4.3

Al-Based Quality Control System at the
Pressing Stages of the Champagne
Production

Lucas Mohimont', Mathias Roesler', Angelo Steffenel', Nathalie
Gaveau?, Marine Rondeau', Francois Alin', Clément Pierlot?, Rachel
Ouvinha de Oliveira?, Marcello Coppola® and Philipe Doré*

'University of Reims Champagne-Ardenne, France
2Champagne Vranken-Pommery, France

3ST Microelectronics, France

4CEA-LIST, France

Abstract

Deep learning (DL) is a hot trend for object detection and segmentation,
thanks to Deep Neural Networks (DNNs). Image recognition is a powerful
tool for precision viticulture, having strong potential in yield estimation and
automatic quality estimation of the grapes. However, developing the models
is one part of the problem; deploying them in the field, at the edge of the
network, is another problem that comes with its own constraints. This paper
studies the use of embedded devices to run DNN algorithms for real-time
grape segmentation at the wine press. The results show that it is possible to
use edge devices while respecting a real-time context with little detection
quality losses.

Keywords: grape detection, precision viticulture, deep learning, edge
computing, computer vision, object detection, Tensorflow-Lite.

289

290 Al-Based Quality Control System at the Pressing Stages

4.3.1 Introduction and Background

Computer vision has helped automate tasks that once required intensive
manual labour. For example, it has been used to automatically count fruits and
vegetables such as peppers [14] or oranges [11]. Applying this to viticulture
is a more challenging problem because each fruit, i.e., the grape, is made of
several berries with colours that can vary depending on the variety (white
or red) or even resemble the colour of the foliage before the grapes ripen.
Nonetheless, detecting grapes automatically is a necessary step for solving
other, more complex problems such as yield estimation. Dunn et al. [5] were
the first to propose a method for detecting grapes in images. Since then, many
methods have been developed to achieve better detection rates and be used on
large scales.

Indeed, several approaches can be used to identify the location of grapes
on an image. The most intuitive way is by looking at the colour of each pixel,
as proposed by Dunn et al. [5]. Unfortunately, this method is sensitive to
the lighting condition and cannot be used for different grape varieties: red or
white.

Another approach to detecting grapes consists in trying to detect the
individual berries as first proposed by [7], which uses the reflection properties
of light on each berry. It will produce a specular reflection pattern that follows
a Gaussian distribution that can be used to isolate the individual berries
that compose the grape. Although it has been implemented in the field and
evaluated on a large scale, this approach requires additional equipment (flash
or lamp) and works best at night. Therefore, it is not a practical method for
use in the field.

Machine learning methods have been proposed to create a binary
estimation on each pixel or pixel block of an image. In this case, the
selected pixel or block is classified as either a grape or not a grape. Some
methods require a feature extraction process before the classification [4][10]
and others, based on deep learning, combine the feature extraction and the
classification within the same model [3][2]. In this first case, many different
features can be used, for example, the average of the RGB channels in the
pixel block [10] or the colour histogram [9]. Several classifiers are possible
as well, such as the Multi-Layer Perceptron (MLP) [2], Support Vector
Machines [4] and AdaBoost [10]. Each method will be a combination of these
two different algorithms - feature extractor and classifier. One of the main
problems with this approach is that the quality of the classification results
depends on the choice of the feature extractor, which in turn depends on

4.3.2 Methodology 291

the researcher’s choice. One of the main problems with this approach is that
the quality of the classification results depends on the choice of the feature
extractor, which in turn depends on the researcher’s choice.

Convolutional Neural Networks can overcome this problem by combining
the feature extraction process and the classification of the extracted features
in the same algorithm. Different architectures have been examined with the
objective of detecting grapes using transfer learning which yields good results
[3]. Some other models have also been explored, such as the Mask R-CNN by
Santos et al. [13], Faster R-CNN, R-FCN, and SSD [8]. These methods detect
the location of grapes in the image with bounding boxes. Other approaches
use deep learning for semantic segmentation to detect individual berries
[6][15] or grapevine flowers [12], which we use in this work.

The deployment of deep learning for industrial applications is a challenge.
Current deep learning models are trained on powerful GPUs. The challenge
is to convert these models for real-time inference on the field. One way
to deploy the algorithms is to use specific hardware such as embedded
devices, essentially small computers that can operate in remote places
like vineyards or wine presses. These small devices have limitations, most
notably in computing power and available memory. These constraints must
be acknowledged to choose the most suitable tools and algorithms for
onboard applications. These constraints include the inference time that must
be low enough for practical use. Luckily, a wide range of readily available
boards with various capabilities can be used for deploying grape detection
algorithms. The option of creating a board for a specific application is always
possible.

This paper focuses on detecting unwanted elements (green or ripen
grapes, leaves, stones, tools) before delivering the grapes to the press. This
paper will be looking at the deployment of a deep neural network for semantic
segmentation on a readily available embedded device, enabling Al inference
at the edge of the network. Different versions of the model will be tested,
and the performances will be analysed based on these three criteria: inference
time, performance loss when compared to the original model, and model size.
In addition, results must be obtained in less than 15 seconds not to impact the
winery production chain.

4.3.2 Methodology

Our team acquired the images for training and testing at the wine press,
using a GoPro camera mounted over the weighting device, as illustrated

292 Al-Based Quality Control System at the Pressing Stages

Figure 4.3.1 Image acquisition at the wine pressing sites.

in Figure 4.3.1. Each high-resolution image (4000 by 3000 pixels) covers
four crates at the wine press containing grapes and some of the surrounding
environment. However, the model can only accept image blocks of 224 by
224 pixels as input. Therefore, the training and validation set images were
split into smaller blocks that correspond to 12713 image blocks for the
training set and 3250 image blocks for the validation set. The model was
implemented in Python using TensorFlow’s Keras API and saved in the Adf5
format. All the weights and biases are stored as 32-bit floating-point numbers
(float32 datatype) for this model. Figure 4.3.2 illustrates the image analysis
workflow, where a segmentation mask is devised and used to select only the
classes we are interested in (in this case, it applies a binary mask to select
only grapes).

Embedded devices are not necessarily powerful enough to run an Al
model written in Python. For efficiency reasons, the applications that are run
on these kinds of devices are usually programmed in a compiled language
such as C or C++ instead of an interpreted language like Python. However,
to avoid having to rewrite entire models in one of these languages and yet
still deploy them on smaller, embedded devices, Tensorflow has created a
conversion process to optimise an hdf5 model developed using their APIL
The process converts the model into an optimised FlatBuffer by, for example,
fusing layers when possible. This conversion aims at reducing the overall
model size while trying to maintain the performance of the original model.
Different options are available when converting a model from the idf5 format

4.3.2 Methodology 293

=

a Inut imag . (b) Segmentation mask (c) Segmented image

Figure 4.3.2 Example of the image processing steps.

to the #flite format. A commonly used one is the quantisation of the weights
and biases to optimise the model. From the original encoder-decoder model,
two variants were generated using this converter. Both variants were created
with the TOCO converter provided by TensorFlow and saved in the tflite
format. The first model was converted in the most straightforward manner
using the API provided by TensorFlow’s version 2.2. No datatype conversion
was performed on the weights, biases, or activations for this model, and they
maintain their original datatype of float32.

While also being converted using TensorFlow’s version 2.2, the second
variant took advantage of the post-training integer quantisation process to
convert the datatype of the constant tensors (i.e., weights and biases) and
the variable tensors (i.e., activations) from float32 to int8. This quantisation
process reduces the model’s size and memory usage while increasing
inference speed, allowing it to run on smaller devices. However, it will
inevitably decrease the global performances of the model due to rounding
errors that will occur during the conversion. To convert the variable tensors
(the output of the intermediate layers), a representative dataset must be
provided to estimate the range of the floating-point tensors by running a
few inference cycles. A specific dataset does not need to be created for this
process; therefore, the representative dataset was generated using the images
in the validation set from the original model. Several of the images were
cut into blocks of the same size as the model’s input. A total of 179 images
of 224x224 pixels were included in the representative dataset. Before being
used for the quantisation of the model, the images were normalised. This
conversion operation is necessary for being able to use the model on a TPU.
The accelerator can only run layers that have been converted beforehand.
If the entire model is not quantised, then the operations that have not been
affected by the process will be run on the CPU.

294 Al-Based Quality Control System at the Pressing Stages

In this case, all layers were successfully converted, except the first and the
final one. As the images are normalised before input, the value of each pixel
is a floating-point number between O and 1. If the input layer only accepted
integers, then the pixel values would be rounded off, and the input image
would only contain values of 0, creating a black image and rendering the
inference pointless. For the final layer, even though the model’s output is a
binary mask with integer values for pixels — 1 represents a pixel belonging
to a grape and O a pixel that does not — the performances significantly
deteriorated if the output of the final layer was of type int8. Therefore, the
first and final layers were not converted using post-training quantisation.

The device used to run the Al models is an STM32MP157C-DK2 board
produced by STMicroelectronics. It has two processors, a dual-core Cortex-
A7 32 bits and a Cortex-M4 32 bits. The latest version of the X-Linux-Al
package, created explicitly by STMicroelectronics to run Al models on their
devices, was installed on the board. This package comes with TensorFlow
Lite 2.4.1 and the necessary support libraries for using Coral Edge TPU
accelerators. Since it cannot have any version of TensorFlow installed on it,
the STM32MP157C-DK2 can only run tflite models. Because this board has
no dedicated GPU for artificial intelligence, inferences can only be performed
using its CPU, which can be pretty slow. Therefore, we equipped the board
with a Google Coral USB accelerator (Figure 4.3.3). This tensor processing
unit (TPU) is an ASIC processor specifically designed to accelerate the
inference of artificial intelligence models, provided as TensorFlow Lite

A

Figure 4.3.3 STM board and TPU accelerator used in this work.

4.3.3 Results and Discussion 295

To evaluate the performances, three criteria were used: the inference
time, the model’s overall size, and the intersection over union (IOU) score.
The inference time is used to compare the hardware and software options
concerning the real-time constraint that has been set, 15 seconds in this case.
The size of the model is given to show how efficient the compression is during
the conversion process. Finally, the IOU score was calculated relative to the
results obtained with the DGX server. Using this metric, we aim to assess
how the inferences from different model versions differ from the original one.
Hence, an IOU score of 1 means that the variants’ performances are the same
as those of the baseline model.

4.3.3 Results and Discussion

The obtained results are presented in Table 4.3.1. Also, Figure 4.3.4 shows
an example of the output for each model variant on the STM32MP157C-
DK2 board against the baseline output obtained on the DGX server. The
inference time and the IOU score presented here were obtained by averaging
the individual inference time and IOU score of all the images in the test set.
Three tests were run with different models. The STM32MP157C-DK2 board
can only run the #flite versions of the model (quantised and not quantised)
because the board does not support TensorFlow but only the TensorFlow Lite
runtime environment. Therefore, the quantised model was run twice, once
without using the TPU accelerator and the second time with the accelerator.
The results show that the chosen device is not powerful enough to run
the fflite model using only the CPU, whether quantised or not and fit the
requirements. The quantisation process does allow for a slight decrease in the
inference time, of a factor of 1.1 only. This improvement is far insufficient
to satisfy the real-time requirements that were set. The only viable solution
is to use the TPU accelerator, as the inference time is reduced by a factor
of 13 when comparing it with the same model without using the accelerator.
Using the accelerator has a drawback as it forces the model to be quantised,
inducing a performance degradation as shown by the relative IOU score of
0.93. Considering the significant reduction in the inference time, the slight
deterioration of the performances is justified, especially since it is the only
scenario that fills the real-time requirements. However, it is interesting to note
that since the IOU score is 1 for the non-quantised model, the conversion
from the hdf5 format to the fflite does not impact its performances and the
only effect is to reduce its overall size. The compression factor between
each model is approximately three. More precisely, it achieves a factor of

296 Al-Based Quality Control System at the Pressing Stages

Table 4.3.1 Results obtained with the STM32MP157C-DK2 board.
IOU score Inference (sec.) Size (in MB)

Baseline N/A 0.4 93
tflite not quantised 1 137 31
tflite quantised without TPU 0.93 117 8.7
tflite quantised with TPU 0.93 11 8.7
(a) Baseline (b) tflite model (c) quantised (d) quantised
not quantised without TPU with TPU

Figure 4.3.4 Output of the models.

3 between the original and the tflite version and a factor of 3.6 between the
non-quantised and the quantised version. Even if the quantisation process
impacts the performances, it still allows for complex and heavy models to
run on devices with limited resources.

4.3.4 Conclusion

Deep neural networks require large amounts of resources to operate. This
is not a problem when deployed on various servers with powerful GPUs;
however, this impedes deploying trained models on embedded devices with
limited capabilities. To tackle this problem and avoid having to rewrite
models in programming languages better suited for smaller devices such a
C or C++, different converters exist to reduce the size and the necessary
resources for the models to run. These converters allow models initially
developed using high-end APIs such as TensorFlow to be easily deployed
on boards such as the STM32MP157C-DK2.

In this paper, a deep neural network with an encoder-decoder architecture
for semantic segmentation was converted to the fflite format, allowing it to
run on two small devices. The evaluation proposed in this paper compares
three criteria: the inference time, the IOU score relative to the non-converted

References 297

model, and the model size. The obtained results are very encouraging. They
show that deploying the converted model in a real-time context is possible
while limiting the performance losses due to its conversion. Furthermore,
the time constraints at the wine press are relatively light, allowing the
exploration of model architectures that are not necessarily conceived for real-
time applications, such as the original encoder-decoder architecture used in
this case study. Nonetheless, this paper gives some insights into the trade-off
between performances and inference time when deploying models to smaller
devices.

Still, other alternative converters have not been studied here. For instance,
the N2D2 platform [1] developed by the CEA-List can convert models from
an ONNX format to various targets, including the STM32MP157C-DK2
board. Using N2D2 would bypass the use of Python and TensorFlow Lite
by creating a specifically designed project in C. Using this converter may
provide better inference time while maintaining the same performances and
will be explored in the future.

Acknowledgements

This work is conducted under the framework of the ECSEL AI4DI "Artificial
Intelligence for Digitising Industry" project. The project has received funding
from the ECSEL Joint Undertaking (JU) under grant agreement No 826060.
The JU receives support from the European Union’s Horizon 2020 research
and innovation programme and Germany, Austria, Czech Republic, Italy,
Latvia, Belgium, Lithuania, France, Greece, Finland, Norway.

We also would like to thank the ROMEO Computing Center! of the
University of Reims Champagne-Ardenne, where the original model was
developed and trained.

References

[1] CEA-LIST/N2D2, https://github.com/CEA-LIST/N2D2, original-date:
2017-01-06, Apr. 2021.

[2] N. Behroozi-Khazaei, M.R. Maleki, ’ A robust algorithm based on color
features for grape cluster segmentation’, Computers and Electronics in
Agriculture 142, pp. 41-49, 2017. DOI: 10.1016/j.compag.2017.08.025

"https://romeo.univ-reims.fr

298 Al-Based Quality Control System at the Pressing Stages

[3] H. Cecotti, A. Rivera, M. Farhadloo, M.A. Pedroza, ’Grape detection
with convolutional neural networks’. Expert Systems with Applications
159, 2020. DOI: 10.1016/j.eswa.2020.113588

[4] R. Chamelat, E. Rosso, A. Choksuriwong, C. Rosenberger, H. Laurent,
P. Bro, *Grape detection by image processing’. IECON 2006 - 32nd
Annual Conference on IEEE Industrial Electronics. pp. 3697-3702,
2006. DOI: 10.1109/IECON.2006.347704

[5] G.M. Dunn, S.R. Martin, ’Yield prediction from digital image analysis:
A technique with potential for vineyard assessments prior to harvest’.
Australian Journal of Grape and Wine Research 10(33), 196-198, 2004.
DOI: 10.1111/5.1755-0238.2004.tb00022.x

[6] J. Grimm, K. Herzog, F. Rist, A. Kicherer, R. Topfer, V. Steinhage, ’An
adaptable approach to automated visual detection of plant organs with
applications in grapevine breeding’. Biosystems Engineering 183, 170-
183, 2019. DOI: 10.1016/j.biosystemseng.2019.04.018

[71 M. Grossetete, Y. Berthoumieu, J.P. Da Costa, C. Germain, O.
Lavialle, G. Grenier, ’Early estimation of vineyard yield: Site specific
counting of berries by using a smartphone’. In: International Conference
on Agriculture Engineering (AgEng), 2012, https://hal.archives-
ouvertes.fr/hal-00950298

[8] K. Heinrich, A. Roth, L. Breithaupt, B. Moller, J. Maresch, ’Yield
prognosis for the agrarian management of vineyards using deep learning
for object counting’. Wirtschaftsinformatik 2019 Proceedings, p. 15,
2019. https://aisel.aisnet.o rg/wi2019/track05/papers/3

[9] S. Liu, S. Marden, M. Whitty, *Towards automated yield estimation in
viticulture’. Proceedings of the Australasian Conference on Robotics
and Automation, Sydney, Australia p. 9, 2013.

[10] L. Luo, Y. Tang, X. Zou, C. Wang, P. Zhang, W. Feng, ’Robust
grape cluster detection in a vineyard by combining the AdaBoost
framework and multiple color components’. Sensors 16(1212), 2016.
DOI: 10.3390/s16122098

[11] W. Maldonado, J.C Barbosa, ’ Automatic green fruit counting in orange
trees using digital images’. Computers and Electronics in Agriculture
127, 572-581, 2016. DOI: 10.1016/j.compag.2016.07.023

[12] R. Rudolph, K. Herzog, R. Topfer, V. Steinhage, ’Efficient identification,
localisation and quantification of grapevine inflorescences in unprepared
field images using fully convolutional networks’. arXiv:1807.03770 [cs]
pp. 95-104, 2018.

References 299

[13] T.T. Santos, L.L. de Souza, A.A. dos Santos, S. Avila, ’Grape detection,
segmentation, and tracking using deep neural networks and three-
dimensional association’. Computers and Electronics in Agriculture
170, 105247, 2020. DOI: 10.1016/j.compag.2020.105247

[14] Y. Song, C. Glasbey, G. Horgan, G. Polder, J. Dieleman, G.
van der Heijden, ’Automatic fruit recognition and counting from
multiple images’. Biosystems Engineering 118, 203-215, 2014. DOI:
10.1016/j.biosystemseng.2013.12.008

[15] L. Zabawa, A. Kicherer, L. Klingbeil, R. Topfer, H. Kuhlmann,
R. Roscher, ’Counting of grapevine berries in images via semantic
segmentation using convolutional neural networks’. ISPRS Journal
of Photogrammetry and Remote Sensing 164, 73-83, 2020. DOI:
10.1016/j.isprsjprs.2020.04.002

