11

A Centralized Support Infrastructure (CSl)
to Manage CPS Digital Twin, towards the
Synchronization between CPS Deployed on
the Shopfloor and Their Digital
Representation

Diego Rovere!, Paolo Pedrazzoli?, Giovanni dal Maso!,
Marino Alge? and Michele Ciavotta®

ITTS srl, Italy

2Scuola Universitaria Professionale della Svizzera Italiana (SUPSI),
The Institute of Systems and Technologies for Sustainable
Production (ISTEPS), Galleria 2, Via Cantonale 2C,

CH-6928 Manno, Switzerland

3Universita degli Studi di Milano-Bicocca, Italy

E-mail: rovere @ttsnetwork.com; pedrazzoli @ttsnetwork.com;
dalmaso @ttsnetwork.com; marino.alge @supsi.ch;
michele.ciavotta@unimib.it

In order to support effective multi-disciplinary simulation tools in all phases
of the factory life cycle, it is mandatory to ensure that the Digital Twin mirrors
constantly and faithfully the state of the CPS. CPS nameplate values change
over time due to situation and strain. Thereupon, this chapter describes the
future CPS as equipped with special assets named Functional Models to be
uploaded to CSI for synchronization and data analysis. Functional Models are
essentially software routines that are run against data sent by the CPS. Such
routines can regularly update CPS reference values, estimate indirect metrics,
or train predictive models. Functional Models are fully managed (registered,
executed, and monitored) by the CSI middleware.

317

318 A Centralized Support Infrastructure (CSI) to Manage CPS Digital Twin

11.1 Introduction

The main purpose of the CSI is to manage CPS Digital Twins (DTs) allowing
the synchronization between CPS deployed on the shopfloor and their digital
representation. In particular, during the whole factory life cycle, the CSI will
provide services (via suitable API endpoints) to analyze the data streams
coming from the shopfloor and to share simulation models and results
among simulators.

In this chapter, we present the implementation of a distributed middle-
ware developed within the frame of MAYA European project, tailored to
enable scalable interoperability between enterprise applications and CPS with
especial attention paid to simulation tools. The proposed platform strives for
being the first solution based on both Microservices [1, 2] and Big Data [3]
paradigms to empower shopfloor CPS along the whole plant life cycle and
realize real-digital synchronization ensuring at the same time security and
confidentiality of sensible factory data.

11.2 Terminology

Shopfloor CPS — With the expression “Shop-floor CPS” we refer to Digital-
Mechatronic systems deployed at shopfloor level. They are physical entities
that intervene in various ways in the manufacture of a certain product. For the
scope of this chapter, Shopfloor CPS (referred to as Real CPS or simply CPS)
can communicate to each other and with the CSI.

CPS Digital Twin (or just Digital Twin) — In the smart factory, each
shopfloor CPS is mirrored by its virtual alter ego, called Digital Twin (DT).
The Digital Twin is the semantic, functional, and simulation-ready rep-
resentation of a CPS; it gathers together heterogeneous pieces of infor-
mation. In particular, it can define, among other things, Shopfloor CPS
performance specifications, Behavioral (simulation) Models, and Functional
Models.
Digital Twin is a composite concept that is specified as follows:

CPS Prototype (or just Prototype) — Chapter 12 proposes a meta-model
that paves the way to a semantic definition of CPS within the CSI. Following
the Object-Oriented Programming (OOP) approach, we distinguish between
a Prototype (or class) and its derived instances. A CPS prototype is a model
that defines the structure and the associate semantic for a certain class of CPS.

11.3 CSI Architecture 319

A prototype defines fields representing both general characteristics of the
represented CPS class and the state of a specific Shopfloor CPS.

CPS Instance — Once a shopfloor CPS is connected to the CSI platform, a set
of processes are run to instantiate, starting from a CPS prototype, the Digital
Twin. The Digital Twin is an instance of a specific CPS prototype. Therefore,
a CPS instance can be defined as the computer-based representation (live
object in memory or stored in a database) of its Digital Twin, which can be
considered a more abstract concept even independent of this implementation
within the CSI.

Behavioral Models — These are simulation models, linked to the semantic
representation of a CPS (prototype and instance) and stored within the CSI.
Each Digital Twin can feature behavioral models of different nature to enable
the multi-disciplinary approach to simulation.

Functional Models — In layman’s terms, functional models are pieces of
software to be run on a compliant platform created to analyze data coming
from the shopfloor. Data can enter a platform in the form of streams or
imported from other sources (text files, excel, databases, etc.). The results
of the analysis are used to enrich the Digital Twin implementing the real-
to-digital synchronization. They can be used, for instance, to update license
plate data of Digital Twins or to enable predictive maintenance specific on
the considered CPS.

11.3 CSI Architecture

The overall CSI component diagram is shown in Figure 11.1: a relevant
part of the platform consists of a microservice-based infrastructure devoted
to administrative tasks related to Digital Twins and a Big Data deploy-
ment accountable for processing shopfloor data. Since the two portions
of our middleware have different requirements, being also grounded on
different technological solutions, in what follows, they are presented and
discussed separately.

11.3.1 Microservice Platform

In a nutshell, the microservice architecture is the evolution of the classical
Service Oriented Architecture (SOA) [4] in which the application is seen as
a suite of small services, each devoted to a single activity. Within the CSI,

320 A Centralized Support Infrastructure (CSI) to Manage CPS Digital Twin

-~ R\ @ @ Y
MSF Field Database Web Ul AP Gatewa)
connector | | connector | | connector ‘ I YL & clasticsearch gy logstash [kibana
Integration Front-end Monitoring Console
¥)
{ !
B\ @ B\
] i User Account and R
kafka ——» | Scheduler Orchestrator| 1 |, Authentication ysaL
X Management
S e Security
|
s | L[
ark®|
) : : Models MS @ D
Simulations MS
i | Updater Ms I l Assets MS |
—o1| |
w | BoUSHegaors ; Backend .
_cassandra | 1 Config Server
Big Data
l 0 mongoDB I @ SOA enabling services

sub-architecture

Figure 11.1 CSI Component Diagram.

each microservice exposes a small set of functionalities and runs in its own
process, communicating with other services mainly via HTTP resource API
or messages. Four groups of services can be identified and addressed in
what follows.

11.3.1.1 Front-end services

Front-end services are designed to provide the CSI with a single and secure
interface to the outer world. As a consequence, any other service can be
accessed only through the front-end and only by trusted entities. The main
services in this group are:

Web-based Ul

The Web-based Ul is a Web application for human—machine interaction;
it provides a user friendly interface to register new CPS or to execute queries.
Administration tools such as security management and platform monitoring
are available as well.

API Gateway

The API Gateway, instead, is a service designed to provide dynamic and
secure API routing, acting as a front door for the requests coming from
authorized players, namely users via the Web Ul and devices/CPS executing
REST/WebSocket calls. In layman’s terms, all the other platform services are
accessible only through the gateway and only by trusted entities.

11.3 CSI Architecture 321

The gateway is based on Netflix Zuul' for dynamic routing, monitoring,
and security, and Ribbon?, a multi-protocol inter-process communication
library that, in collaboration with Service Registry (see SOA enabling ser-
vices), dispatches incoming requests applying load-balance policy. The API
gateway, finally, offers an implementation of the Circuit Breaker® pattern
impeding the system to get stuck in case the target back-end service fails
to answer within a certain time.

11.3.1.2 Security and privacy

Security policies are enforced by the User Account and Authentication
(UAA) service, which is in charge of the authentication and authoriza-
tion tasks:

UAA Service
In a nutshell the main task of this service is to check users’ (human operators,
CPS or microservices) credentials to verify the identity and issuing a time-
limited OAuth2 [13] token to authorize a subset of possible actions that
depends on the particular role the user has been assigned to. Users’ data,
roles and permission are stored in a relational database: currently, MySQL*
database is used to this end.

It is worth to notice that authentication and authorization is required not
only for human users and CPS but also to establish a trustful collaboration
between microservices avoiding malevolent and tampering actions.

11.3.1.3 SOA enabling services
SOA enabling services: this group of services has the task to support the
microservice paradigm,; it features:

Service Registry

This service provides a REST endpoint for service discovering. This service is
designed to allow transparent and agnostic service communication and load
balancing. Based on Netflix Eureka’, it exposes APIs for service registration
and for service querying, allowing the services to communicate without
referring to specific IP addresses. This is especially important in the scenario
in which services are replicated in order to handle a high workload.

"https://github.com/Netflix/zuul/wiki
Zhttps://github.com/Netflix/ribbon
3https://martinfowler.com/bliki/CircuitBreaker.html
*www.mysql.com
Shttps://github.com/Netflix/eureka/wiki

322 A Centralized Support Infrastructure (CSI) to Manage CPS Digital Twin

Configuration Server

The main task of this service is to store properties files in a centralized way
for all the micro-services involved in the CSI. This is a task of paramount
importance in many scenarios involving the overall life cycle of the platform.
Among the benefits of having a configuration server, we mention here the
ability to change the service runtime behavior in order to, for example,
perform debugging and monitoring.

Monitoring Console

This macro-component with three services implements the so-called ELK
stack (i.e., Elasticsearch, Logstash, and Kibana) to achieve log collection,
analyzing, and monitoring services. In other words, logs from every microser-
vice are collected, stored, processed, and presented in a graphical form to the
CSI administrator. A query language is also provided to enable the adminis-
trator to interactively analyze the information coming from the platform.

11.3.1.4 Backend services

To this group belong those services that implement the Chapter 12 meta-data
model and manage the creation, update, deletion, storage, retrieval, and query
of CPS Digital Twins as well as simulation-related information. In particular,
the CSI features the following services:

Orchestrator
The Orchestrator microservice coordinates and organizes other services’
execution to create high-level composite business processes.

Scheduler

Service for the orchestration of recurring action. Example of those jobs
are: importing data from external sources at regular intervals, updating
CPS Prototypes and instances, removing from internal databases stale
data, and sending emails enclosing a report on the system’s healthy to
administrators.

Models MS/Assets MS

Models and Assets microservices handle the persistence of Digital Twin
information (their representation and assets, respectively) providing end-
points for CRUD operations. In the current version of the CSI, these two
components are merged into a single service in order to streamline the access
to MongoDB and avoid synchronization issues.

11.3 CSI Architecture 323

FMService

This service is able to communicate with the Big Data platform; its main task
is to submit the Functional Models to Apache Spark, to monitor the execution,
cancel, and list them.

Updater MS
This service is designed to interact with the Big Data platform (in particular
with Apache Cassandra) to retrieve data generated by the Functional Models.

Simulations MS
This service is appointed to managing the persistence of simulation-related
data within a suitable database.

11.3.2 Big Data Sub-Architecture

Big Data technologies are becoming innovation drivers in industry [5]. The
CSI is required to handle unprecedented volumes of data generated by
the digital representation of the factory in order to keep updated the CPS
nameplate information. To this end, a data processing platform, specifically
a Lambda architecture [6], has been implemented according to the best
practices of the field. The Lambda Architecture was introduced as a generic,
linearly scalable, and fault-tolerant data processing architecture. In particular,
both data in rest and data in motion patterns are enforced by the platform,
making it suitable for both stream and batch processing.

The Lambda Architecture encompasses three layers, namely batch, speed,
and serving layers. The batch layer is appointed to the analysis of large
quantities (but still finite) of data. A typical scenario is that wherefore the data
ingested by the system are inserted in NoSQL Databases. Pre-computation is
applied periodically on batches of data. The purpose is to offer the data a
suitable aggregated form for different batch views. Note that the batch layer
has a high processing latency because it is intended for historical data.

The speed layer is in charge of processing infinite streams of information.
It is the purpose of the Speed Layer to offer a low latency, real-time data
processing. The speed layer processes the input data as they are streamed in
and it feeds the real-time views defined in the serving layer.

The Serving Layer has the main responsibility to offer a view on the
results of the analysis. The layer responds to queries coming from external
systems; in this particular case, the serving layer provides an interface that
integrates with the rest of the CSI.

324 A Centralized Support Infrastructure (CSI) to Manage CPS Digital Twin

—> Batch Precompute
Remomputatxo? | Views
All (raw) Data Store
l—i—l
“ A 4 A 4 A 4
Aggregated | | Aggregated | | Aggregated
Batch Layer | Data Data Data
Batch Views
“ 1 MQez:flge - Serving Layer M&{Sxd
Real-Time Views
Speed Layer RT RT RT
“ Data Data Data
y N N y N
1
LS Process Real-Time Precompute
Streams Tncrement Views

Figure 11.2 Lambda Architecture.

Designing and setting up a Big Data environment, here in the form of the
Lambda Architecture (Figure 11.2), is a complex task that starts with doing
some structural decisions. In what follows, some high-level considerations
about the technological choices made are presented:

11.3.2.1 Batch layer

The field of Big Data is bursting with literally hundreds of tools and
frameworks, each with specific characteristics; however, recently, some new
solutions have appeared on the market that natively extend MapReduce [7]
paradigm reduce, and, among other things, provide a more flexible and
complete programming paradigm paving the way to the realization of new
and more complex algorithms.

The solution selected to implement this layer, Apache Spark [8], claims
to be up to 100x faster than Hadoop on memory and up to 10 faster on disk.
This is mainly due to a particular distributed, in memory data structure called
Resilient Distributed Datasets (RDD). Shortly, Apache Spark attracted the
interest of important players and gathered a vast community of contributors,
only to mention a few: Intel, IBM, Yahoo!, Databricks, Cloudera, Netflix,
Alibaba, and UC Berkely. Moreover, Spark implements both map-reduce
and streaming paradigm, features out-of-the-box an SQL-like language for
automatic generation of jobs, and supports several programming languages
(Java, Scala, Python, and R).

11.3 CSI Architecture 325

11.3.2.2 Stream processing engine

If the batch processing engine enables the analysis of large historical data
(often referred to as Data at Rest), then the stream processing engine is the
component of the Lambda Architecture that is in charge of continuously
manipulating the incoming data in quasi real-time fashion (i.e., the Data in
Motion scenario). Recently, stream processing has increased in popularity.
Only within the Apache Foundation, we identified several tools supporting
different flavors of stream processing. Among them is Spark Streaming [9],
the tool used to implement this layer.

Spark Streaming relies on Spark core to implement micro-batching
stream processing. This means that the elements of the incoming streams are
grouped together in small batches and then manipulated. As a consequence,
Spark shows a higher latency (about 1 second). Spark Streaming is a valid
alternative owing to the rich API, the large set of libraries, and its stability.

Spark can work in standalone mode featuring on its own resource man-
ager or it can rely on external resource managers (as YARN). Other resource
managers exist (e.g. Apache Mesos), but they are related more to cluster
management than on Big Data. Nonetheless, Spark can be executed over both
YARN and Mesos.

11.3.2.3 All data store

A central role in the Lambda Architecture is played by the All Data Store,
which is the service in charge of storing and retrieving the historical data to
be analyzed. Depending on the type of data entering the system, this element
of the platform can be realized in different ways. In MAYA, we decided to
implement it through a NoSQL database particularly suitable for fast updates,
Apache Cassandra [10]. It is the most representative champion of the column-
oriented group. It is a distributed, linear scalable solution capable of ensuring
high volumes of data. Cassandra is widely adopted (it is the most used
column-oriented database) and features an SQL-like query language named
CQL (Cassandra Query Language) along with a Thrift® interface. As far as
stream views are concerned, Cassandra has been successfully used to handle
time series for IoT and Big Data.

11.3.2.4 Message queueing system
In a typical Big Data scenario, data flows coming from different sources
continuously enter the system; the most used integration paradigm to handle

®https://thrift.apache.org/

326 A Centralized Support Infrastructure (CSI) to Manage CPS Digital Twin

data flows consists in setting up a proper message queue. A message queue
is a middleware implementing a publisher/subscriber pattern to decouple
producers and consumers by means of an asynchronous communications
protocol. Message queues can be analyzed under several points of view, in
particular policies regarding Durability, Security, Filtering, Purging, Routing,
and Acknowledgment, and message protocols (as AMQP, STOMP, MQTT)
must be carefully considered.

Message queue systems are not a novelty and many proprietary as well as
open-source solutions have appeared on the market in the last years. Among
the open-source ones, there is Apache Kafka [11]. A preliminary analysis
seems to demonstrate that Kafka is the most widely used in big players’ pro-
duction environments as, for instance, in LinkedIn, Yahoo!, Twitter, Netflix,
Spotify, Uber, Pinterest, PayPal, Cisco, and Coursera among the others.
Kafka is written in Java and originally developed at LinkedIn; it provides a
distributed and persistent message passing system with a variety of policies.
It relies on Apache Zookeeper [12] to maintain the state across the cluster.
Kafka has been tested to provide close to 200,000 messages/second for writes
and 3 million messages/second for reads, which is an order of magnitude
more that its alternatives.

11.3.2.5 Serving layer

This layer provides a low-latency storage system for both batch and speed
layers. The goal of this layer is to provide an engine able to ingest different
types of workloads and query them showing a unified view of data. The
rationale is that the outcomes of the different computations must be suitably
handled to later be further processed. In particular, batch views will contain
steady, structured, and versioned data, whereas stream views will contain
time-related data. Within the CSI, we have adopted the following flexible
approach: in case Batch activities are required, the serving layer is imple-
mented by means of Apache Cassandra NoSQL database, otherwise Apache
Kafka is exploited. Notice that it is not uncommon to use a persistent and
distributed message system as serving layer as, for example, in ORYX2’,
where precisely Kafka is used.

11.3.3 Integration Services

Technically, these services do not belong to the CSI at the moment, but we
envision their development in the following phases of the project with the aim

"http://oryx.io/

11.4 Real-to-Digital Synchronization Scenario 327

of streamlining the interaction processes with external tools and databases;
in particular, at the moment of writing we foresee the following services:

MSF Connector

This component passes the CPS id, the simulation model in AutomationML
format, and the simulation types requested by the user. The MSF sends in
return the simulation results per each simulation type requested.

Field Connector

This service serves to bridge the gap between the communication layer and
the field in case of CPS non-compliant with the CSI. In particular, it will
create suitable WebSocket channels for data streams coming from the field
and root those data to the Big Data platform inside the CSI.

DB Importer
Database Importers will be in charge of importing valuable data from exter-
nal databases to enable the execution of Functional Models on those data.

11.4 Real-to-Digital Synchronization Scenario

Several usage scenarios are possible to be executed within the CSI. Nonethe-
less, we propose the following as a reference use case, as it involves a good
part of CSI components and functionalities. The objective is to use it as a
reading key to better understand the relationships among the CSI and how
they are reflected into the architecture. The considered scenario concerns the
automated processing of data streams coming from CPS and can be described
as follows:

1. A human operator registers a new CPS. This action can be performed
via the graphical UI or by means of available REST [13] endpoints;

2. The CPS logs in on the CSI, its digital identity is verified and the Digital
Twin is activated,;

3. The Functional Model featured by the Digital Twin (if any) is set up,
scheduled, and executed;

4. WebSocket channel is established between the CPS and CSI. The CPS
starts sending data to the platform;

5. The Functional Model periodically generates updates for a subset of
attributes of the corresponding Digital Twin;

6. The CPS disconnects from the CSI and consequently the related Func-
tional Models is halted and dismissed.

328 A Centralized Support Infrastructure (CSI) to Manage CPS Digital Twin

Figure 11.3 describes in UML the main actions carried out by the CPS and
by the CSI in the scenario at hand. In particular, the CPS connects by logging
in on the platform, at that point it is associated to a WebSocket endpoints and
it can start sending data up to the CSI. The CSI, on the other hand, launches
the execution of the Functional Model associated with the CPS.

A deeper insight is gained by means of Figure 11.4; in it, the interactions
among services within the CSI are highlighted. It is clear, in fact, that the
CPS connects with the CSI via the APl Gateway. In the current version

:
Cps t
©< readCpsinformation
startFunctionalModel) - ___ S
<<Include>>

'
'

'

' <<Include>>
' \

'

'

<<Include=> applyFunctionalModel

\writePropertyUpdate

Figure 11.3 CPS connection.

5d Apache Spark
Hodel: hestrator heduler heduler unct
S Orcl Jobsc el FunctionalModel RKafka
T T T T T T T
Cg | | | | | | 1
1: connect | | | | | | 1
| I | | | 1
| | | | | 1
1.1: checkCps | i H i ! !
1 1 1 1 1
1.2: checkStreamModel] 1 ! ! !
1 1 1 1 i
1.3: checkSessionModel] ! ! ! !
1 1 1 1 1
| | | | 1
1 1] | 1
1.4: notifySession 1.4.1: runFunctionalModel | \ i
> | 2: deployFunctionalModel | I
Pt i 2.1: getinitState !
1.4.2: ScheduleUpdateJob ! {
Py 22 getDataStream
T 1
! 1 2.3: galculation
| |
| | |
| i ' 2.4: sendNewState
| | |
| | |
i H ! 255: sendResults
] ' 3: getStateMessage
| |
| 4 updateModeMs : H
]] | 1
U | | | 1
T | | | | | 1
| | | | | | 1

Figure 11.4 Sequence diagram.

11.5 Enabling Technologies 329

of the CSI, the Gateway is in charge of checking whether the CPS asking
for being attended is legit (it must have been created within the platform
beforehand). To do this, the Gateway interrogates the Models MS service.
The Gateway then creates a WebSocket endpoint for the CPS, redirects the
incoming workload to Kafka, and notifies the Orchestrator. This, in turn,
is in charge of running the Functional model(s) associated with the CPS.
The Functional models are executed within the Big Data platform (in Apache
Kafka cluster) and in particular they use Kafka not only as source of data but
also as the endpoint where to post the results of the computation. Meanwhile
the Orchestrator has scheduled a recurrent job on the Scheduler that picks
up the updated from the output Kafka topic and uses them to update the
nameplated values of the CPS Digital Twin.

During the whole process, the Security is present in the form of SSL
connection, CPS log in via OAuth2, and service-to-service authorization and
authentication. We outlined the real-to-digital synchronization in Figure 11.5,
wherein the reader can spot the presence of all the players present in the
sequence diagram plus the UAA Service in charge of the authentication and
authorization tasks. The actions performed by this service are pervasive and
would have made the sequence diagram unintelligible.

Gateway
O‘ = .
t '
CPS OAuth2.0
push Cps data
° i“?; Models MS
compute FM using @
H CPS data e \’
"Mk
Functional Model running Kafka Topic
Update CPS
Push CPS updates l - properties
=
° —
Se, \’
Retrieve CPS . o

i dat
Kafka Topic Updates Scheduler

Figure 11.5 Outline of the Real-to-digital synchronization.

330 A Centralized Support Infrastructure (CSI) to Manage CPS Digital Twin

11.5 Enabling Technologies

CSI aims at being the first reference middleware for smart factories based
on a composite Microservices/Big Data approach paying particular attention
to security concerns. In the following paragraphs, we examine the reasons
behind the technical choices made.

11.5.1 Microservices

The Microservices approach proposes to have numerous small code bases
managed by small teams instead of having a giant code base that eventually
every developer touch with the result of making more complex, slow, and
painful the process of delivering a new version of the system.

In a nutshell, the microservice architecture is the evolution of the classical
Service-Oriented Architecture (SOA), in which the application is seen as a
suite of small services, each devoted to as single activity. Each microser-
vice exposes an atomic functionality of the system and runs in its own
process, communicating with other services via HTTP resource API (REST)
or messages.

The adoption of the microservice paradigm provides several benefits,
as well as presents inconveniences and new challenges. Among the benefits
of this architectural style, the following must be enumerated:

Agility — Microservices fit into the Agile/DevOps development methodo-
logy [2], enabling business to start small and innovate fast by iterating on their
core products without affording substantial downtimes. A minimal version of
an application, in fact, can be created in shorter time reducing time-to-market
and up-front investment costs, and providing an advantage with respect to
competitors. Future versions of the application can be realized by seamlessly
adding new microservices.

Isolation and Resilience — Resiliency is the ability of self-recovery after
a failure. A failure in a monolithic application can be a catastrophic event,
as the whole platform must recover completely. In a microservice platform,
instead, each service can fail and heal independently with a possibly reduced
impact on the overall platform’s functionalities. Resilience is strongly depen-
dent on compartmentalization and containment of failure, namely Isolation.
Microservices can be easily containerized and deployed as single process,
reducing thus the probability of cascade-fail of the overall application. Isola-
tion, moreover, enables reactive service scaling and independent monitoring,
debugging, and testing.

11.5 Enabling Technologies 331

Elasticity — A platform can be subject to variable workloads especially
on seasonal basis. Elasticity is the ability to respond to workload changes
provisioning or dismissing computational power. This is usually translated
into scaling up and down services. This process can be particularly painful
and costly in case of on premise software; easier and automated in case of
cloud-based applications. Nonetheless, microservices allows for a finer grain
approach, in which services in distress (e.g., that are not meeting their Quality
of Service) can be identified and singularly scaled taking full advantage of
cloud computing since it requires the provisioning of just the right amount
of resources. This approach can lead to substantial savings in the cloud that
usually implements pay-per-use provisioning policies.

As far as the challenges and drawbacks derived by the choice of adopting
microservices are concerned, we mention here:

Management of Distributed Data — As each microservice might have its pri-
vate database, it is difficult to implement business transactions that maintain
data consistency across multiple databases.

Higher Complexity of the Resulting System — Proliferation of small
services could translate into a tangle Web of relationships among them.
Experienced teams must be put together to deal in the best possible way with
microservice platforms.

11.5.2 Cloud Ready Architecture: The Choice of Docker

Containerization services (among which the most known is definitely Docker
[14]) and microservice are two closely related yet different aspects of
the same phenomenon; although containerization is not essential to realize
microservice architectures, it is certainly true that it enables microservices
to fully realize their potential; Docker’s agility, isolation, and portability,
in fact, powered the rise and success of the microservice pattern while the
latter gathered an ever-increasing interest around containers. It can be safely
said that there are now two faces of the same coin and have made the fortune
of each other.

At this point, it is important to answer to the simple question: what is a
containerization system? A containerization system (hereinafter, we will use
Docker and containerization system interchangeably) is a para-virtualization
platform that exploits isolation features of Linux kernel, as namespaces and
cgroups (recently also Windows’ ones), to create a secure and isolate environ-
ment for the execution of a process. Each process running in a container has

332 A Centralized Support Infrastructure (CSI) to Manage CPS Digital Twin

access to its own file system and libraries, but it shares with other containers
the underpinning kernel.

This approach is defined para-virtualization because, unlike virtualization
systems that emulate hardware to execute whole virtual machines to run
atop, there is no need to emulate anything. Moreover, Docker do not depend
on specific virtualization technologies and, therefore, it can run wherever a
Linux kernel available. The overall approach results to be lightweight with
respect to more traditional hypervisor-based virtualization platform allowing
for a better exploitation of the available resources and for the creation of faster
and more reactive applications. In the light of these considerations, it should
be clear how Docker fits perfectly for microservices, as it isolates containers
to one process and makes it simple and fast to handle the full life cycle of
these services.

The current version of the CSI is provided with a set of scripts for
automatic creation of Docker images for each of the services involved
in the platform. Deployment scripts, which rely on a tool called Docker-
compose, are provided as well to streamline the deployment on a local
testbed. Nonetheless, a similar approach can be used to execute the platform
on the most important Clouds (e.g. Amazon ECS, Azure Container Service).

11.5.3 Lambda Architecture

A very important subset of CSI functionalities consists in the capability
to handle unprecedented volume generated by the digital representation of
the factory. To this end, a Big Data platform has been integrated with the
microservice one. The phrase Big Data usually refers to a large research area
that encompasses several facets. In this work, in particular, we refer to Big
Data architectures. The following benefits deserve to be enumerates:

Simple but Reliable — The CSI Big Data platform has been implemented
employing a reduced number of tools; all of them are considered state of
the art, are used in production by hundreds of companies worldwide, and
are backed by large communities and big Information and Communications
Technologies players.

Multi-paradigm and General Purpose — Batch and Stream processing as
well as ad-hoc queries are supported and can run concurrently. Moreover,
the unified execution model, coupled with a large set of libraries, permits
the execution of complex and heterogeneous tasks (as machine learning, data
filtering, ETL, etc.).

11.6 Conclusions 333

Robust and Fault Tolerant — In case of failure, the data processing is
automatically rescheduled and restarted on the remaining resources.

Multi-tenant and Scalable — In MAYA, this means that several Functional
Models can run in parallel sharing computational resources. Furthermore,
in case more resources are provisioned and the platform will start to exploit
them without downtimes.

The downside of this approach is that it is fundamentally and technolog-
ically different for the rest of the platform and required quite an integration
work. For this reason, the main elements of the CSI Big Data architecture
had to be interfaced with expressly created microservices (as FMserver and
Updates MS, see Section 4.1.4 for more details). Finally, Big Data solutions
generally require steep learning curves to be fully exploited being moreover
really resource eager.

11.5.4 Security and Privacy

Security and privacy issues assume paramount importance in Industrial IoT.
Here, we enforce those aspects since the earliest stages of the design,
focusing on suitable Privacy-Enhancing Technologies (PETSs) that encompass
Authentication, Authorization, and Encryption mechanisms.

More in detail, authentication is the process of confirming the identity of
an actor in order to avoid possibly malicious accesses to the system resources
and services. Authentication can be defined as the set of actions a software
system has to implement in order to grant the actor the permissions to execute
an operation on one or more resources.

Specifically, seeking for more flexibility, we implemented a role-based
access control model that permits the authentication process to depend on
the actor’s role. Suitable authentication/authorization mechanisms (based on
the Oauth2 protocol) have been developed for human operators, and services
and CPS.

Securing communication is the third piece of this security and privacy
puzzle, as no trustworthy authentication and authorization mechanism can be
built without the previous establishment of a secure channel. For this reason,
the CSI committed to employ modern encryption mechanisms (e.g. SSL and
TLS) for the communication and data storage as well.

11.6 Conclusions

This document presented the Centralized Support Infrastructure built within
the H2020 MAYA project: an IoT middleware designed to support simulation

334 A Centralized Support Infrastructure (CSI) to Manage CPS Digital Twin

in smart factories. To the best of our knowledge, it represents the first
example of Microservice platform for manufacturing. Since security and
privacy are sensitive subjects for the industry, special attention has been paid
on their enforcement from the earliest phases of the project. The proposed
platform has been here described in detail in connection with CPS and
simulators. Lastly, the overall architecture has been discussed along with
benefits and challenges.

Acknowledgements

The work hereby described has been achieved within the EU-H2020 project
MAYA, which has received funding from the European Union’s Horizon 2020
research and innovation program, under grant agreement No. 678556.

References

[1] N. Dragoni et al., “Microservices: yesterday, today, and tomor-
row,” in Present and Ulterior Software Engineering, Springer Berlin
Heidelberg, 2017.

[2] S. Newman, Building microservices. *“ O’Reilly Media, Inc.,” 2015.

[3] J. Manyika et al., “Big data: The next frontier for innovation, competi-
tion, and productivity,” 2011.

[4] S. Newman, Building microservices. *“ O’Reilly Media, Inc.,” 2015.

[5] C. Yang, W. Shen, and X. Wang, “Applications of Internet of Things
in manufacturing,” in Proceedings of the 2016 IEEE 20th Interna-
tional Conference on Computer Supported Cooperative Work in Design,
CSCWD 2016, pp. 670-675, 2016.

[6] R. Drath, A. Luder, J. Peschke, and L. Hundt, “AutomationML-the glue
for seamless automation engineering,” in Emerging Technologies and
Factory Automation, 2008. ETFA 2008. IEEE International Conference
on, pp. 616-623, 2008.

[7] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” Proc. OSDI - Symp. Oper. Syst. Des. Implement.,
pp- 137-149, 2004.

[8] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark?: Cluster Computing with Working Sets,” HotCloud’10 Proc.
2nd USENIX Conf. Hot Top. cloud Comput., p. 10, 2010.

References 335

[9] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica, “Dis-

cretized Streams: Fault-Tolerant Streaming Computation at Scale,” Sosp,
no. 1, pp. 423-438, 2013.

[10] A.Lakshman and P. Malik, “Cassandra,” ACM SIGOPS Oper. Syst. Rev.,
vol. 44, no. 2, p. 35, 2010.

[11] J. Kreps and L. Corp, “Kafka: a Distributed Messaging System for Log
Processing,” ACM SIGMOD Work. Netw. Meets Databases, p. 6, 2011.

[12] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, ‘“ZooKeeper: Wait-free
Coordination for Internet-scale Systems,” in USENIX Annual Technical
Conference, vol. 8, p. 11, 2010.

[13] R. T. Fielding and R. N. Taylor, “Principled Design of the Modern Web
Architecture,” ACM Transactions on Internet Technology, vol. 2, no. 2.
pp- 407416, 2002.

[14] D. Jaramillo, D. V. Nguyen, and R. Smart, “Leveraging microservices
architecture by using Docker technology,” in Conference Proceedings -
IEEE SOUTHEASTCON, 2016, July 2016.

	A Centralized Support Infrastructure (CSI) to Manage CPS Digital Twin, towards the Synchronization between CPS Deployed on the Shopfloor and Their Digital Representation
	Introduction
	Terminology
	CSI Architecture
	Microservice Platform
	Front-end services
	Security and privacy
	SOA enabling services
	Backend services

	Big Data Sub-Architecture
	Batch layer
	Stream processing engine
	All data store
	Message queueing system
	Serving layer

	Integration Services

	Real-to-Digital Synchronization Scenario
	Enabling Technologies
	Microservices
	Cloud Ready Architecture: The Choice of Docker
	Lambda Architecture
	Security and Privacy

	Conclusions

