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Abstract

In an ever more connected world, semiconductor devices are at the heart of
every technically sophisticated system. Safety and security in operation, on
which many times vital personal or business data or our lives depend on, is
critical. The market for semiconductors is tremendous, and rogues also to
get their share by selling counterfeit products which potentially jeopardize
that very safety and security. Trust into semiconductor devices can be created
by securing the supply chain or by verifying the electrical characteristics,
the physical layout and the manufacturing technology against the design and
specifications. The objective of this work is to propose a verification pipeline
for semiconductor devices utilizing their technological features computed
by the means of an automated device cross-section analysis. The emphasis
lies on the confluence of an established industrial analytic process with
novel possibilities provided by the advances in data processing and machine
learning. This framework, its technical implementations, and exemplary
results of our proposed autonomous technology analytics approach are
presented in this work. Furthermore, the results are compared against a
manual expert’s measurement which underline the high performance of the
framework and its effective multi-stage realisation.
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2.3.1 Introduction

Trust into microelectronics [2], [3] can be generated by the validation and
verification [12] of its originality. With today’s world-wide distributed supply
chains of microelectronics manufacturing, validating the safety, security,
and trustworthiness of these devices is a highly complex task. Still, it is
of paramount importance: electronics span every aspect of our daily lives
and range from applications such as the (industrial) internet of things, over
consumer electronics, to connected vehicles.

A way to check a product’s originality is through physical inspection
techniques, such as cross-sectioning. Through a sub-sequent analysis of
the cross-sections, the integrity of the manufacturing technology [11] can
be verified. To achieve this, all technological properties can be used in
a verification process. In the case of cross sections, these are geometric
shapes and dimensions, or material-related properties. Each technology can
be interpreted as a unique fingerprint, so that deviations from specifications
can be reported as suspicious. Nonetheless, physical inspection techniques
must keep up with the continuously growing complexity of advanced
semiconductor manufacturing nodes, and automation is another requirement
in demand.

Cross-section (CS) images from scanning electron microscopes (SEM)
are acquired at the failure analysis or process control labs and are a standard
analysis process in the semiconductor industry. By the usage of SEM-
integrated software tools, the technological features are manually measured
and evaluated by engineers. Due to the expenditure of human labour, this
process is costly and domain knowledge is required to fully interpret a sample
or to detect anomalies in a set of images. The data is already available
today, with datasets being produced at the sites. The utilization of data
intensive analysis methods opens the possibility to create additional value
by saving analysis expenses - and in the end overall cost - with an automated
interpretation and measurement approach.

Figure 2.3.1 shows the second important aspect of the inspection flow:
the full abstraction stack — ranging from software applications down to the
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Figure 2.3.1 Abstraction layers in typical computing systems, ranging from software, over
hardware design, to the underlying manufacturing technology.

physical implementation — of complex computing systems is illustrated. More
and more software layers and manufacturing technology-agnostic layers can
be investigated through published methods for verification of security [4]
and functional safety (IEC 61508). Yet, the lower layers remain proprietary
with no way to verify the integrity of their design. There have been several
publications addressing the integrity checking of physical properties of
semiconductor packages [5], [6], [7], and supply chain security related
approaches [8]. Summaries about the detection and avoidance schemes of
counterfeit electronics can be found in [1], [9], [10]. This work aims to push
the boundaries of the state-of-the-art of automated physical inspection by the
enablement of an automated detection of suspicious devices through SEM
cross-section analysis.

In this work, academic and industrially relevant topics are discussed:
First, the technology related characteristic — providing methods to secure
the integrity of integrated devices. And second, the implementation of
an industrial automation use-case — integrated into a complex established
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environment — which can be seen paradigmatic for the challenges and
possibilities of the entire project.

2.3.2 Background: Interpreting Semiconductor
Technologies

The tremendous manufacturing improvements of past years and decades for
semiconductor devices are shown in Figure 2.3.2. The CS images show four
different technology stacks, from 150nm (introduced in the early 2000s)
down to a more advanced 28nm (introduced in the early 2010s) process
node. On these equally scaled CS images it is shown that the size of critical
dimensions (CDs) has been continuously shrunk. On the other hand, the total
number of processing steps and subsequently the number of visible objects is
increasing.

The stacks visible in the images can be interpreted as a unique fingerprint
for each manufacturing technology and its measured properties allow an
inference to the specified and designed technological features. Specifically
from these images, the thickness for each deposited layer and the minimum
dimensions of each lithographic pattern found for each layer can be extracted.
The set of identified technological parameters then enables the identification
of production technologies. The innovative novelty of our approach can
be explained via Figure 2.3.3: In the current reverse engineering process,
the input is a known or unknown device, with the target to analyse its
physical properties (geometrical and material-related) and consequently its
manufacturing process.
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Figure 2.3.2 Equally scaled scanning electron microscope images of semiconductor device
cross-sections, showing a 28nm, a 40nm, a 65nm, and 150nm process node (from [12]).
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Figure 2.3.3 Example of a cross-section image which shows already interpreted objects on
the left side and part of the raw image on the right side.

The application of the aforementioned principles for the purpose of
counterfeit identification is even more challenging when vast numbers
of features must be correlated and interpreted against known technology
definitions. An automated processing of this data has been enabled by the
advances in image processing and automated feature extraction.

The integration of technology domain knowledge and Al methods into
a well-controlled industrial process (see Figure 2.3.4) is a fundamental
prerequisite of the project. Considering the challenges of a supervised deep
learning approach to interpret the SEM images, contributions from both fields
were needed to produce the labelled dataset. Yet due to the high complexity
of the task and the non-availability of methods to analyse the complex
data structures, it was not possible to provide a fully automated approach.
This missing link between Al methods and domain knowledge and the use
cases is worked out by the proposed approach of SEM image interpretation
and presented in this work. The second stage of overlap between the
application and Al fields then comes into play during the segmentation result
interpretation process. During this process, the segmentation accuracy does
not linearly translate into overall technology prediction accuracy. This is
explained by the fact that certain features identified by the deep learning (DL)



152 Towards Fully Automated Verification of Semiconductor Technologies

Domain Al
Knowledge Methods
1 1
SEM Image
Interpretation
1 1
Process Process
Monitoring Identification
1 1 {1 1
Process Measure Counterfeit
Improvement | | Abnormalities Identification
1 1 1 1
Industrial IC
Use-Case Integrity

Figure 2.3.4 Overall framework of the project. Domain knowledge and Al methods were the
enabler for the use-cases that are facilitated through the automated SEM image interpretation.

methodology have a larger impact on subsequent calculation than others.
Consequently, a looped, iterative development approach was followed to
ensure the Al component of the overall process is trained adequately. An
emphasis is put on the most relevant and critical features, instead of the more
common approach of maximizing a pre-defined accuracy metric.

2.3.2.1 Methodology: The Integrated Analysis Process

A conspectus of the whole analysis process is shown in Table 2.3.1, where the
established laboratory process is extended via two software (data processing)
steps. The entire process is outlined in detail in this chapter.

Table 2.3.1 Framework of the cross-section interpretation with the respective sub-processes.
Sub-Process [ Sub-Steps [ Intermediate Results

Established analysis process:
3| Lab work * Physical sample preparation Grey-scaled images
§ * SEM image acqu.isition _
« | Feature * Image segmentation Vectorised images,
QE extraction * Object vectorisation objects per class
€| Feature * Feature measurement Technology features,
processing » Technology determination technology platform
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Sample preparation and image acquisition: Even though cross-sectioning
is considered a standard process, mastering the physical process can take
several years. Two main methods for cross-sectioning exist: The first is a
deposition of the sample in epoxy and subsequently an abrasive grinding of it.
Moreover, the cross-sectioning can be performed on a glass grinding wheel,
after devices package has been detached. The last step in the laboratory is the
image acquisition via SEMs [13].

Image Processing: The goal of the image processing step is to provide fast,
reliable, and accurate segmentations based on SEM images. The images are
grey-valued with ambiguous intensity values for different object classes, as
indicated in Figure 2.3.5. Furthermore, the task difficulty is boosted by the
various zoom levels and variability of the regions of interest sizes.

The overlaps between different classes represented in Figure 2.3.5. A
challenge the use of classical computer vision segmentation techniques such
as thresholding, region-growing, or histogram-based methods. Nevertheless,
these approaches are useful to supplement the segmentation pipeline in
pre- and post-processing steps. The nature of the SEM images bears
high similarity to medical images, particularly computed tomography and
magnetic resonance images, where Al based techniques are becoming
increasingly investigated to solve segmentation challenges. Therefore, a
set of experiments aimed at comparing various DL state-of-the-art fully
convolutional methods were conducted, comparing architectures such as U-
net [15], PSPNet [18], FPN [19], GSCNN [20], Siamese-based [23]. It is
concluded that overly complex architectures overfit specific tasks and often
underperform on high-variance data, and while being commonly used as
a benchmark, the U-net basis for the CNN architecture can outperform

Normalized histogram per class

Figure 2.3.5 A. Normalized histogram per class. B. Various zoom levels of the same image,
magnified 4310, 8650, 20940 and 72180 times, respectively.
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Figure 2.3.6 Exemplified overview of the segmentation pipeline.

other architectures assuming proper pre- and post-processing techniques [14].
Subsequently, a cascade U-net based architecture is concluded to be most
suitable for the task at hand.

A dataset of around 500 images was created and labelled in pixel-
wise accuracy, and dedicated networks were trained for metal and VIA
(vertical interconnection access) segmentation (further called “experts”).
First level experts segment the down-sampled image, and pass the resulting
segmentation (one-hot encoded) to the second level expert along with the
input image, who produces a more accurate output, much less vulnerable to
outliers. Due to the varied nature of the labels of interest it was concluded
that such a cascaded approach is beneficial for metal segmentation, while
providing negligible improvements for VIAs, which were subsequentially
segmented by a single “expert”.

The issue of the relatively small dataset was tackled using image
augmentation including horizontal flips and small rotations. Segmentation
problems involving high intra- and inter-class imbalance (as is the case
in question) have shown to be solved most successfully using Dice-based
loss functions [16]. Therefore, several candidates were investigated as
hyper-parameter options, with metal segmentation benefitting most from
LogCoshDSC Loss [22], and VIA segmentation from Focal Tversky Loss
[21], respectively. The high number of hyperparameters were tuned using a
population-based approach. The evolutionary nature of the approach ensured
high confidence in the obtained parameters and better final performance while
keeping computational time requirements within reasonable limits [17]. The
obtained results yield a 24 % increase in accuracy compared to the baseline
version, and obtained an overall Dice score of 0.90. Examples of resulting
segmentations are presented below in Figure 2.3.7.
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Figure 2.3.7 Examples of segmented images with yellow illustrating metal components, and
green illustrating VIAs.

Image Measurement: The segmented images are calibrated via SEM
meta-data or pattern matching of the dimensional bars and then vectorised
into polygons of the different classes (e.g.: metal, VIAs, etc.). Polygons
enable the utilization of their inherent attributes like the centroid, the
circumference, or the area. An innovative — completely unsupervised - usage
of these attributes is used for pattern recognition purposes. Established
clustering methods [24] are linked with the properties of manufactured
semiconductor devices. From these clusters the geometrical features are
determined.

Technology Determination: The target is to evaluate the correct
technology platform via the computed process feature vector. This vector will
have dozens of measured attributes which are correlated against the known
technology definitions (see example in Figure 2.3.8). In our implementation,
distance metrics (Euclidean, rectilinear distance) between measured and
defined values have been shown to yield good prediction results. A further
improvement will be gained through assessment of individual feature
importance by variable selection techniques.

In the example in Figure 2.3.8, three random features — metal 1 thickness,
contact height, contact minimum pitch, and the total number of metal
layers (colour coded) — are plotted for several dozen possible technology
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Figure 2.3.8 Example features of different semiconductor technologies. The four
dimensions were arbitrarily chosen from more than hundred possible attributes defining a
semiconductor front-end technology.

specifications. These characteristics are also of importance for a correct
determination. The red mark shows an example measurement and the closest
distance to adjacent data-points yields the most likely technology match.
These three dimensions are extended to a higher dimensional space in the
application.

2.3.2.2 Example Analysis: From the Image to the Feature
Extraction

To conclude our work, the technological attributes of the VIAs of a sample
are extracted. The VIAs are shown in the grey-scale image of Figure 2.3.9
and indicated through red boxes. After their semantic segmentation, the VIA
objects appear in green and the metal lines in yellow. A visual inspection
shows that all VIAs have been neatly extracted. The same applies to the
metal, except for the top metal which shows a minor tear in the middle
section. The measurement of the geometrical features (pitch and height) is
shown in Table 2.3.2 and the automated measurement is compared against the
manual measurement of an expert operator. The deviation on the right column
shows the feasibility of an autonomous analysis which can also be done with
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Figure 2.3.9 Example SEM CS with the grey-scaled SEM image (left) and the segmented
image (right).

Table 2.3.2 Results of measured features of the VIAs. In the right column, the deviation
between the automated and the manual is shown.

Measurement Auto Manual Dev. [%]
VIA 1 Pitch [nm] 917 895 2.4
VIA 1 Height [nm] 675 711 5.1
VIA 2 Pitch [nm] 912 895 1.9
VIA 2 Height [nm] 700 742 5.7
VIA 3 Pitch [nm] 910 895 1.7
VIA 3 Height [nm] 779 806 33

other measurable features. Due to the high accuracy of the measurement, the
technology platform determination for this example was successful.

2.3.3 Conclusion

The possibility of applying state-of-the-art Al approaches has enabled us
to extend the existing workflow by an automated technology analysis. It
has been shown that an extraction of technological attributes from SEM CS
images in a fully autonomous manner is possible, with results comparable to
an operator’s manual effort. The most challenging part was the confluence of
the knowledge of both domain experts and AI/ML experts.

The presented framework allows an automated check of the inferred
technological parameters for verification and validation against specifications.
Additionally, emphasis is put on a modular design of the sub-tools. This
allows a migration to other applications and an extension of the presented
status with other classes for segmentation is not overly complex. In summary,
this contribution is a steps towards improved physical inspection for hardware
assurance. A future task will be the application of the framework on real
world examples.
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