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Preface

Artificial Intelligence for Digitising Industry — Applications

Industry 4.0 has revolutionised the manufacturing sector by integrating
several technologies, including cloud computing, big data, and cyber-physical
systems. The goal of Industry 4.0 is to make the manufacturing industry
“smart” by integrating machines and equipment that can be monitored and
controlled throughout the life cycle.

Industry 5.0 extends technological advances to further facilitate
intelligent machine-machine and human-machine collaboration. The goal
is to combine the speed, precision, repeatability, and replicability of the
operation of machines with the vision, decision-making, and critical and
cognitive thinking of human beings. Industry 5.0 can significantly increase
the efficiency of manufacturing by extending the use of Al technologies
to create a versatile connection between humans and machines, enabling
constant monitoring and interaction. This collaboration will enhance the
speed and the quality of production by assigning repetitive tasks to intelligent
robots and other machines and fostering critical thinking by human beings.
Industry 5.0 is characterized by the convergence of technologies and
integrates the industrial internet of things (IIoT) with Al-based solutions and
digital twins to connect physical and virtual manufacturing environments.
This convergence makes possible physical and virtual simulations and
operating environments in which models based on predictive analytics and
managed intelligence enable faster, more accurate and precise, and more
reliable decisions. This approach may also provide greener solutions than
those of current industrial facilities: end-to-end, environmentally friendly
manufacturing solutions with a minimal CO2 footprint.

Al is transforming industrial environments. Edge-based Al technologies
mitigate operational risk, improve the safety and efficiency of manufacturing,
optimise processes, and form more reliable and sustainable manufacturing
facilities. Adopting Al technology across industrial sectors enables more
accurate prediction of anomalies and malfunctions, better management of

X1X



XX Preface

resource consumption, and optimising of manufacturing processes. Artificial
intelligence is expected to significantly impact global manufacturing and
industrial development. Integrated with other technologies - like intelligent
sensors, IIoT, digital twins, edge computing, augmented reality, intelligent
wireless and cellular connectivity - Al optimises production in real time and
facilitates vertical, horizontal, and end-to-end integration.

Al industrial applications harness artificial intelligence to enhance
efficiency and sustainability while expediting digital transformations. By
applying Al, machine learning, and deep learning, manufacturers can
advance operational efficiency, dynamically control, and adapt product lines,
customise product designs, and plan technological developments.

This book explores the research, practical results, and exchange of
ideas between the representatives of forty-one organisations participating in
the AI4DI project to develop the technological community. The concepts
presented herein reflect interaction with other European and international
projects addressing the research, development, and deployment of Al, IIoT,
edge computing, digital twins, and robotics in industrial environments to
strengthen and sustain a dynamic Al technology ecosystem. These concepts
and research results shed light on steps in the evolutionary transition to
Industry 5.0. The focus is on five industries: the automotive, semiconductor,
industrial machinery, food and beverage, and transportation industries.

The AI4DI project is part of the Electronic Components and Systems for
European Leadership Joint Undertaking (ECSEL JU) programme, and the
applications and technologies developed by the project partners support the
digital transformation of the industry. They are aligned with the priorities of
the new European partnership for Key Digital Technologies (KDT). KDT
aims to provide innovative electronic components and systems, software,
and smart integration to digital value chains, providing secure and trusted
technologies tailored to the needs of user industries and citizens to support
and reinforce Europe’s potential to innovate. The goal is to develop and apply
these technologies to address significant global challenges in mobility, health,
energy, security, manufacturing, and digital communications.

The alignment between research, innovation, and industrial policies
by using collaborative approaches in mastering the drivers of innovation
contributes to and strengthens Europe’s scientific and technological bases.
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