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Abstract

Achieving sufficient safety measures is among the major challenges
in developing automated vehicles that can operate safely in an urban
environment. Data fusion between an in-vehicle camera and a LiDAR
sensor can be used for detection and tracking of other road users in an
automated vehicle. In addition, simulated environments together with high-
level deterministic, supervised and reinforcement learning-based autonomous
control could provide traffic safety benefits in the future. These Al-based
technologies have been studied in the AI4DI project to enable the Mobility
as a Service (MaaS) operators fleet management of automated vehicles. The
development and testing of these methods are presented in this chapter with
the first promising results. The Camera - LiDAR fusion algorithm provided
very good results with the accuracy evaluation using the KITTI dataset.
The real-time applicability of the fusion algorithm was also successfully
verified.
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5.1.1 Introduction and Background

This article focuses Al solutions to be used in Mobility as a Service (MaaS)
with fleet management of automated driving “last mile” vehicles. Automated
vehicles could bring improved efficiency to the MaaS, but road safety is a
must. There are several factors affecting the decision making of the automated
vehicle. The automated vehicles must be aware of the surrounding road
users and obstacles and possess quick reaction times in case unexpected
movements or behaviour should occur. This presents the problem of 3D object
detection and tracking, which is a major topic of research with automated or
autonomous vehicles. Having knowledge of the accurate physical locations
of other road users is integral to decision making. In addition, estimation of
the speeds and headings of other road users is required to predict possible
dangerous situations. Therefore, accurate 3D detection and tracking are
needed.

Coming up with the best possible predictions and consequent actions is
mission critical requirement for the automated vehicle. A mission critical
system is a system that is essential to the survival. The selected action depends
on many factors in complex traffic situations. The faster the vehicles are
moving, the quicker the cycle of prediction and action selection must be. This
creates a critical role for system components of the automated vehicle system
including the software components.

This paper presents a novel method for data fusion between an in-
vehicle camera and a LiDAR sensor, which enables the vehicle to map
2D image coordinates to a 3D environment and vice versa. This is utilised
for detection and tracking of other road users in an automated vehicle. In
addition, this paper compares the deterministic, supervised and reinforcement
learning-based autonomous control development possibilities on a high
level. An autonomous control solution blueprint for a control pipeline
that can be trained in a simulation environment is presented. This is
done by combining reinforcement learning control planning capability with
complementary supervised, learning-based observation metadata detection
collection and deterministic safety measures for avoiding collisions and
casualties.

5.1.2 Al-Based 3D Object Detection and Tracking for
Automated Driving

With the increased computing power, there are more possibilities of
implementing Al-based solutions for automated driving systems, which
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require real-time processing rates. A convolutional neural network (CNN)
is one popular solution for 2D object detection. While the CNNs for image
processing are getting more and more accurate, some additional methods are
required to make use of these networks in accurate 3D object tracking.

5.1.2.1 Camera and LiDAR Sensor Data Fusion

Data fusion between a camera and a LiDAR sensor enables the vehicle to map
2D image coordinates to a 3D environment and vice versa. With accurate
inter-sensor calibrations, the 2D detections provided from image data by a
CNN can be transformed into the 3D coordinate system of the LiDAR. This
enables 3D location estimation of objects, while taking advantage of the
accuracy of a 2D CNN. The 3D points provided by a LiDAR sensor can
be projected onto a corresponding 2D image, if the Lidar and the camera
providing the images are calibrated to each other.

The method of combining the point cloud and 2D detection boxes to
obtain object clusters is described in Figure 5.1.1. The output of a 2D
image object detector defines the locations of the objects in the 2D space
using rectangular bounding boxes. The point cloud provided by the LiDAR
sensor can be projected to the same 2D image, and the pixel coordinates
of the projected points can be compared to the detection boxes. The point
projections that are inside a detection box boundary can be tagged so that
the original 3D point is marked as residing inside a detection box in the 2D
perspective. This allows the examination of 3D spatial information of the 2D
detection box. A challenge in this method, however, is raised by the fact that
the 2D detection boxes are usually drawn so that the entire object is contained
inside it, which results in the background area being included especially in the
corner areas of the detection box. This means that many of the 3D points that
are projected and considered to be inside a detection box, actually originate
from the background terrain, and falsify the 3D spatial information related to
the actual object. This can be solved by altering the 2D detection box size
to make it smaller, and focus it on a certain area of the original detection
box. This detection box focusing can eliminate the false point projections
originating from the background. This process results in accurate 3D spatial
information of the 2D detected objects. With this information, the original 3D
point cloud from the LiDAR can be processed to obtain the 3D point cluster
representation of the 2D object mapped onto the image by an image object
detector.



366 Al-Based Vehicle Systems for Mobility-as-a-Service Application

3. An object cluster is formed
based on the tagged 3D points

Figure 5.1.1 3D object clustering using a point cloud and 2D detection boxes.

5.1.2.2 Experiments and Results

The presented method of 3D object detection was implemented as a
functional real-time system into one of the test vehicles of the VTT
automated vehicles research team. The vehicle was equipped with a 32-
beam RoboSENSE LiDAR and a 16-beam Velodyne LiDAR for point cloud
capturing. The image capturing was performed on a Basler Ace2-series
RGB camera, and the images were processed on an Nvidia Jetson Xavier
AGX embedded deep learning device. On an actual vehicle integration, the
time delays between the data capture events of the LiDAR and the camera
must be addressed. To synchronise the point clouds to the captured image
more precisely, the odometry data of the vehicle was also captured using a
combination of an inertial measurement unit (IMU) and a Global Positioning
System (GPS) sensor. The velocity and angular turn rate of the vehicle were
used together with the time delays between the camera and the LiDAR to
rectify the point cloud to better match the 2D image, and therefore keep the
point projections more accurate, even with the vehicle in motion.

This sensor setup was integrated into the vehicle as three separate
data capture and distribution modules running on separate computers. The
LiDAR-capturing computer collected point clouds, transformed them into
the vehicles’ common coordinate system, and the modified point cloud was
published on an OpenDDS (Open Data Distribution Service) network. The
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Jetson device processed the images captured by the Basler camera using the
YOLO v4 network [1], and published the images and the neural network 2D
detections on the in-vehicle OpenDDS network together with the movement
data of the vehicle from the odometry module.

All the processed data was received from the OpenDDS network by
the fourth computer, performing the sensor data fusion. The algorithm first
received the latest 2D camera-based detections, transformed the LiDAR
point cloud and the odometry data. The point cloud was filtered using an
Approximate Progressive Morphological Filter (APMF). It is a simplified
version of the Progressive Morphological Filter [2], which removes the
ground points of the cloud in real-time. The ground points are unneeded, and
they are even likely to add error to the later calculations.

The algorithm first applied the detection box focussing, and processed
each of the point cloud 3D points. For each 3D point, the delay correction was
applied using the odometry and capture time delays, and then the projection
was performed onto the 2D image. Then it was checked whether the projected
point was placed inside a detection box. This point cloud processing operation
was multi-threaded with the sensor fusion computers’ processor cores to
significantly decrease the computing times.

After matching the 3D points to the 2D detection boxes, the algorithm
processed each of the detection boxes to find the objects’ 3D location from the
LiDAR point cloud. This was done by sorting the points tagged to a detection
box based on distance, and choosing the median 3D point as the estimated
location of the object. Choosing the median point helps remove any possible
noise that might still be caused by some background 3D points, and even
occluding obstacles of smaller sizes, which may partially cover the detection
box in the image. Another option instead of choosing the median point is to
average all of the 3D points which have been tagged to the detection box.
This, however, leads to more inaccuracies and makes the estimation much
more susceptible to noise from occluding obstacles, for example.

With the estimations of the locations of the objects in 3D, they can be
extracted from the ground-filtered point cloud. This was done by cropping the
approximate point cloud area containing the object. The 3D crop dimensions
depend on the predicted class of the object. For a pedestrian, the cropping
is much smaller than for a car, for example. This operation was performed
on every object detected by YOLO v4, optimally resulting in the true 3D
locations and point representations of the objects, see Figure 5.1.2 and
Figure 5.1.3.
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Figure 5.1.2 3D detections on camera view.

Figure 5.1.3 3D detections in LiDAR point cloud.

5.1.2.3 Evaluation of the Algorithm and Vehicle Integration

The performance of the algorithm was evaluated on the KITTI 3D object
detection dataset [3]. Instead of using the standard KITTI evaluation
threshold, a custom method of accuracy evaluation was used to focus more
on the accuracy of the projection-based location matching. The evaluation
was done by estimating the 3D point clusters representing the objects, and
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Table 5.1.1 Percentage of estimated object cluster means correctly placed inside KITTI
ground truth boxes.

DIFFICULTY TOTAL CAR PEDESTRIAN
Easy 97.91% 99.29% 93.94%
Moderate 92.28% 92.58% 90.72%
Difficult 87.64% 87.50% 88.50%

then comparing whether the mean of the points in a single cluster is found
inside a KITTI 3D ground truth detection box. If the average point is inside a
ground truth box, it is counted as a success, otherwise it is a failure. Only one
match per ground truth box is allowed. The accuracy was evaluated with the
‘easy’, ‘moderate’ and ‘hard’ difficulty thresholds KITTI, with the ‘car’ and
‘pedestrian’ classes included, see Table 5.1.1.

The vehicle integration was the main goal of the algorithm
implementation. For the practicality of the system, real-time operating speed
was critical. The YOLO v4 module was able to operate at a rate of 16 Hz
with the Jetson utilising the TensorRT library to accelerate deep learning
operations. The amounts of the odometry data were comparably very small,
and it was streamed in the OpenDDS network at a rate of 20 Hz. The LiDAR
point clouds were captured at 10 Hz, which were the largest data stream in
the system. Based on the field of view (FoV) of the Basler camera, the points
that were clearly out of the camera image frame were ignored to speed up
the algorithm. Additionally, the OpenMP multiprocessing library was utilised
to parallelise the data fusion operations, increasing the total speed of the
integrated system to real-time levels. The inference times were measured in a
728-second-long test in an urban driving environment, resulting in operation
rates of 7-10 Hz for the full system.

5.1.3 Autonomous Control Prototyping in Simulated
Environments

Autonomous control fascinates technology enthusiasts and engineering teams
all over the world. Public focus is on autonomous road vehicles for bringing
improved efficiencies and safety on the road. In more controlled and restricted
operating environments, autonomous work machines and robots have already
been able to tirelessly perform cycles of work under human operator
surveillance for some time. The ambition and need for research remain clear
as more advanced autonomous control seems achievable.
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5.1.3.1 Reinforcement Learning Control for Mobile Vehicles

The potential to use simulated environments for purposes of training
reinforcement learning (RL)-based control agents for mobile machines has
been studied in the project by Vaisto. This topic has been studied actively in
recent years, see [4] and [5]. Contrary to supervised learning methods, which
cover the potential action state space of the targeted operational domain only
partially, RL has the theoretical potential to have comparably higher finite
action-value state space coverage [6]. Then again, it is a known challenge
that applying RL control in the real world is challenging [7].

This higher state coverage brings with it the promise that RL can handle
more corner cases, if the RL training process and reward scheme considers the
state space coverage as one key performance indicator. There’s no certainty
that what the action state coverage is and how well an RL agent can adapt to
slightly different environments and observations. Research focus remains on
measuring the potential actions and state space in each operational domain
and then be able to measure that and identify potential pitfalls.

The RL-agent controlled last-mile pod has been trained for project
demonstrators in a simulation environment. A short route from the bus stop
to the nearby coffee shop has been highlighted in Figure 5.1.4.

The RL agent can drive the pod along any arbitrary and continuous routes
in the simulation environment, but in the case wherein the control model was
overfitted to be able to collect statistics related to reward scheme obedience.
The reward scheme monitors the agent’s actions, and based on fitting actions,
a reward was granted to the agent. If the agent was violating the reward
rules, the training episode was ending. The training for this measurement

Figure 5.1.4 Last-mile pod driving scenario.
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Table 5.1.2 The statistics for the agent performance.
Episode end reasons:

Maximum (60m) distance reached 16601 68.68%
Episode end checkpoint reached 4135 17.11%
Collision with “dummy” car 2362 9.77%
Pod was off from the GPS line by 1.5m+ 617 2.55%
Collision with pedestrian 113 0.47%
The next checkpoint was not reached within 10 sec 338 1.40%
The Pod flipped more than 45 degrees 4 0.02%
TOTAL 24,170 100.00%

Figure 5.1.5 Pod sensor view.

was performed on a laptop workstation with Intel i7 CPU. Agent was trained
in simulation over 10 nights (~90 hours). The statistics for the agent’s
performance are shown in Table 5.1.2.

The training for this measurement example is not complete, but the
statistics clearly show that “Maximum (60m) distance reached” starts to be in
the majority and “Episode end checkpoint reached” has increased to 17.11%,
so pod is able to complete the route successfully. Based on our experience
the reward obedience continues to improve as training continues. Also, the
dummy cars and pedestrian are not naturally behaving at all times and they
cause some of the episodes to end. As shown in Figure 5.1.5, the sensors
are facing forward and thus they currently leave blind spots around the
vehicle.

5.1.3.2 The Architecture — Immediate Actions Time-Horizon

Potential solution architecture for autonomous mobile vehicles based on a
focus on reinforcement learning was presented above. The main control
functions would be handled by a hierarchy of RL agents as shown in
Figure 5.1.6. On the top level is a multi-armed bandit agent that would
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Figure 5.1.6 Immediate action control research architecture.

have the highest system level control authority. Driving agents would be
complementing each other and handling specific parts of driving. Then there
would be peer agents performing overlapping primary functions and if the
actions proposed by the agents would be equal, then the action is approved
for actuation.

The multi-armed bandit would be trained to stochastically select the right
agent for proposing action in real-time. The object-detecting environmental
sensing would be performed by neural networks trained with finite datasets.
The time horizons beyond two seconds can rely on various deterministic
and machine learning approaches. A reinforcement learning agent can learn
to follow, for example, position breadcrumbs, but the actual planning and
optimisation is beyond the scope of this article.

5.1.4 Conclusion

This chapter introduced novel methods for data fusion between an in-vehicle
camera and a LiDAR sensor for detection and tracking of other road users
as well as high-level, deterministic, supervised and reinforcement learning-
based autonomous control development possibilities.
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The Camera — LiDAR fusion algorithm provided very good results
with the accuracy evaluation, being mostly able to locate even the more
challenging objects in the KITTI dataset as seen in Table 5.1.1. The real-
time applicability of the algorithm was also verified. The developed algorithm
makes a valuable contribution to the development of the automated vehicles’
environment perception. In addition, the real-time operating speed of the
algorithm in the test vehicle was quite fast. However, occasional performance
drops also occurred for single frames. In future work, the operating rates
could be stabilised by further developing the multiprocessing of the data
fusion module.

Reinforcement Learning can be used for developing autonomous driving
control in a simulated environment. RL was applied in continuous action
space, so the control agents learn to approximate parametric action-value
control functions that correspond to real-world needs. A method was
presented whereby reinforcement learning is complemented by other machine
learning methods or even deterministic safety methods in building a flexible
autonomous driving control system. Based on the study, it was concluded that
RL potentially plays a role in autonomous control development. Simulation
environments are as yet neither visually nor physically on par with the real
world, but the gap is getting smaller every year and autonomous control
models are already a viable method of product development.
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