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Abstract

Artificial intelligence (Al) is playing an increasing role in the logistical
aspects of a production site in an automotive industry. The pre-calculation
of critical situations in the delivery of parts to the supplier network faces
increasing disruptions which have an impact on delivery reliability. The
planning and control processes are currently implemented by employees
and consequently causes a lot of effort and sometimes incorrect decisions
which are mostly based on the experiences of employees. The processing
and learning Al component will assess the disruption risk caused by natural
disasters such as earthquakes, hurricanes or through manmade political
or social actions such as strikes and propose countermeasures and assure
material availability. Automatic and permanent screening of external sources
(newsfeed, weather forecast, traffic situation) determine potential influence
of road conditions, natural disasters, strikes etc. on the expected reliability
of material replenishment. Finally, the processing and learning component
will assess different countermeasures based on a machine learning algorithm,
which will be feed with data collected from the sensing component.

Keywords: artificial intelligence (Al), inbound logistics, optimisation,

machine learning, real time analytics, data fusion bus, decision support
system, scikit-learn.
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1.1.1 Introduction and Background

The focus of demonstrator use case in AI4DI is the design and
implementation of a Material Planning Decision Support System (MPDSS)
that operates in an automotive production site and aims to optimize the
complete inbound logistics process. Towards this direction, the work centres
around the employment of advanced data-driven methods to collect and
consolidate all relevant information and to use it for the identification of
critical parts in the supply of AUDI’s production lines.

This information refers to AUDI’s internal data and information, AUDI’s
partner data and information (e.g., OEM’s supplier’s stock levels), public
data information (e.g. weather conditions/forecast, road condition), as well
as historical decisions and recommendations in similar situations. Finally,
the MPDSS evaluates all possible measures for securing part supply via
assessing all available data and collecting decisions and recommendations,
and autonomously prioritises the applicable measures. Part autonomy is
only delivered during decision on any critical part, as the user can always
take the final decision of which countermeasure to apply based on given
assessment parameters (e.g., cost, efficiency, CO2 footprint, etc.). While the
data collection (from local and publicly available sites) occurs at the edge,
decision support offered by the MPDSS occurs at the cloud side. Training
and inference of the ML algorithms happens centrally in the cloud. The Al
methodology to follow is supervised training, with the main challenges being
the learning prediction.

1.1.2 Requirements — User Journeys

The user requirements of the MPDSS will be presented below as short user
journeys.

Data Collection and Consolidation: The MPDSS should make use of
all available information to identify critical parts, while minimising the
necessary actions for the manual collection and consolidation of data.

This is achieved by collecting (i) AUDI’s internal data and information;
(ii) AUDI’s partner data and information; (iii) Public data and information
(e.g. weather information, political situations affecting road conditions, etc);
and (iv) decisions and recommendations.

Identification of critical parts: The MPDSS should show only those parts
that are critical enough to cause a supply bottleneck in the production line.
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To achieve this, the system should provide the best possible assessment of
criticality by (i) categorising parts and determine critical ones; (ii) prioritising
them according to supply capability (how probably it is to obtain this part
on time); (iii) visualising critical parts and relevant background information
(based on historical data).

Recommendation of measures: The MPDSS should leverage optimisation
algorithms to prioritise the different applicable measures for securing part
supply and recommend the best-suited measure, taking into consideration
certain parameters (e.g., cost, effectiveness, CO4 footprint).

Autonomous decision making: The MPDSS should autonomously decide
which measures are applicable based on given conditions that can be defined
by the user either in advance or after the user visualises the suggested
countermeasures (partly autonomous decision making). This feature gives a
flexible definition of conditions.

Continuous improvement: The user should be able to rate the
recommendations given by the MPDSS and this rating should be used to
improve the Al routines of the system in the future. This is achieved by
comparing user’s decision with MPDSS best-fit recommendation (when part
autonomous operation).

1.1.3 Data Flow Principles and Architecture of the MPDSS

In this envisioned MPDSS, the data flow is depicted [1] in the following data
flow diagram. A streaming platform collects information from AUDI internal
data sources (such as warehouse databases) and external data streams (such
as weather APIs, traffic condition APIs etc), and all information is fused
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Figure 1.1.1 High level data flow diagram.
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dynamically in a single dataset. To account for emergency situations such
as traffic conditions or natural disasters, this dataset should be updated and
queried continuously, so that decision support and alerting is provided in a
real-time manner.

The Data Fusion Bus (DFB) is well-suited to account for the need of
providing real time Machine Learning analytics. Brief reference to DFB and
its rationale has been made below. DFB enables organizations in developing,
deploying, operating, and managing a big data environment with emphasis on
real-time applications. It combines the features and capabilities of several big
data applications and utilities within a single platform.

The key capabilities of DFB [2] are:

* Real-time monitoring and event-processing, semantic fusion of events
not coinciding in time.

* Data aggregation from heterogeneous data sources and data stores.

* Real time analytics, offering ready to use Machine Learning algorithms
for classification, clustering, regression, anomaly detection.

* An extendable and highly customizable Interface REST API (and
web app) for configuring analytics, manipulation, and filtering. It also
includes functionality for managing the platform.

The technical architecture of MPDSS [3] will be a combination of well-
known opensource tools and proprietary modules. ITML will leverage its
in-house developed Data Fusion Bus, as depicted in Figure 1.1.2 below.

The main building blocks of the architecture are:

* Support for multiple data streams and data stores: Readily available
interfaces are in place that allow for data acquisition for all well-
established Relational Database Management System (RDBMSs), data
streams (using MQTT), NoSQL databases, shared filesystems (HDFS
Hadoop [4]. This functionality is supported by Kafka [5].

* Data Fusion Bus, comprised of the following sub-modules: (i) The
Streaming Core of the platform is Apache Kafka. It relies on Kafka ‘s
distributed messaging system to provide high fault-tolerance (Resiliency
to node failures and support of automatic recovery) and elasticity - high
scalability; (ii) Internal Store and Search Engine: When persistence of
data within the platform is required, the Elastic stack (Elasticsearch and
Logstash) is utilized. Data may flow either through Kafka connectors
(usually in cases of stream data) or may be directly imported to
Elasticsearch [6]. Elasticsearch also provides provide high fault-
tolerance and scalability; and (iii) Identity management, authentication,
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Figure 1.1.2 MPDSS architectural diagram.

authorization and accounting mechanisms that enhance the security
of the platform. Moreover, the security mechanism includes dataset
encryption and anonymization.

DFB Analytics Engine supports batch processing and stream
processing with Apache Spark [7], Kafka Streams & KSQL, Spark
Streaming and python scikit-learn [8]. DFB can be used to perform
supervised (classification and regression with algorithms such as
RandomForest or neural networks) and unsupervised Machine Learning
algorithms (e.g Clustering with Kmeans).

DFB Core is responsible for providing business logic and managing
all the data flows. It is a custom REST API (based on Java Spring).
It exposes a configurable set of web services for providing Decision
Support to external systems and managing/monitoring the whole
platform.

1.1.4 Preliminary Analysis of Data and Dataset

Advanced data analysis will be applied in a dataset to detect critical parts
(using a binary classification algorithm that return “1”” when a part is critical
and “0” when it is not), then assess and recommend countermeasures again
based on calculations from input data, and finally perform decision making
and take into consideration the final decision of the user for continuous
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improvement. There is also consideration into extending the classification of
parts into three classes: non-critical, critical and very critical part.

A preliminary analysis of that dataset to explore possible correlations
among the various fields and the suitability of different machine learning
algorithms has been performed. While this dataset is considered too small for
reliable outcomes, some initial results and the methodology used is presented
below.

1.1.4.1 Data Pre-processing and Visualisation

Data Understanding using descriptive statistics: Quantitative summary of
raw data received as input using measures of central tendency and measures
of variability. This process allows the identification of distinct values for each
field and the distribution for the numeric values.

Handling missing values: If missing values are not handled properly an
inaccurate inference about data might be drawn. Columns which had no
values were removed.

Feature selection: Processing of input variables to select features with
optimal contribution to the target variable. Removing redundant data helps
in reducing data noise and improves model accuracy. This step is achieved
with visualisation tools aiming at the detection of highly correlated variables.

Continuous vs categorical feature detection: Automatically identify which
features are categorical and convert original values to category indices. This
process improves the efficiency of the machine learning algorithms.

Categorical feature encoding: Transforming categorical variables to
numbers by mapping each category to a binary vector denoting the presence
or absence of the feature. This process also improves the efficiency of the
machine learning algorithms.

1.1.4.2 Classification Models

Four different machine learning algorithms (Multilayer Perceptron Neural
Network, Random Forest, Gradient Boosted Tree and Decision Tree) were
used on the sample data. In every case 70% of the dataset was used for the
training of the algorithm and 30% for testing. The model using the multilayer
perceptron neural network had the higher accuracy. Other algorithms
can be used in the future if needed as well. The results are presented
below [9].
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Figure 1.1.3 Multilayer perceptron neural network results.
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Figure 1.1.4 Random forest results.

Multilayer Perceptron Neural Network achieved an accuracy score of
over 90% based on cross-validation results (Figure 1.1.3 and Figure 1.1.4).
The confusion matrix that summarizes the proportion of correct vs incorrect
classifications is as follows:
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Figure 1.1.5 Gradient boosted tree results.
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Figure 1.1.6 Decision tree results.

Gradient Boosted Tree achieved an accuracy score based on cross-validation
results (Figure 1.1.5). The confusion matrix that summarizes the proportion
of correct vs incorrect classifications is as follows:

Decision Tree achieved an accuracy score based on cross-validation results
(Figure 1.1.6). The confusion matrix that summarizes the proportion of
correct vs incorrect classifications is as follows:

1.1.5 Conclusion

The inbound supply process in the automotive industry is a complex structure
of the availability of required material, calculable risks and unpredictable
events which have a direct influence on the entire value added in the
production of the vehicles but also on the supporting value creation processes.
Dealing with these events and making the right decisions poses major
challenges for every automotive manufacturer and supplier, especially since
the supply chains in an international network of manufacturing units are very
volatile. In this big data environment, artificial intelligence offers excellent
technology to make this complexity manageable and to make the right
decisions in critical areas. With the MPDSS system and the underlying
architecture, the first major progress can be achieved at an early stage
of implementation. The greatest challenge here is the integration of the
right data with all the requirements described as well as the labelling and
integration of human experience-based knowledge for alternative courses of
action.
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