3.3

Radar-Based Human-Robot Interfaces

Hans Cappelle!, Ali Gorji Daronkolaei', Ing Jyh Tsang'2,
Bjorn Debaillie' and Ilja Ocket'

IMEC, Belgium
2University of Antwerp, Belgium

Abstract

In this article, two implementations of a radar-based human-robot interface
are presented. These implementations represent two classes of inference
approaches that are investigated in the radar group at imec. The first class
exploits traditional machine learning classification techniques. The second
class uses spiking neural networks. The machine learning classification
system presented in this article supports nine gestures and achieves a gesture
classification accuracy of 93%. This compares to an accuracy of 98% for our
spiking neural network system operating on four gestures. Based on public
data sets, the accuracy of the spiking neural network approach exceeds the
published state of the art. Misclassification is however significant, which is
still precluding safety critical interactions when using a single radar sensor.
As proof-of-concept, a discrete control of a robot will be demonstrated by
means of radar-based gesture recognition using five gestures. We present the
main concepts of this demonstrator. For pre-validation, we use emulation of
the gesture recall statistics and timing characteristics to model the radar part.

Keywords: gesture recognition, 60-GHz radar, machine learning, random

forest classification, neuromorphic computing, spiking neural networks,
micro-Doppler, human-robot interaction, discrete robot control.

221



222 Radar-Based Human-Robot Interfaces

3.3.1 Introduction and Background

In tomorrow’s factories, production robots and cobots will need to interact
more closely with humans in different types of settings, ranging from
advanced assembly lines to the use of exoskeletons to enhance worker
capabilities. To ensure safety and active control of those robots, advanced
sensors will need to be integrated both on the robots as in the fixed factory
infrastructure. These sensors must be reliable and fast while being able to
operate in harsh conditions. Often, vision-only approaches will be found to
be vulnerable to failure in low visibility conditions.

Millimeter wave radar has the advantage of operating under visually
difficult conditions such as darkness, smoke, and dust. Moreover, radar
enables to measure the surrounding including the speed of approaches and
receding targets. Therefore, radar is excellently suited for collision avoidance.
No wonder that this technology is intensively applied in automotive. Radar
also enables to use the temporal velocity changes (so-called micro-Doppler
patterns) to identify/classify the target. As such, road users can be identified
[1], or different hand gestures can be distinguish as demonstrated by Google
in their Soli project [2].

Many different approaches can be explored to create a radar-based robot
interface. To enhance the intuitive interaction between the operator and the
machine, a contact/touchless interface via hand gestures is preferred. These
hand gestures could, for example be used to select from a menu (= discrete
gestures), or the hand movements could be tracked at real-time to operate the
robot (continuous control). Although real-time interaction can be perceived
very natural , it comes with significant technical challenges and security risks.
Therefore, in this work, we opt for detecting the hand discrete gestures, and
we construct a vocabulary allowing the operator to control discrete robot
actions. Our envisioned proof-of-concept will control a robot arm taking
pictures of an object from different positions and angles. This will enable
3D object modelling.

In this article, we consider two hand gesture recognition implementations
using the same 60 GHz radar platform (TI IWR6843 [3]), as well as their
suitability for the proof-of-concept demonstrator for interfacing with a robot
arm. In our first implementation, the hand gesture type is identified before
augmenting it based on the hand location.

This implementation relies on traditional classification techniques based
on engineered features [4].



3.3.2 Gesture Recognition Using a Machine Learning Approach 223

The second implementation does not rely on segmenting the space in
quadrants, but only aims to recognize gestures independent on the hand
location. This implementation uses a spiking neural network organized as
a liquid state machine (LSM) in combination with a trained output classifier
layer [5]. For pre-validation of the demonstrator the radar part is modelled by
means of gesture command recall statistics and timing behavior.

In the following sections, we start with describing both interface
implementations separately. Then we compare both implementations in terms
of performance and implementation complexity, as well as how they can be
integrated in the proof-of-concept use case.

3.3.2 Gesture Recognition Using a Machine Learning
Approach

3.3.2.1 Concept and Experimental Setup

Although the radar system [3] offers only a moderate angular resolution (3x4
MIMO with singe patch antennas), the angular dimensions (both azimuth and
elevation) can be exploited to determine the hand position. This provides an
extra degree of freedom to design the control interface. The implemented
concept is depicted in Figure 3.3.1, showing the training process (in red) and
the inference process (in blue).

The result of the radar inference is then used to control a robot arm (in
green).Specifically:

Gestures

Radar
sensor

Data
capture

Feature Gesture Gesture to motion Robot
extraction recognition command conversion interface
Gesture recognition tasks
Pre-processing and Model
Raw data feature extraction training

Deep edge / real time
Figure 3.3.1 Human-robot interaction concept using 60 GHz radar.

Model data

Model training tasks
Cloud or edge/not real-time




224 Radar-Based Human-Robot Interfaces

* For training, indicated in red, raw data is collected. Next radar signal
pre-processing is applied, and features are extracted. These features are
then used to train the model, and the machine learning model data is
saved. These tasks do not require real-time processing and can be done
on the edge or in the cloud.

* For gesture recognitions, indicated in blue, features are extracted, and
the model is used to recognize the gesture by means of a classifier that
uses the machine learning model data.

* The recognized gestures are communicated to the robot part, indicated
in green. Gestures are transformed into robot commands which are sent
to the robot interface.

The proof-of-concept setup consists of an upwards facing radar mounted
in front of the robot operator. The center of detection is approximately 50
cm above the radar sensor. The operated can perform the following hand
gestures:

» Palm/hand wave. If a waving hand is detected, then the zone of this
gesture is also detected (left/right/front/back/up/down) relative to the
detection center. These zones are between 20 and 30 cm away from the
center. For example: doing a palm wave at 70 cm (50 cm + 20 cm) above
the radar sensor is detected as a “palm-wave/up”.

* Pinch. This corresponds to pinching the thumb and index finger.

* Thumbs down. This corresponds to a “thumbs down” gesture with the
thumb facing to the radar sensor.

* Tick. This corresponds to making a “V” check movement in the air.

During the measurement campaign, also other gestures were recorded. These
were used to model unknown gestures for testing the robustness of the
classifier.

3.3.2.2 Inference Pipeline, Training Algorithm

Radar systems exploit electromagnetic waves to detect and locate objects in
their environment.

A radar system comprises a transmitter, receiver, and signal processing
modules. The implementation uses an FMCW radar [3].

Figure 3.3.2 illustrates an FMCW radar with one transmitter and one
receiver, depicting the linear sawtooth and digital signal processing to recover
range and Doppler information after the ADC convertor.



3.3.2 Gesture Recognition Using a Machine Learning Approach 225

, Temr |
Fast chirp

Tenirp | |
-

Range
Doppler map

Fast-time [ 2@ | Stow-time
FFT FFI

LNA In-phase  (Spillover

mixer cancellation, Ry limity Range Doppler
Ry limif) processing processing

Figure 3.3.2 Simplified radar block diagram.

Transmit Part

The transmit signal is a sinusoid whose frequency is swept linearly from a
start frequency to a stop frequency, forming a chirp with a duration of Tcpirp.
These chirps are repeated with a chirp repetition interval Tcry. A voltage-
controlled oscillator (VCO) is used to steer a phased locked loop (PLL) which
produces the output signal, which is amplified with a power amplifier (PA)
and sent to the transmit antenna.

Receive Part

A reflected signal is picked up by the receive antenna and amplified with a
low noise amplifier (LNA). It is mixed with the transmitted signal producing
a beat signal that has a frequency that depends on the range (delay) of
the reflected signal. A high pass filter (HPF) is used to removed unwanted
signal components at low frequencyies, determining the minimum range and
cancelling spillover from the transmit signal. Next the signal is amplified
by a second amplifier and passed through a low pass filter (LPF) to limit
the maximum range. Next, the signal is digitized with an analog to digital
convertor (ADC) and a range Doppler map is produced by doing a fast-
time fast Fourier transform (FFT) to recover range and slow time FFT to
produce Doppler information. Note that by doing so only moving objects can
be observed.

In this implementation, all data after the ADC is processed on a laptop,
using a data capture board [6]. Angular information can be obtained by
combining multiple transmitters with multiple receivers. Figure 3.3.3 shows
the signal processing to obtain angular and micro-Doppler information, used
to generate feature data. To generate a point cloud a constant false alarm rate
(CFAR) detector is used to identify targets, and the MUSIC algorithm is used



226  Radar-Based Human-Robot Interfaces

Fast-time
FFT
(e 1
Range
processing

Point cloud

MUSIC >

Coarse Angle estimation

Range
Slow-ti Doppler cube
low-time
CFAR
FFT
Doppler Constant Fal
processing Alarm Rate
detector
Range Angle
Beam- cube Slow-time
forming

se  Super Resolution

Angle estimation

Micro Doppler cube

FFT

Point cloud

Figure 3.3.3  Signal processing pipeline to provide input to the feature generator.

to annotate identified targets with angular information. To generate micro-
Doppler data, beamforming is applied to do a coarse angle estimation, and a
slow time FFT to generate a micro-Doppler cube.

To train and evaluate a random forest classifier, feature data is extracted
from these signal processing blocks, as illustrated in Figure 3.3.4. We extract
ten features, subdivided in four classes [4]:

1. MD: micro-Doppler features:

e RAW: a sub-sampled micro-Doppler cube
e ENV: a curve fit of the micro-Doppler envelopes

2. RD_ROI: range-Doppler region of interest features. This corresponds to
a denoised and subsampled version of the range Doppler information.

3. POINT: point cloud features. This tracks the average, mode and
standard deviation of range (RNG), elevation (ELV), azimuth (AZM)
and Doppler (DOP) over several radar frames (of 90 milliseconds each).

MD

RD_ROI

RAW | ENV

Feature Extraction

POINT

AN A

META

DOPP| ELV

AZM

RNG | [RENG|VCENT | VDISS

l

N

P
U

(Gesture, Probability)

Random Forest Classifier

Figure 3.3.4 Feature extraction for the random forest classifier.



3.3.2 Gesture Recognition Using a Machine Learning Approach 227

4. META. From the range Doppler cube, the following meta parameters
are derived:

o RENG: range instantaneous energy
e VCENT: centroid velocity
e VDISS: dispersion of velocity

3.3.2.3 Data Recording and Results

The machine learning approach was based on a supervised framework. First,
the setup collected a dataset of gestures for the learning phase. Table 3.3.1
gives the radar parameter used for these measurements [3].

The TI DCA1000 [6] data capture board was used to obtain raw
data samples. While the maximum unambiguous range is 11.3 meter, the
maximum range was restricted to 1.5 m since larger heights are not relevant
for the upward facing radar.

To train the machine leaning model, 22 different test subjects with two
types of gesture were recorded.

* In 6 zones (left, right, up, down, backwards, forward) measurements
were done for a palm wave gesture under different conditions (normal
speed, fast speed, left arm, right arm).

* Six gestures were done in the central position: pinch, thumb-up, thumb-
down, cross, tick, palm tilt with different speeds and hand. After
analysis it was decided to retain only the pinch, thumb-down and tick
gestures.

Table 3.3.1 Chirp/Frame (a) and scene (b) radar parameters.
Start Frequency (GHz) 60.2

Slope (MHz/us) 60.0

Range resolution (cm) 4.46
Samples per chirp 280

Maximum unambiguous range (m) 11.3
Chirps per frame 128

Maximum radial velocity (m/s) 1.75
Sampling rate (Msps)  5.47

Radial velocity resolution (m/s) 0.0273
Sweep bandwidth (GHz) 2.70

Azimuth resolution (Degrees) 14.5
Frame period (msec) 90
Transmit antennas 3

(@) (b)



228  Radar-Based Human-Robot Interfaces

Table 3.3.2 Recall and precision statistics of the machine learning based detector.
Percentage Tick Pinch Thumb Left Right Up Down Forward Backward Unknown

down
Recall 873 744 787 96.1 93.6 948 96.8 93.6 89.4 83.2
Precision 87.3 842 76.6 80.3 81.0 88.5 86.0 83.0 90.8 89.7

Labeling the data took most effort, and unsupported or poorly executed
gestures were labeled as unknown. For the palm-wave, some gestures were
relabeled to another type if the test subject made the gesture in the wrong
zone.

For training the model a 5-fold cross validation was used, doing 5 runs
using 80% users for training and 20% for testing the model. To assess the
performance, we look at detector statistics, timing, and real time inference
performance.

Machine Learning Detector Statistics

Achieved detection accuracy is 86.1% with 13.8% misdetections. The
detection rate is significantly impacted by using unknow data for input
stimuli. If this data is not included, then detection performance increases to
92.8% with 7.2% misdetections.

Table 3.3.2 shows the achieved recall and precision statistics of the
detected gestures. Recall shows the probability that a gesture is detected
correctly, while precision indicates the percentage that a reported gesture is
correct.

Machine Learning Real Time Inference

We use an Intel Core i7-8750H @ 2.20GHz based laptop to run all signal
processing after ADC, feature extraction and classification in python on an
Ubuntu 16.04 operating system. Critical parts are optimized in C or C++.
While 12 cores are available, we use no explicit multi-threading. Real-time
performance is achieved, and processing delay is less than 120 milliseconds.

3.3.3 Gesture Recognition Using a Spiking Neural Network

For the second implementation, a spiking neural network (SNN) approach
was used for the radar-based hand gesture recognition (HGR). For this
implementation, the same FMCW millimeter-wave radar was used. After



3.3.3 Gesture Recognition Using a Spiking Neural Network 229

Figure 3.3.5 SNN-based gesture demonstrator.

pre-processing the range-Doppler radar signal, we use a signal-to-spike
conversion scheme that encodes radar Doppler maps into spike trains. The
spike trains are fed into a spiking recurrent neural network, a liquid state
machine (LSM). The readout spike signal from the SNN is then used as input
for a logistic regression which is used as a classifier in a supervised learning
machine learning framework.

3.3.3.1 Concept and Experimental Setup

The proof-of-concept setup of the second implementation is shown in
Figure 3.3.5. This implementation differs from the previous one in two ways.
Firstly, the hand is now placed at a more or less fixed distance to the radar. No
attempt is made to identify where the hand is positioned in space in front of
the sensor. Secondly, the demonstration focuses on accurately identifying the
gesture the person is making. The gesture vocabulary is “Swipe left”, “Swipe
right”, “Zoom out” and “Zoom in”, allowing the user of the demonstrator,
e.g., to navigate through a series of pictures and zoom in/out on each of them.

3.3.3.2 Inference Pipeline, Training Algorithm

The radar system collects the range-Doppler frames, representing the velocity
and distance of the reflected object (i.e., hand). These frames were mapped as



230 Radar-Based Human-Robot Interfaces

Doppler-Range Plot Range-Doppler Image

Doppler (m/s)
Flattened Range-Doppler

il 02

Range (meters) Frames (time)

Figure 3.3.6 Range vs Doppler (left), flattened range-Doppler vs frames (right).

16 x 16 images (Figure 3.3.6 left), where a sequence of frames represents the
complete gesture. Each gesture has different time durations, thus different
amounts of frames. Each frame was unrolled and vertically stacked for the
data representation, creating a frame versus flattened range-Doppler matrix
(Figure 3.3.6 right).

The flattened range-Doppler can be seen as a unique pixel location of the
16 x 16 range-Doppler images. The frame vs. pixel representation captures
the information in time, which is ideal for the signal-to-spike neural encoding
to produce the spike train input for the LSM network.

The LSM is a type of reservoir computer capable of universal function
approximation [7]. The basic formulation of LSM maps an input function
u(-) onto a filter, or liquid neurons, LM while the output z™ (t) =
(LM u) (t) is fed to a second component, a readout map f, which is
task-specific and generates the output y (t) = fM (2 (¢)).

The readout maps in our context will be a classifier that receives a state
as input. Different classifiers can be used for this second component, such as
logistic regression, random forest, or support vector machine. For simplicity
and ease of in hardware implementation, we focus on the logistic regression
in these experiments.

Figure 3.3.7 shows the LSM and how it has been used to build an end-to-
end system for gesture recognition.

The top part of Figure 3.3.7 depicts the timing and how each gesture is
sampled in the LSM. Ty, and T5; are the boundaries of the time interval



3.3.3 Gesture Recognition Using a Spiking Neural Network 231

reserved for a gesture, wherein the spike train of a gesture can have a variable
stimulus length duration.

After the end of the stimulus, a readout delay ¢, determines the readout
window interval, during which the state of the liquid is measured and stored
or passed to the classifier, depending on whether it is used in a real-time
online or offline learning and inference system.

When mapping to the LSM, each sample had a different stimulus length.
As a result, the readout window varies according to the sample frame
duration.

The conversion from spike at pixel position i, of frame n to spike s; ()
at time ¢, is a direct map from n to ¢, i.e., if frame n has a spike at pixel ¢,
then s; (¢) has a spike at ¢ = n. An alternative way to map the LSM was to
normalize the frames to a predefined fixed stimulus length, whereas all the
samples have the same readout window duration.

For every pixel position ¢, we convert the spike in frame n to a relative
time regarding a fixed stimulus length S; . Thus, the spike train sequence is
given by:

_ fax S

si(t) Ji

Stimulus length
+ Readout delay

sy s e,
T I LI

0

| Stimulus length LSM - SNN - l

Readout window

Readout delay T, 1| 11 1 i

A 1 '
! i

|

i

i

i

i

|

|

T

Readout

1 x1 ‘|—>
: »| Classifier =&
: = y(®)
xM(t) ™

Figure 3.3.7 LSM network with trainable output layer.



232 Radar-Based Human-Robot Interfaces

Where:

S,= predefined fixed stimulus length;

fn= frame number,n that contains a spike;

fi=1length of the particular sample in number of frames.
In constructing the LSM, we focus on achieving the most compact and
simpler to implement network without sacrificing accuracy. Each pixel 7 will
produce a spike train as an input to the LSM, and each input is randomly
connected to Uy, excitatory neurons.

All excitatory neurons are used for readout. For the neuron unit, we used a
leaky integrate-and-fire neuron model with exponential postsynaptic currents
with the associated synaptic model, based on [8].

3.3.3.3 Data Recording and Results

The SNN approach was based on a supervised framework. First, we collect a
dataset of gestures for the learning phase.

Table 3.3.3 details the radar parameter used for the radar [3] in this
demo setup. Notice that while it was configured for 32 chirps per frame, we
rescaled to a 16 x 16 range-Doppler image to compose the frame versus pixel
representation, reducing to a total of 256-pixel channels as input to the LSM.

The range depth, width and resolution were configured to around 0.5 m,
thus only the reflected signal directly in front of the radar receivers were
captured for the range-Doppler frames.

Table 3.3.3 Chirp/Frame (a) and scene (b) radar parameters.
Start Frequency (GHz) 60.0

Slope (MHz/us) 70.0

Range resolution (cm) 4.36
Samples per chirp 256 ) .

Maximum unambiguous range (m) 8.93
Chirps per frame 32.0 . . .

Maximum radial velocity (nv/s) 0.974
Sampling rate (Msps)  5.21 . . )

Radial velocity resolution (m/s) 0.122
Sweep bandwidth (GHz) 3.44 ) )

Azimuth resolution (Degrees) 14.5
Frame period (msec) 100
Transmit antennas 2

(@) b)



3.3.3 Gesture Recognition Using a Spiking Neural Network 233

Ideally, the more diverse and generic the learning dataset, the better
generalization can be achieved by the machine learning framework.

Conversely, a personalized dataset can be used to tune the system for
a specific user. In this case, we have collected four gestures from a single
person. Collecting data from multiple persons will be done in the next phase.

Each gesture was collected in 30 separate sessions, wherein each session,
a gesture was repeated 15 times.

The learning set contained then 450 samples for each of the four gestures.
Figure 3.3.8 shows the confusion matrix of a 90%-10% learning (1620
samples) and test (180 samples) split of the dataset.

The LSM consisted of 600 neurons and a normalized stimulus length
S; = 20.

Table 3.3.4 summarizes recall and precision statistics of the SNN based
detector, for the confusion matrix in Figure 3.3.8.

LR - Confusion Matrix
accuracy=97.78% - misclass=2.22%

40

30

True label

- 20

F10

T T —-0
0 1 2 3

Predicted label

Figure 3.3.8 Confusion matrix for a 90%-10% learning (1620 samples) and test (180
samples) split of the dataset.



234 Radar-Based Human-Robot Interfaces

Table 3.3.4 Recall and precision statistics of the SNN based detector.

Percentage Zoom out Zoom in Swipe left Swipe right
(label 0) (label 1) (label 2) (label 3)
Recall 100 100 97.8 94.0
Precision 100 97.8 95.7 97.9

3.3.3.4 Discussion

The setup was based on an Intel NUC Core i7-10710U (12MB Cache,
1.10GHz) with 32 GB DDR4 RAM. A complete capture, classification,
and image cursor movement took between 0.5 to 1 sec for inference.
The recognition rates reflect the confusion matrix shown in Figure 3.3.8,
depending on the hand’s relative position to the radar. The learning phase
is relatively fast as the SNN was designed to be compact and efficient,
considering the possibility of being deployed on an embedded system. The
learning process was performed when launching the program, and uses a few
minutes. The collection of the learning dataset was the most time-consuming
element.

Dataset personalization shows that the system can be tuned specifically to
the user operating the robot or other device to be controlled. Generalization to
many users or a generic user base depends on the learning dataset. Moreover,
extending the dataset to recognize more gestures can be easily done. In both
cases, other classification schemes, such as support vector machine (SVM)
or random forest, can be applied and integrated straightforwardly into the
system. The spiking neural network algorithms were also validated on public
data sets [5], achieving a gesture detection accuracy of 98%, which is better
than the published state of the art. Still there is a misclassification chance of
2%. This restricts gesture input to non-safety-critical applications.

3.3.4 Proof of Concept Demonstration

We envisioned a proof-of concept demonstrator with five gestures to control
the position of a robot arm:

* The robot arm positions a camera at discrete locations around an object.
The robot arm can be moved to the left or to the right of the object,
following a pre-defined trajectory. Also, the camera can be tilted up and
down.

* A picture can be made of a 3D object and stored for post
processing.



3.3.5 Comparison and Conclusion 235

Discrete camera positions

. \ L )

i  Radarclient !
1 1 o
: ! TCP/Ethernet [ ]
i [(a) Gesture emulator ] }—» Move left ,
i ! 4
i T i
1| (b) Radar gestures L l Object

,I Move right x‘.- Tilt up/d
M e R4 5 b

Take picture
»..... o

Figure 3.3.9 Proof of concept radar/robot interface block diagram.

These interactions are shown in Figure 3.3.9. The gesture-detecting radar
system and the robot arm will interface over TCP/IP via an Ethernet
link. A radar client collects gestures and transmits them to a robot server,
which converts the gestures to robot commands to manipulate the camera
location/position. There is a risk that a gesture is misclassified, resulting in
a faulty recall. Such errors need to be corrected by the operator. This can be
done without an increased safety risk. We still need to decide on the process
to take the pictures and to handle the associated risks for sub-optimal captured
data.

The radar client can either be emulated (a) or use a radar part (b) as shown
in Figure 3.3.9. Either one of these modes is used. In emulation mode, it
is sufficient to model the recall statistics of the different gestures together
with their latency. This allows pre-validation of the robot part of the use
case, without requiring a radar part or classification. For demonstration the
emulation part is replaced by a suitable radar and classification. The TCP/IP
communication scheme stays identical.

For the radar machine learning approach, sufficient gestures are available
to support this use case. A logical choice is to use gestures with the best recall
statistics. At least one gesture needs to be added to the spiking neural network
if this approach is chosen.

3.3.5 Comparison and Conclusion

Both implementations (the machine learning and the spiking neural network)
successfully detect gestures using a single radar. We observe that the SNN
implementation achieves a better detection performance of 97.8%. The
main reason is that larger training sets are used for a single user. For the



236  Radar-Based Human-Robot Interfaces

machine learning implementation, we observe that the classifier sometimes
generates valid gestures for unseen data. Excluding this (for fair comparison),
the detection performance improves from 86.1% to 92.8%. Although the
obtained detection performances are rather high, the current implementations
are not yet suited for safety critical applications. Both approaches require
some time to detect a gesture, which may exceed half a second. This enables
discrete control of a robot but precludes real time control. We envision a
proof-of-concept demonstrator to illustrate the interaction between the radar
system and the robot arm. This system will control the position/location of
a camara mounted on the robot arm based on hand gestures detected by the
radar system. A statistical model of the radar system is being created to allow
early evaluation. This model combines gesture recall statistics with latency
characteristics. The proof-of-concept demonstrator will be fully developed
within the frame of the AI4DI project together with other consortium
partners.

Acknowledgements

This work is conducted under the framework of the ECSEL AI4DI “Artificial
Intelligence for Digitising Industry” project. The project has received funding
from the ECSEL Joint Undertaking (JU) under grant agreement No 826060.
The JU receives support from the European Union’s Horizon 2020 research
and innovation programme and Germany, Austria, Czech Republic, Italy,
Latvia, Belgium, Lithuania, France, Greece, Finland, Norway.

References

[1] Dimitrievski, M., Shopovska, 1., Van Hamme, D., Veelaert, P., & Philips,
W. (2020). Weakly supervised deep learning method for vulnerable
road user detection in FMCW radar. In 2020 IEEE 23rd International
Conference on Intelligent Transportation Systems (ITSC), Proceedings.
Rhodes, Greece. https://doi.org/10.1109/ITSC45102.2020.9294399

[2] Wang, S., Song, J., Lien, J., Poupyrev, I.., Hilliges, O. (2016). Interacting
with Soli: Exploring Fine-Grained Dynamic Gesture Recognition in
the Radio-Frequency Spectrum. In Proceedings of the 29th Annual
Symposium on User Interface Software and Technology, Tokyo, Japan,
16-19 October 2016; Association for Computing Machinery: New York,
NY, USA, 2016; pp. 851-860.


https://doi.org/10.1109/ITSC45102.2020.9294399

References 237

[3] Texas Instruments, “IWR6843 intelligent mmWave overhead detection
sensor (ODS) antenna plug-in module”, https://www.ti.com/tool/TWR6
843ISK-ODS.

[4] A. Gorji, A., Khalid, H. U. R., Bourdoux A., and Sahli, H. (2021). “On
the Generalization and Reliability of Single Radar-Based Human Activity
Recognition,” in IEEE Access, vol. 9, pp. 85334-85349, 2021. https://do
i.org/10.1109/ACCESS.2021.3088452

[5] Tsang, 1.J., Corradi, F., Sifalakis, M., Van Leekwijck, W., Latré, S.
(2021). Radar-Based Hand Gesture Recognition Using Spiking Neural
Networks. Electronics 2021, 10, 1405. https://doi.org/10.3390/electronic
s10121405

[6] Texas Instruments, “DCA1000EVM: Real-time data-capture adapter for
radar sensing evaluation module”, https://www.ti.com/tool/DCA1000E
VM.

[7] Maass, W., Natschliger, T., Markram, H. (2002). Real-Time Computing
Without Stable States: A New Framework for Neural Computation Based
on Perturbations. Neural Comput. 2002, 14, 2531-2560.

[8] Tsodyks, T., Uziel, A., Markram, H. (2020). Synchrony Generation in
Recurrent Networks with Frequency-Dependent Synapses. J. Neurosci.
2000, 20, RC50


https://www.ti.com/tool/IWR6843ISK-ODS
https://www.ti.com/tool/IWR6843ISK-ODS
https://doi.org/10.1109/ACCESS.2021.3088452
https://doi.org/10.1109/ACCESS.2021.3088452
https://doi.org/10.3390/electronics10121405
https://doi.org/10.3390/electronics10121405
https://www.ti.com/tool/DCA1000EVM
https://www.ti.com/tool/DCA1000EVM




