the dataset.

We implemented a tool (usable both at the command line as well as a
library for integration into existing applications) that checks provided RDF
data against violation of these constraints. A current development branch of
PoolParty makes use of this tool and displays a report if constraint violations
on imported data were detected. Four of the consistency constraints listed
above have also been formulated as RDFUnit test case and can thus be
integrated into existing test suites.

Resolution
ID Constraint Description Severity Strategies
br Bi-directional

Relations
If a resource A is related to a resource
B by a property p and if p has an
inverse property p’, then the
statement that B is related to A by p’
must also be manifested in the data.

ERROR Add
complementary
statement
Remove relation

cd Concept
Deletion

In order for PPT to recognise deleted
concepts, these concepts must be
marked with owl:deprecated, must not
have asserted any type information,
and must contain information in the
history graph for being properly
displayed in the application.

ERROR Remove other facts
that are not asserted
by owl:deprecated
Remove
“owl:deprecated
true” fact

cta Concept
Type
Assertion

Concepts must have the type
skos:Concept asserted because no
RDFS inferencing is performed in
PPT.

ERROR Add (infer) missing
type declarations

dcl dcterms
Creator
Literal

Using URIs for dcterms:creator to
describe skos:Concepts and
skos:ConceptSchemes in PPT leads to
error message

ERROR Convert provided
creator agent to
literal
Replace with some
default literal

6.4 Integrating Semantic Datasets into Enterprise Information Systems 281

Continued
Resolution

ID Constraint Description Severity Strategies
dta Direct Type

Assertion
Concepts having asserted a class
using swcs:appliedType must also
be instances of this class.

ERROR Add missing type
statement
Remove resource

elv External Link
Validity

Outgoing links from a thesaurus
to another dataset on the Web
may not be resolvable anymore.

INFO Prompt user for
replacing URI with
“valid” link
Apply resolution
strategy suggested
when dereferencing
the URI
Remove affected
statement

hc Hierarchical
Consistency

Each resource of type
skos:Concept must have a
resource linked by skos:broader
or skos:topConceptOf in the
vocabulary namespace. Each
resource of type skos:Concept
must have at least one path (via
skos:broader/skos:topConceptOf)
to a resource of type
skos:ConceptScheme in the
vocabulary namespace.

ERROR Prompt for parent
resource
Add to some
existing default
parent resource
Remove (do not
create or ignore)
concept

lam Label
Ambiguities

Identical concept labels may
indicate duplicate concepts.

WARNING Remove Label from
one concept
(prompt user for
which one)
Merge Concepts
Add descriptive
note (prompt user
for text input)

lav Label
Availability

Resources of type skos:Concept
must have assigned exactly one
Literal in the default language,
using the predicate
skos:prefLabel. Resources of type
skos:ConceptScheme must have
assigned exactly one Literal in the
default language, using the
predicate rdfs:label.

ERROR Auto-generate label
(based on URI,
timestamp,
increment, from
parent/related...)

(Continued)

282 Use Cases

Continued
Resolution

ID Constraint Description Severity Strategies
lpc Linked

Project
Consistency

If two PPT projects are linked
to each other, each of the
referenced resources must exist.

WARNING Remove Link
Restore Data
(i.e., create new
local concept
with deleted
concept’s label)

sc Schema
Compatibility

Detect statements using
resources from namespaces that
are not included in the default
PoolParty schemas or in
schemes that are available as
custom schemas. Such
statements would not be visible
within PoolParty and may lead
to unwanted side effects.

WARNING Enable relevant
schemas in PPT
Ignore statements

sdr Schema
Domain
Range
Match

Domain and range axioms on a
property are interpreted as
constraints – that is, a property
with specified domains (using
swcs:domain) A and B can only
be used in triples with resources
that are instances of A or B.
Likewise for swcs:range.

ERROR Apply missing
type(s): either
one (prompt user
which one) or all
Remove relation

tpc Type
Propagation
Collections

All concepts that are members
of a collection which is instance
of a class (using the property
swcs:appliedType) also are
instances of this class.

ERROR Assert missing
Types
Remove from
collection

tph Type
Propagation
Hierarchical

Concepts that are part of a
hierarchy (using skos:broader
properties) and one of the
parents (e.g., a resource being
an instance of
skos:ConceptScheme and
skos:Concept) have either a
type asserted (using
swcs:appliedType for
skos:ConceptSchemes) or
propagated (using
swcs:propagateType) must also
be instances of this class.

ERROR Assert missing
types
Remove from
hierarchy

6.4 Integrating Semantic Datasets into Enterprise Information Systems 283

Continued
Resolution

ID Constraint Description Severity Strategies
upl Unique

Preferred
Labels

A concept must have at
most one preferred label
per language tag (SKOS
integrity constraint)

ERROR Remove one
preferred label
(prompt user
which one)
Add
disambiguation
information as
notes (prompt
user to supply
them)
Add
disambiguation
information as
parenthesis to
label (bad
practice)
Extract new
concept (prompt
for broader or
insert as sibling)
Remove concept

ut Unsatisfied
Type

Concepts must either be
instances of
skos:Concepts or
instances of classes that
are assigned directly or
by type propagation.

ERROR Remove type
assertions
Remove affected
resources
Import type as
custom class

Detailed Process Description

In the following, we show how import data validation is implemented in a
proof-of-concept branch of PoolParty:

(1) Accessing the RDF Data import functionality of PoolParty: the newly
adapted import dialog provides an option for checking the imported data for
conformance against the consistency constraints (Figure 6.53).

284 Use Cases

Figure 6.53 Import dialogue.

(2) Report on the resources that violate certain consistency constraints
(Figure 6.54).

Figure 6.54 Consistency constraint violations as reported by RDFUnit.

6.4.5 Results

By providing a demo implementation of an import validator, we found
that RDF datasets can be checked against the identified data consistency
constraints, either by using SPARQL or by a hybrid approach, processing
a subgraph generated by SPARQL with custom Java algorithms. Based
on the query results, reports containing the resources that violate consis-
tency constraints are created. We also found that the consistency constraints

6.4 Integrating Semantic Datasets into Enterprise Information Systems 285

Figure 6.55 High level technical overview.

which can be solely expressed using SPARQL (i.e., no custom Java algo-
rithms for validation are needed), can also be expressed as test cases for
RDFUnit.

For identification of the above described consistency constraints, we
analysed the algorithms PoolParty uses internally for creating, processing and
persisting a controlled vocabulary. While this is efficient for getting an initial
set of constraints, we cannot retrieve a complete set of consistency constraints
which covers all error cases this way. The reason is that a formal model of the
data that PoolParty operates on does not yet exist. Therefore, the consistency
constraint checks must be manually crafted in SPARQL, independent from
the algorithms creating or accessing the data. As a consequence, the checks
constitute an additional entity that must be maintained in sync with changes
to the application logic.

Figure 6.55 illustrates the workflow for checking RDF data for confor-
mance to the PoolParty data model. The PoolParty integration collects data
from various sources necessary to evaluate potential consistency violations.
Alternatively, command line users of the Import Validator can prepare RDF
files and pass them to the Import Validator Component (green frame), which
applies the constraint definitions to this data and outputs a textual or HTML
report that contains violation information.

6.4.5.1 RDF constraints check
Figure 6.56 shows the constraints checks integrated using RDFUnit. When
importing data into a PoolParty project, the constraint checks are performed,

286 Use Cases

Figure 6.56 RDF validation conformance checks.

and a result list is presented to the user who outlines all the violations that
have been detected. For the first release of PoolParty containing the RDF
Validation, we defined a minimal set of 13 constraints so that imported
data are required to conform with PoolParty to operate normally. In later
releases, this set will be extended by quality checks to assist with data mod-
elling. The declarative approach taken for defining the constraints ensures
easy maintainability and extendability of the RDF Validation for future
releases.

The user can browse through the detected constraint violations, select a
repair strategy for each of them and apply the repair to the data (Figure 6.57).
When all violations are repaired and conformance is achieved, the user can
transfer the imported data into the project without the risk of application
failures caused by inconsistent data.

6.4.5.2 RDF validation
The first part is the RDF Validation, which is integrated into the PoolParty
product to support consistency within the application’s data storage.

Data within PoolParty projects have to follow conformance rules for the
application to work correctly. Usually, data are modified by the application
itself, and the conformance is therefore given naturally. However, it is pos-
sible for users to import arbitrary RDF into the project. These data have to

6.4 Integrating Semantic Datasets into Enterprise Information Systems 287

Figure 6.57 Repair strategy for the constraint check.

be checked and eventually corrected to conform to the PoolParty applica-
tion. To ensure this conformance, the import component of PoolParty was
extended with an RDF Validation component. It is responsible for checking
the imported data based on a set of defined constraints and reporting the
results. The user is then given the opportunity to correct the import by using
one or more presented repair strategies that will manipulate the data so they
satisfy the constraints. Bulk repair options are also given for constraints
where it is appropriate to do so. Furthermore, general quality checks can
be done on the data that do not interfere with PoolParty’s operations, but
represent data modelling problems and would therefore be of interest to the
Taxonomist.

For performing the constraint checks, the RDF Validation has integrated
RDFUnit. The checks are defined as RDFUnit test cases using RDF. These
test cases can also be run by using RDFUnit only and therefore can be used
independently of PoolParty on arbitrary data. Also, the maintainability of the
constraint checks is high because of the declarative approach of the test case
definition using RDF. Changing the checks does not require changes to the
application’s code. The repair strategies and other metadata are also defined
as RDF and extend the RDFUnit test cases for an integrated representation of
validation and repair. For each of the constraint checks, there is an RDFUnit
test case, which is based on a SPARQL query that identifies the resource
that causes the violation. Each check also defines repair strategies that can be
applied to fix the violation. The information needed for the repair strategies
to determine changes that have to be done can be retrieved using a constraint
specific query that returns the context of the violation as RDF statements.
The combination of constraint, context and repair strategies is represented as
an extension of the RDFUnit test case. The component implementing the test
cases is designed to be independent of PoolParty and can be used separately.
PoolParty integrates it to present the RDF Validation as an application feature.

288 Use Cases

When importing data into a PoolParty project, the constraint checks are per-
formed, and a result list is presented to the user that outlines all the violations
that have been detected. The user can browse through these violations, select
a repair strategy for each of them, and apply the repair on the data. When all
violations are repaired and conformance is achieved, the user can transfer the
imported data into the project without the risk of application failures caused
by inconsistent data.

For the first release of PoolParty containing the RDF Validation, we
defined a minimal set of 13 constraints that are mandatory to conform with
PoolParty to operate normally. In later releases, this set will be extended by
quality checks to assist with data modelling. The declarative approach taken
for defining the constraints ensures easy maintainability and extensibility of
the RDF Validation for future releases.

RDF Validation: The user imports an RDF file into a project. A list of
constraint violations is shown and explained. Constraint violation details are
opened and the constraint details are shown. The repair strategy is executed.
Another constraint violation is shown and repaired. Afterwards, all the vio-
lations have been resolved. It is explained that a save import is now possible
(Figure 6.58).

Figure 6.58 RDF Validation Screenshot.

6.4 Integrating Semantic Datasets into Enterprise Information Systems 289

6.4.5.3 Improved notifications
General Description

During the LOD2 project, SWC developed rsine,15 a publish/subscribe sys-
tem that allows users to register for data changes in an RDF triple store. In
the demonstration system, we reuse and adapt rsine to work with a current
version of PoolParty and extend it to support additional notification types as
required by Wolters Kluwer.

Addressed Challenge

The LOD2 technology stack16 consists of multiple tools that cover the
whole Linked Data life cycle. It encompasses, among others, storage, qual-
ity analysis and exploration utilities that target problem domains that also
affect PoolParty. LOD2 project partners needed a way to better integrate
their solutions, and being notified on data changes between stack compo-
nents was one of the project goals. Therefore, the notification systems were
required to be:

• easily integratable into existing stack components, and
• flexible enough to support notifications which can be adjusted to meet

the component’s purpose and data model.

Approach

Rsine runs as a stand-alone server and can be controlled by a REST-like
interface. It can be configured against a Managed RDF Store (accessible by
a SPARQL endpoint), which holds all data a LOD2 stack component works
on. Addition and deletion of triples to this managed store are detected by the
Change Handler. It forwards these changes to the Changeset Service, which
enriches them with additional metadata such as timestamps using a standard
ontology17 and persists them into an in-memory Changeset Store.

We currently support two different types of change handlers:

• Integration with the managed store: an external component, e.g., a Vir-
tuoso VAD extension18 or transaction log parser19 detects triple changes
in the underlying Virtuoso triple store.

15https://github.com/rsine/rsine
16http://stack.lod2.eu/blog/
17http://vocab.org/changeset/schema.html
18https://github.com/rsine/rsineVad
19https://github.com/GeoKnow/trx parser

290 Use Cases

• Integration with the stack component: The stack component (e.g., Pool-
Party) is responsible for announcing all data changes to rsine using API
calls.

To subscribe for notifications, users can submit Subscription Documents
to the rsine server using the API. These are RDF documents, containing
information about

• The change patterns (as SPARQL query) the user should be notified
about,

• A notification message,
• Additional information the notification message should contain (fetched

from the managed store using SPARQL), and
• Contact information (e.g., email address, log file) where the notification

should go to.

A complete description of the information a change document should con-
tain can be viewed at the project’s GitHub page. Figure 6.59 shows the
architecture of the notification system.

Figure 6.59 Improved notification system.

6.4 Integrating Semantic Datasets into Enterprise Information Systems 291

Improvements

For the demonstration system, we revised and improved rsine to meet the
new notification requirements of WKD. We adjusted a current version of
PoolParty, with the following change handler improvements:

• Dataset changes are now transaction aware: if a PoolParty action (e.g.,
creation of a document) creates or removes multiple triples at once, these
are combined and stored as a single RDF changeset representation. This
feature required us to adjust the rsine API and break compatibility with
older rsine versions

• Support for other repositories than the current vocabulary repository.
The change handler can now communicate data changes introduced to
the project metadata repository, the custom schema repository and the
user accounts repository

Notifications

These changes allow us to express and implement new types of notifications
that were not possible with other rsine PoolParty integrations before. On
project creation, for example, a notification containing the user who created
the project and the project’s name can be disseminated. Notification can also
be done when creating, changing or deleting classes, attributes or properties
of custom schemas in PoolParty or creating and deleting PoolParty user
accounts. In the following, we provide an abbreviated example (we omitted
the prefix declarations) subscription document that logs a message if a new
user has been created.

<http://example.org/aligned/new_account> a rsine:Subscription;
rsine:query [

dcterms:description "Notification user account creation";

spin:text "SELECT ?userName (GROUP_CONCAT(?auth; separator=’, ’)
AS ?auths) WHERE \{

?cs a cs:ChangeSet;
cs:createdDate ?csdate;
cs:addition ?userAdd;
cs:addition ?userAuth;
cs:addition ?userInfo.

?userAdd rdf:subject ?user;
rdf:predicate rdf:type;
rdf:object swcu:User.

?userAuth rdf:subject ?user;
rdf:predicate swcu:grantedAuthority;
rdf:object ?auth.

292 Use Cases

?userInfo rdf:subject ?user;
rdf:predicate swcu:username;
rdf:object ?userName.

FILTER (?csdate
>’QUERY_LAST_ISSUED’ˆˆ<http://www.w3.org/2001/XMLSchema#dateTime>)

}
GROUP BY ?userName HAVING (STRLEN(?auths) > 0)
";

rsine:formatter [
a rsine:vtlFormatter;
rsine:message "A new user named

’$\bindingSet.getValue(’userName’).getLabel()’ with the roles
’$\bindingSet.getValue(’auths’).getLabel()’ has been created.";

]
];

rsine:notifier [
a rsine:loggingNotifier;

].

Detailed Process Description

The command java -jar ./rsine-cmd.jar starts the rsine notification server,
accepting notification subscription documents on port 2221

The notification subscription document can be registered at the server
using the command: curl -X POST -d @“create user account subscription.ttl”
–header “Content-Type: text/turtle” http://localhost:2221/register

Rsine detects the event and adds a notification to the log: 13:17:26.258
[qtp524197922-12] INFO e.l.r.d.n.logging.LoggingNotifier – A new user
named ‘aligneduser’ with the roles ‘PoolPartyUser, PoolPartyAdmin, Public’
has been created.

Note that notifications can also be configured to be sent to an email
address by adding this snippet to the notification subscription document:

rsine:notifier [
a rsine:emailNotifier;
foaf:mbox <mailto:c.mader@myhost.at>

];

Results

We found that the new notification subscription documents, covering project
metadata, custom schema changes or user account management, were easy

6.4 Integrating Semantic Datasets into Enterprise Information Systems 293

to implement on the rsine side. However, we had to put more effort into
adapting the Change Handler components, which are part of the newly
created PoolParty-ALIGNED branch, to support the new notification types.
The reason for this is that PoolParty internally organises vocabulary data (i.e.,
the SKOS representation and some metadata of a taxonomy project), project
metadata, custom schemas and user account information in different RDF
repositories, and only the vocabulary data can be accessed by a SPARQL
endpoint. This has two major consequences:

• We had to integrate the Change Handler code into PoolParty’s data
persistence logic for each repository,

• We currently cannot cover all information that should be contained
in the notification messages. For example, if adding a new class to a
custom schema, the notification message can only contain the name of
the new class, not the schema name it has been added to or the user who
created it.

However, future releases of PoolParty will only use a single repository for the
data described above and organise it into different named graphs. This will
allow us to efficiently query the data and also to formulate more powerful
queries, aggregating knowledge of each named graph. Therefore, PoolParty’s
rsine integrate will also profit from disseminating more detailed and useful
notification messages to the subscribers.

6.4.5.4 Unified governance
The Unified Governance tool is used to harvest data from the tools used in
the PoolParty development life cycle. The data are transformed into RDF
and integrated using ALIGNED vocabularies to create unified views for
supporting the development process.

The Unified Governance tool will support three use cases for the trials:

• Search over the integrated RDF software development data
• Computing similarity for software development artefacts based on a

combined graph-based and text-based approach
• Statistical analysis of the software development process

The sources of development data used for the tool are Atlassian Confluence
and Atlassian JIRA.

Atlassian Confluence is used for requirements engineering, organising
ideas from team members, providing documentation of research projects,
and publishing of technical information. Atlassian JIRA is used for issue

294 Use Cases

management as part of the SCRUM-based software development process.
It is also used as a ticketing system for customers to report issues. Both of
these tools are used for integrated software development process, but they
are not integrated with each other. This has to be done by humans as part
of the process to synchronise the information. It includes manual linking of
requirements in Confluence to JIRA issues and linking duplicate JIRA issues
together. Generally, an integrated and interlinked view of requirements and
development artefacts is needed. With the Unified Governance tool, this can
be achieved automatically.

The tool retrieves the information from both Confluence and JIRA and
transforms it into RDF based on the ALIGNED metamodel vocabularies
DIO and DIO-PP. This has to be done on a regular basis to have up-to-
date information to work on. Therefore, we use Unified Views, an Extract
Transform Load (ETL) tool supporting RDF data processing, for periodic
retrieval and transformation of the development data. Having integrated the
data as RDF, we can query it using SPARQL. The queries can make use of the
underlying metamodels to improve the results. Furthermore, SPARQL-based
applications can be put on top of the triple store to support querying, filtering
and facetted search.

During the integration process, the generated RDF data are annotated with
concepts using a PoolParty Thesaurus. These concepts can support search
applications. They can also be used as a basis for computing similarities
between artefacts based on the hierarchical graph structure of the Thesaurus.
A graph-based approach can leverage the underlying knowledge model and
provide semantic similarity for the development artefacts. We decided to use
a combined method of text-based and graph-based similarity to benefit from
both approaches and improve the results. The results of the similarity com-
putation can be applied to several tasks. First, we can automatically identify
developments issues that correspond to requirements and semi-automatically
link them. Second, we can identify similar requirements and ideas that should
be organised together, but appear distributed in the system. Third, we can
identify duplicate issues in JIRA, which is important to prevent the duplicate
reporting of bugs. We can identify duplicates before an issue is submitted,
inform the user about it and eventually prevent the creation of the issue.

The RDF data of development artefacts can be used for a statistical
analysis of the development process. The results can then be used to apply
improvements. They can be used as a reference basis for future time esti-
mations of efforts. Flaws in the development process can be identified by
analysing performance decreases. Development efforts and reported bugs can

6.4 Integrating Semantic Datasets into Enterprise Information Systems 295

be analysed for deviations from the expected values. Statistical data will be
visually presented in form of diagrams as part of the search application.

Unified Governance: A UnifiedViews pipeline is used to extract data from
Atlassian Confluence and JIRA (Figure 6.60). The data are transformed into
RDF and integrated using ALIGNED vocabularies to create a unified view
on the development data for supporting the development process. The trans-
formed data are then annotated with concepts from the PoolParty Knowledge
Graph. Similarity between development artefacts is calculated using a lexical
and a graph-based approach in combination.

Unified Governance Search: The facetted and autocomplete search
application on top of the Unified Governance data is explained in detail
(Figure 6.61).

Unified Governance Similarity: The similarity computation as part of the
search application and the use cases are explained.

Unified Governance Statistics: The statistical analysis and the visualisa-
tion are explained.

Issue Integration: Data inconsistencies in PoolParty can be caused by
application error or can be caused by user by importing the data in PoolParty
without doing constraint checks. These types of inconsistencies which cannot
be handled by PoolParty can be reported by using the Issue integration feature
(Figure 6.62). It allows users to configure a JIRA instance and report the
issue automatically to PoolParty support (Figure 6.63). The log file is also
automatically attached to the issue.

Graph Search: The faceted search which is used for managing develop-
ment artefacts. It also provides a recommender UI where users can see the
similarity between different issues and requirements. By using this recom-
mender, users can find duplicate bugs, similar stories, and the requirements,
which are associated with specific bugs.

Users can search for issues and see the details about it (Figure 6.64).
GraphSearch provides a selection of similarity algorithms that were inte-
grated for this use case to calculate similarities between development artefacts
(Figure 6.65).

6.4.6 Evaluation

6.4.6.1 Measuring overall value
PoolParty is a software product provided to customers on premise or as a
cloud service. Although the value can be measured by commercial success,
the improvements done to both the application’s features and the develop-
ment process cannot be easily quantified. Data curation for PoolParty during

296 Use Cases

F
ig

ur
e

6.
60

U
ni

fie
dV

ie
w

s
pi

pe
lin

e
fo

r
Po

ol
Pa

rt
y

us
e

ca
se

.

6.4 Integrating Semantic Datasets into Enterprise Information Systems 297

Figure 6.61 Unified Governance Search.

Figure 6.62 Issue Integration reporting dialogue.

Figure 6.63 Issue Integration created dialogue.

298 Use Cases

Figure 6.64 Semantic search over development artefact – Graph Search.

Figure 6.65 Details view of specific issue with the option to select similarity algorithm – PP
Recommender.

6.4 Integrating Semantic Datasets into Enterprise Information Systems 299

ALIGNED provides identification and repair of data problems to customers.
Curation reduces the need for consultant assistance, but also makes PoolParty
more flexible regarding stability by allowing more freedom on data imports.
This should raise the acceptance of the product, but it is hard to quantify.
Value for the development process can be measured by the reduction of time
efforts.

6.4.6.2 Data quality dimensions and thresholds
Data quality requirements for PoolParty are covered by two classes of vali-
dation. First, the Import Assistant feature ensures that imported data do not
conflict or violate the functionality of the application and therefore provides
a stability guarantee for users regardless of the data they import. Second,
quality checks can be applied to the data to discover design flaws in the
data modelling. These do not cause problems for the application, but might
be unwanted by the data engineers. In ALIGNED, we focus on the Import
Assistant and analyse the time saved by automatic identification and repair
done by the user in contrast to a manual repair by a SWC consultant done
directly on the data. Value is represented first by providing a feature for the
user to do the repairs without assistance and second by the reduced time
efforts needed to resolve data issues.

Data Agility

The Import Assistant provides users with the possibility to safely import any
RDF data they want to use. The validation checks are based on stability
requirements on the application. They detect all problems that would cause
PoolParty to fail, and as a result, any data can be imported safely. Regarding
the Unified Governance data, which is also represented as RDF, we can
change or extend the set with additional information and adapt the software
components using configuration rather than having a need to change the
actual implementation. The pipeline processing can be configured within the
pipeline steps and the Graph Search faceted search and similarity application
uses ontologies to provide both the search interface and the data represen-
tation. Also, the Integrated Issue Reporting automatically provides metadata
and logging information in the case of application failure.

Model Agility

If new features for PoolParty are implemented or existing features are
changed, there might be the need for additional or modified validation checks.

300 Use Cases

Using a standard-based declarative approach for these allows development
to add, change, test and reuse them more easily. The starting point was
SPARQL-based checks, and we moved on to using SHACL shapes for
validating the import data. The Unified Governance data model can be
easily configured using ontologies and therefore provides adaption for the
application to a changed dataset. In addition, Graph Search provides a plugin
architecture to add new functionality regarding similarity and recommenda-
tions. Plugins are automatically loaded and provided via user interface for
users to work with.

For PoolParty, the evaluation will compare productivity, usability and
data quality, as well the connection between data development life cycle and
the software development life cycle to the results in the previous validation
deliveries. SWC is evaluating the PoolParty trial for import validation by using
the Import Assistant to ensure data consistency. Improvements to the software
developing process by using the Unified Governance methodology and tool
chain, including the Integrated Issue Reporting, are evaluated regarding time
efforts.

6.4.6.3 Evaluation tasks
Curation

Import data into a PoolParty project, detect the problems and repair them.

Process

• Import an RDF dataset into a PoolParty project
• Test the PoolParty Thesaurus Manager to detect problems
• Problems may show up immediately or when a specific resource is

addressed
• Repair the problems manually using SPARQL

Challenges

Detection of problems is difficult. It may be that they are discovered during
later work. There is no systematic checking other than manual testing, which
is a lot of effort and not possible for big Thesauri.

Detection, but especially repair, requires detailed knowledge of the data
model and also the PoolParty application. It is unlikely that the average user
has this knowledge and can fix the issues.

6.4 Integrating Semantic Datasets into Enterprise Information Systems 301

Data Agility

Use the development data for managing the development process by organ-
ising issues to detect duplicates and find similar issues so that requirements
and stories can be viewed in relation.

Process

• Duplicates are often created when two different users use a new or mod-
ified feature and report a bug. We can only detect duplicates manually at
a later time.

• Requirements are manually linked to Jira issues on creation.
• Search has to be done separately in Confluence and Jira.
• In the case of an application failure, a Jira issue is created manually. Log

files have to be requested from the customer.

Challenges

• Duplicates are created and detected at a later time. We cannot prevent
the duplicate reporting.

• Finding stories and bugs for a specific requirement is a lot of effort.
Using linking between Confluence and Jira is done manually.

• We cannot do an integrated search over the whole development data.
• Requesting log files from the customer in the case of application failure

increases the time until issues are solved.

Model Agility

Create a unified view on the complete development data.

Process

Development data are managed in separate applications without integration
using a common basis.

Challenges

• The development data are distributed in several systems.
• There is no integrated semantic description for the different parts.
• The representation is not standards based. Publishing is difficult.
• Integration and processing is proprietary.

302 Use Cases

• There is no option to change the processing using a declarative approach
like ontologies.

6.5 Data Validation at DBpedia

6.5.1 Introduction

DBpedia is the centre of the current web of data. It publishes authorita-
tive RDF-based datasets that are used as a common point of reference for
interlinking and enriching most of the structured data on the Web today. It
relies on an automated data extraction framework to generate open RDF data
from Wikipedia documents, published in the form of file dumps, Linked Data
and SPARQL (SPARQL Protocol and RDF Query Language) hosting on the
Linked Data Stack.

DBpedia is a large-scale extraction project of unstructured and semi-
structured data from different Wikipedia language editions to RDF. This
extraction is achieved from a modular extraction framework that is cus-
tomised to handle multilingualism and structural differences between dif-
ferent Wikipedia language editions. The latest DBpedia release (v. 2014)
generated three billion facts from 125 localised versions. As Wikipedia
evolves over time, the code should be able to adapt to these changes. How-
ever, identifying errors at this data scale becomes very hard, and validation
workflows must be established that will ensure the quality of the extracted
data. The high-level goal of ALIGNED in this use case is to produce tools for
the DBpedia community, which will increase the coverage and precision of
the provided DBpedia data stack.

The latest DBpedia release contains around 23,000 files from more than
100 Wikipedia language editions. At the moment, we provide a download
folder for each language and detailed description only for the English dataset.
We want to extend the current approach and provide a machine readable
representation for the whole release and, besides dataset links to additionally
provide descriptions for all datasets and languages, license and contact infor-
mation using DataID (dataid.dbpedia.org).The DataID will be autogenerated
by a script that will iterate over all release folders and using a pattern-based
approach will assign metadata for each dataset.

6.5.2 Problem Statement

DBpedia is a large-scale extraction project of unstructured and semi-
structured data from different Wikipedia language editions to RDF. This

6.5 Data Validation at DBpedia 303

extraction is achieved from a modular extraction framework that is cus-
tomised to handle multilinguality and structural differences between different
Wikipedia language editions. The latest DBpedia release (v. 2014) generated
three billion facts from 125 localised versions. As Wikipedia evolves over
time, the code should be able to adapt to these changes. However, identifying
errors at this data scale becomes very hard, and validation workflows must
be established that will ensure the quality of the extracted data. The high-
level goal of ALIGNED in this use case is to produce tools for the DBpedia
community, which will increase the coverage and precision of the provided
DBpedia data stack.

6.5.2.1 Actors

Role Description
Extractors DBpedia team members who run the extraction process for a

given DBpedia release
Extraction
Agents

Software agents that perform the extraction such as DBpedia
live

Mapping
editors

Community members who edit the DBpedia mapping wiki

Ontology
Editors

DBpedia foundation members that edit the DBpedia
ontology

Release
managers

DBpedia team members that are responsible for the actions
leading to a given release of DBpedia

Developers DBpedia team members who write code for the extraction
tools

Users Users of DBpedia

The requirements on which the DBpedia use case wasbased are detailed in
Appendix A.

6.5.3 Architecture

Figure 6.66 depicts the DBpedia use case trial architecture, showing the
ALIGNED tools used in different stages of the DBpedia data workflow. With
the DBpedia trial, we want to showcase both the reuse of ALIGNED tools
as well as different integration points. For the data validation trial, we focus
on validating instance data, mappings to RDF and links to other datasets.
Link validation is performed with the SUMMR Mapping tool that reports
results in the ALIGNED Metamodel version 2, especially the DLO and the
DBpedia use case specific ontology. This means that the RDF logs produced

304 Use Cases

Figure 6.66 DBpedia Use Case Trial System Architecture, showing the ALIGNED tools
used in different stages of the DBpedia data workflow.

by SUMMR can be consumed by the ALIGNED Unified Governance Tools
in an ALIGNED tool chain. The other two validation scenarios are based
on RDFUnit and use the SHACL violation reporting vocabulary as an inte-
gration point. DBpedia instance data are validated with a simple RDFUnit
setup, while the DBpedia infobox-to-ontology mappings by using RML as
an intermediate format. Regarding data dissemination, we use the DataID
ontology as an integration point and automate the generation of the download
page or a DBpedia release as well as the provision of a DBpedia release in a
triple store through Docker.

6.5.4 Tools and Features

Figure 6.67 shows which features of the ALIGNED software tools are
deployed in order to support these scenarios.

6.5 Data Validation at DBpedia 305

So�ware Feature Used For
RDFUnit Data valida�on Instance data valida�on
RDFUnit Data valida�on Mapping Valida�on
RDFUnit Data valida�on Ontology Valida�on
RDFUnit Data valida�on Link Valida�on (for metadata)
SUMMR Mapping
Tool

Link Valida�on DBpedia Interlink valida�on

DataID Dataset
descrip�on

Automa�c genera�on of a release download page

DataID Dataset
descrip�on

Automa�c genera�on of a triple store with data
from a release using docker

Figure 6.67 ALIGNED Tools and Features used in the DBpedia trial platform.

6.5.5 Implementation

Figure 6.68 depicts an RDFUnit validation report of a DBpedia release.
The report is provided as an RDF file that adheres to the RUT ontology,
as well as an HTML export that is human readable. The report provides a
high-level overview at the top with basic provenance metadata and statistics
and continues with detailed error counts per constraint.

The mapping validation report (Figure 6.69) uses RDFUnit in the back-
ground but performs more sophisticated validation processing and reporting.
The complete workflow is described in “Assessing and Refining Mappings
to RDF to Improve Dataset Quality”. The end user report is tailored for the
mapping editors where they can select mappings errors based on language,
infobox, DBpedia property, or DBpedia class.

Figure 6.68 Instance data validation report with RDFUnit.

306 Use Cases

Figure 6.69 Mapping validation report with RDFUnit and RML.

Starting in October 2017, DBpedia replaced the old Mappings Wiki with
a new Mappings UI, based on GitHub and RML mappings. The validation
report shown in Figure 6.70 has been superseded by this interface, since
wrong mappings are detected automatically on commit.

The graphical interface based on the DBpedia-Links repository provides
an overview of all outgoing links to other datasets and points out any
inconsistency in a given linkset (Figure 6.71). DBpedia employs multiple
validation methods for link validation, including the SUMMR Mapping tool
(see below).

The SUMMR Mapping tool (Figure 6.72) performs an interlinking val-
idation for all the external links in a DBpedia release. After processing the
link, the tool outputs a log file and splits the links into valid and invalid.
The invalid links are discarded, and only the valid ones become part of the
DBpedia release.

Gathering extensive metadata throughout all extraction steps is not only
helping to produce exhaustive dataset metadata (in form of DataID docu-
ments), but also allows for highly expressive logs and convenient summary
reports (as shown in Figure 6.73).

The generation of a DBpedia release download page was a tedious task.
We use DataID as a core release metadata component and created a flexible
user interface that people can use to identify and filter specific DBpedia
datasets. Figure 6.74 depicts the download page of the 2015-2010 release.

6.5 Data Validation at DBpedia 307

Figure 6.70 The new Mappings UI (using RDFUnit for validating mappings).

Figure 6.71 DBpedia Link Viz tool.

308 Use Cases

Figure 6.72 SUMMR Mapping tool.

Figure 6.73 Active extraction monitoring (here: extraction summaries forwarded to Slack).

The dockerised DBpedia (Figure 6.75) automates the digestion of a
DBpedia release by downloading the datasets of the user’s preferred language
and loading these datasets on a Virtuoso triple store server. We use docker as
the underlying technology that has recently became a very common means

6.5 Data Validation at DBpedia 309

Figure 6.74 DBpedia download page through DataID.

Figure 6.75 Dockerised DBpedia.

of application distribution. DataID is used as the core metadata component to
identify and filter DBpedia datasets.

6.5.6 Evaluation

6.5.6.1 Productivity
The basic unit of analysis for productivity is a comparison of time elapsing
between two DBpedia releases. Typical tasks are code maintenance, release

310 Use Cases

management, ontology editing, release documentation creation and dealing
with user queries.

For a sufficient evaluation of productivity changes between two DBpe-
dia releases, one has to consider the changes to data sources, ontology,
mappings,and the code base. In addition, the number of published datasets
tends to increase over time when incorporating new extraction methods
and algorithms. Nonetheless, over the time of this project, DBpedia has
managed to cut the time between releases in half (13 months to 6 months),
while producing at least three times as many pieces of information (triples).
Currently, DBpedia is pushing for regular updates for the 10 most widely used
language editions on a bi-monthly basis (synchronising with the bi-monthly
data releases by Wikimedia). Multiple efforts to increase productivity are
closely related to Quality and Agility (see below).

A significant improvement of time spent on dissemination activities
was achieved by introducing DataID as dataset metadata format. Extensive
metadata descriptions of datasets allow for many automation tasks, such as
automated downloading of relevant dataset files, generic implementations
of dataset overviews, and download tables. In addition, extensive and high-
quality metadata of datasets helped DBpedia to check 31 of the 35 Data on
the Web Best Practices of the eponymous W3C working group.

6.5.6.2 Quality
Instance Validation

To create high-quality data, a validation method for DBpedia instance data
has to provide sufficient metadata to distinguish between three different
possible sources of a violation:

• The Wikipedia editor (entering erroneous values)
• Incorrect mappings, between source and DBpedia ontology
• A software issue in the DBpedia Extraction Framework

RDFUnit was created with these demands in mind, providing necessary meta-
data to any violation found and creating links between a software issue and
the violating instance (see D5.8). The resulting violations and their pertaining
metadata provide the exact coordinates of a violation, the grounds for this
violation and the possible source. Thus, violations recorded in such a manner
are used as feedback medium, relating possible mistakes to Wikipedia editors,
the mapping community or software developers. DBpedia is running all
published data through RDFUnit, validating it against an up-to-date version
of the DBpedia ontology. The validated outputs generate consistent data that

6.5 Data Validation at DBpedia 311

are termed DBpedia+, whereas the wider, more exhaustive data are published
as the standard DBpedia datasets.

Mapping Validation

In addition to validating the resulting instance data, DBpedia started to
validate the mappings between DBpedia ontology and the Wikimedia data
sources on a nightly basis with RDFUnit. Thus, most of the mapping-related
violations can be caught before ever starting the data extraction, preventing
possible reruns of whole extraction steps and increasing productivity in turn.

Ontology Validation

The DBpedia ontology has been maintained by the DBpedia community in
a crowdsourced manner at the mappings wiki. There is an ongoing effort to
move ontology development onto GitHub for easier collaboration and for the
sake of more control over the ontology structure.

At the time of writing, a set of constraints ensure that each DBpedia class
and each DBpedia property conform to DBpedia community requirements.
RDFUnit is used to perform the validation (using SHACL constraints) and to
integrate with Travis CI and automate the checks on each commit and pull
request.

Link Validation

The DBpedia-Links repository maintains linksets between DBpedia and other
LOD datasets. A system for maintenance, update and quality checks, which
validates various aspects of the link submission, is in place and is integrated
with common continuous integration services, such as Travis CI. It offers a
way to publish linksets between DBpedia and any given dataset, which are
published alongside the DBpedia dataset files.

Quality checks include:

• The SUMMR Mapping validation tool
• RDFUnit for validating (using SHACL constraints) the link manifest

(basic metadata providing a minimum of provenance)

Workflow Validation

To ensure quality regarding the extraction workflow, DBpedia extended the
extraction framework to produce metadata for any extraction process, exten-
sive logging of progress and exceptions, as well as high-level summaries

312 Use Cases

of extractions. These efforts support extensive monitoring, metadata prop-
agation and logging (on triple and dataset level) and the deployment of
ETL frameworks and Workflow Management Systems to further decrease
the time needed for extraction and to automate this process completely.
Currently, a concerted effort to adapt the Unified Views Framework of SWC
for this purpose is underway, which will continue until after this project has
finished.

6.5.6.3 Agility
The greatest need for agility in DBpedia is the ability to rapidly respond
to changes in source datasets like Wikipedia. This is the focus of the use
case scenario Wikipedia/Wikidata change. Example Wikipedia changes that
impact DBpedia are: the introduction of new pages that represent new con-
cepts, the introduction of new infobox templates that represent additional
instance data in DBpedia, and changes in infobox structures. Adapting to
those changes in a (semi-) automated way will prevent the loss of data
(due to changes to Wikipedia templates) and incorporate new instance data
automatically.

As a prerequisite to automate mappings, DBpedia will switch its complete
mapping infrastructure to an RML-based mapping approach in October 2017.
This is a direct result of one of our Google Summer of Code projects of
2016. As a superset of the W3C recommended mapping language R2RML
for relational databases to RDF, RML offers a way to completely represent
all DBpedia mappings in RDF. It enables:

• Full support of RDFUnit mapping validation (no transformation neces-
sary)

• The complete range of mapping possibilities of RML (incl. functions,
conditions, etc.)

• Rule-based automation of mappings using all RML features
• Replacing the rigid wiki text mappings used by DBpedia until now

Concurrently, DBpedia helped to implement a taxonomy learning system
based on Wikipedia categories. Set up as one of our annual participation with
the Google Summer of Code program, this project realised the concept laid
out in the “Unsupervised Learning of an Extensive and Usable Taxonomy for
DBpedia”. These automatically derived types are a reliable backbone for the
automated mapping generation ahead.

