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Abstract

This paper presents an accurate state of health (SOH) estimation algorithm
using a temporal convolutional neural network (TCN) for lithium-ion
batteries (LIB). With its self-learning ability, this data-driven approach can
model the highly non-linear behaviour of LIB due to changes of environment
and working conditions all along the battery lifetime. The precise SOH
predictions of the TCN are especially needed to ensure a safe and efficient
usage of retired electric vehicle batteries within second-life applications. The
provided network is trained and tested with data gathered from commercial
industry applications in the domain of energy storage. It is shown, that even
for dynamic load profiles, the TCN achieves a mean squared error (MSE) of
less than 1.0 %. Using this approach, the uncertainty of the heterogeneous
performances and characteristics of retired electric vehicle batteries can be
drastically reduced.
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1.2.1 Retired Electric Vehicle Batteries for Second-Life
Applications

According to the Paris Agreement signed in 2016, over 190 countries
agreed to reduce their greenhouse gas emissions by at least 40 % until
2030 compared to 1990. To attain this objective, the usage of fossil
fuels has to be drastically reduced, which is one reason why renewable
energies are coming to the fore. For efficient and sustainable utilization
of these intermittent energy sources, reliable and safe energy storage is an
indispensable prerequisite. The lithium-ion battery (LIB) technology, with
its high conversion efficiency, provides an efficient solution as dynamic
energy storage. Thus, lithium-ion battery technology is a promising solution
for sustainable transportation if the required energy comes from renewable
energy resources. However, due to demanding operating conditions, an
electric vehicle (EV) battery loses capacity and power over its lifetime.
Typically, after 8 to 10 years of service, those batteries are retired due to
capacity fade and power output that fails to meet range and performance
requirements of modern EVs. In general, a retired battery of an EV can
still provide 60-70 % of its initial energy storage capability at the end of its
vehicular life. In Figure 1.2.1, three prognoses of retired EV battery packs are
shown.
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Figure 1.2.1 Retired electric vehicle (EV) battery packs prognosis in GWh per year [2][3].
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According to IDTechEx research [2], by 2030 there will be over 6
million battery packs retiring from EVs per year. Since those batteries could
contain 60-70 % of their initial energy storage capability, they can be further
utilized in less-demanding applications such as stationary energy storage.
However, there are still many challenges that have to be tackled in order
to ensure a safe and economically valuable usage of retired EV batteries in
second-life applications. In the following, four main challenges of second-life
applications are described according to [1].

First, the competitiveness of second-life batteries with new generations
of batteries is a big challenge. It is likely that when the worn-out EV
batteries that are taken out of the car and could be used for second-life
applications, there will be new generations of batteries with better quality
and performance and at a lower price. Thus, the economical exploitation
of second-life batteries will become even more challenging, while the CO2
footprint of the battery manufacturing industry will have to be considered
globally over the whole life-cycle. As a result, the cost competitiveness and
the attractiveness of second-life batteries would be decreased, but the impact
on the environment could become worse.

In addition, different regulations are a critical point. Second-life batteries
are still not defined in the regulation in many countries. Since batteries are
considered hazardous goods, the transportation requires special care and is,
therefore, more expensive. Moreover, since the regulations of the electricity
market in most countries are not fully open and transparent, the regulations
of the battery storage for the energy market are not clear.

Another challenge is the design of the battery packs themselves. Battery
packs are designed to optimally fulfill the requirements of the primary
application they are used in, and that often requires technical and economical
optimizations for the highest competitiveness on the market. Unfortunately,
these optimizations are not optimal for repurposing the battery pack. Now, the
vehicle manufacturers design and optimize the batteries only for being used in
the vehicle, over 7-8 years. Battery repurposing cost is significantly affected
by how the battery packs were initially designed. If components inside
the battery pack are not compatible with stationary storage applications,
additional costs for battery repurposing will result. For example, a car is
designed for 300,000 km over 15 years and 10,000 h operation, while
a stationary application is mostly requiring electronics supporting 24 h
operation during 7 days in a week. A systemic design thinking that integrates
the process of second-life repurposing into the initial battery pack design
would simplify the repurposing procedure and reduce the repurposing costs
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but would add with certitude costs on the implementation for the primary-life.
Based on these considerations, it results that a regulatory way may be at least
one enabler for second-life battery applications since the competitiveness in
the primary application could be reduced significantly.

Finally, the spread and the uncertainty in the remaining battery lifetime
and performance degradation in various energy storage applications is
another main challenge. The lifetime and degradation of second-life batteries
are quite heterogeneous and depending on a whole set of parameters
(e.g., temperature, depth of discharge, current rates, mechanical vibrations),
depending on how they were used in EVs and how they are going to be used
during their second-life within stationary applications. Since each battery
shows a different aging behavior depending on its chemistry (including the
types and quantities of additives to the electrolyte), on its construction or its
historical operating conditions within the vehicles, it is challenging to predict
systematically the ageing behavior of the batteries during their second-life. A
suitable evaluation and prediction of the second-life battery performance is
essential for a safe and economically viable usage of retired EV batteries.

In the AI4DI project and with the demonstrator “autonomous
reconfigurable battery system”, the challenge of uncertain second-life battery
performance is tackled. Retired batteries (i.e., modules of packs) with very
heterogeneous performances and characteristics are combined within a single
battery system [18]. For this purpose, it is essential to determine the state
parameters, like the state of health (SOH) of each battery accurately.

In this paper, it is shown how a temporal convolutional network (TCN)
can be used for accurately predicting the state of health of a lithium-ion
battery. In the following section, the fundamentals of SOH of lithium-ion
batteries are recapitulated. Subsequently, the data measurement using the
open-source battery management system foxBMS is covered. Afterward the
TCN is introduced, and its building blocks are explained. In the subsequent
chapter, the results of the SOH prediction using a TCN are presented and
analyzed. Finally, the conclusion and outline of this work are given.

1.2.2 State of Health of Lithium-lon Batteries

The performance of lithium-ion batteries is decreasing with time (i.e.,
calendric aging) and with utilization (i.e., cyclic aging). The two most char-
acteristic parameters for measuring the current performance capabilities are
the total battery capacity and the internal series resistance of the battery. The
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capacity is decreasing, and the internal resistance is increasing due to unw-
anted side reactions and structural deterioration. As a result, an aged LIB can
store less energy and deliver less power compared to a new LIB of the same
type. The current aging status, also known as the state of health (SOH), is def-
ined from 0 % to 100 %, where the SOH of a new LIB is defined to be 100 %.

This work focuses on the SOH derived from the energy capacity fade of
a LIB as stated in Equation 1.2.1.

SOH_Qi:& (1.2.1)

Qo

where SOH_Q); is the SOH after the i-th cycle, Q; is the capacity after the
ith cycle and Q) is the initial capacity at the lithium-ion battery’s start of
life. The capacities Qg and Qj are determined using Coulomb Counting. The
Coulomb Counting approach is a straightforward method that uses current
integration. The capacity is computed by integrating the charge or discharge
current over time. In order to realize the capacity computation and thus the
SOH determination, the battery management system has to be introduced and
how it is used for measuring battery usage data like the voltage, temperature,
and current.

1.2.3 Data Measurement Using the Open-Source Battery
Management System foxBMS

The battery management system (BMS) consists of the electronics and
the embedded software to fulfil all tasks that ensure a safe, reliable and
application specific optimal operation of the battery system. This includes
measurement of all battery cell voltages in the battery pack, a use-case
specific number of cell temperatures per battery module, and the battery
pack current. Furthermore, additional measurement data can be used as input
to ensure an optimal battery system operation, like e.g., pressure sensors
or electrochemical impedance spectroscopy (EIS) measurements, with or
without an additional sensor [8]. The BMS switches the electric power
contactors of the battery system to ensure that the battery cells are not used
outside of their safe operating limits. Pyro-fuses or electromagnetic fuses are
used as last resort safety elements in the battery system to interrupt the battery
current in case of a strong overcurrent or a short circuit. While the pyro-
fuses are mostly actively controlled by the BMS, the electromagnetic fuses
are triggered automatically by an overcurrent to ensure a shutdown if the
battery is exposed to hazardous conditions.
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In order to run a battery system in an application specific optimal
operating window, battery models, ranging from cell to module and up to
system models (e.g., equivalent circuit, physical- or heuristics-based ones)
need to calculate battery state parameters, e.g., the previously mentioned
SOH. The battery system must be able to perform the required model
calculations and predict their output in real-time. Based on its own acquired
measurement data, the implement application logic and the inputs from the
higher-level control unit, the BMS can safely and optimal control the battery
usage in the application.

To empower our partners and customers to build beyond state-of-the-
art battery management systems, the Fraunhofer IISB has established a
free, open and flexible Battery Management System R&D platform called
foxBMS in 2016 [4, 5, 9]. In 2020, Fraunhofer IISB publicly announced that
there is going to be the second generation of foxBMS [6] with enhanced
safety and more data generation and connectivity possibilities, which then
became available in 2021 [7]. foxBMS is a research and develop platform,
which allows to rapidly development prototypes in the field of battery
applications. These prototypes start from the simple implementation of
drivers for innovative sensors, testing and benchmarking modern battery
models on an embedded platform up to developing a full-customized battery
system for a preproduction system, but also as starting point for advanced
mobile and stationary battery powered products.

Whether battery usage data is generated in research projects, e.g., for an
academic purpose for creating the most sophisticated and accurate models,
or in a product, e.g., to increase the lifetime before end-of-life (EOL), it
is mandatory to make the acquired measurement data available outside of
the embedded system to learn from it, and feedback the gained knowledge.
Figure 1.2.2 shows the information flow of the data pipeline.
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Figure 1.2.2 Measurement and data pipeline and the feedback loop into the BMS.
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First, the measurement data is acquired by the BMS in the application.
This raw data is then transferred and further processed in an ETL-process
(Extract, Transform, Load) and stored in a database. This ETL-process is
necessary, since the logged data stream in such a low-level system (e.g.,
CAN, Ethernet) cannot be directly used for modelling activities. Therefore,
the output is converted and pre-processed in a data format that is reasonable
for data analysis and model training.

After covering the fundamentals of the SOH and describing the data
measurement using the open-source battery management system foxBMS,
the data-driven approach for SOH prediction is introduced next.

1.2.4 Temporal Convolutional Neural Network for State of
Health Prediction

Since the success of Deepmind’s WaveNet [12], a so-called deep neural
network (DNN), similar but simplified networks have been successfully
applied to more and more problems. This architecture family was first named
temporal convolutional network (TCN) by Lea et al. [13]. A TCN can be
differentiated by the following characteristics:

1) Causal convolutions are used to prevent the “leakage” of information
from the future to the past.
2) The output sequence has the same length as the input sequence.

1.2.4.1 Causal Convolutions and Receptive Field

In contrast to 1D convolutions, the TCN uses causal convolutions. These are
convolutions that only consider the [t - k+ 1, t] data at time t, where k is the
kernel size. To ensure that the output sequence will have the same length as
the input sequence, (k - 1) data points have to be padded into the “past”.

Standard Convolution Causal Convolution
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Figure 1.2.3 Comparison of a standard 1D convolution and a causal convolution.
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The receptive field is the length of the input sequence of the TCN. When
creating the model, the kernel size k& and the receptive field R have to be
specified. These two parameters then determine how many layers / are needed
as it can be seen in Equation 1.2.2.

R=2"(k—1) (1.2.2)

1.2.4.2 Dilated Convolutions

The use of causal convolutions has the consequence that the network becomes
deeper and deeper as the receptive field increases. As a result, not only the
training duration but also the memory requirement increases. To counteract
this problem, dilated convolutions are used. A dilation factor d indicates
whether every data point is used (d = 1), only every second data point
(d = 2), and so on. A too large dilation factor creates sparsity in the data,
while a too small dilation factor does not solve the problems mentioned
above. Therefore, the dilation factor is increased by a factor of two with each
layer [12].

1.2.4.3 Residual Block

An additional method that ensures the stability and performance of deep
networks is skip connections [14]. A skip connection does nothing more
than adding the input to the output. In order to have a skip connection in
a meaningful and useful way, a so-called residual block can be implemented.
A residual block represents a layer of the network and ensures that local
regeneration of a LIB can be captured [15] as it can be seen in Figure 1.2.5 at
week 20.
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Figure 1.2.4 Dilated convolutions visualised [12].
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Figure 1.2.5 A residual block [12].

1.2.5 Results

In this chapter, it is shown how well the TCN performs the SOH prediction
for a LIB. The TCN model was written in Python 3.8 and PyTorch 1.8.
The training and experiments were run on a desktop PC with the following
configuration: the CPU is AMD Ryzen 7 3700X, and the GPU NVIDIA
GeForce RTX 3070. The TCN was trained on the public randomized battery
usage data set from NASA Prognostics Center of Excellence [17]. This
data set contains the data of 28 18650 lithium-cobalt-oxide cells with an
initial capacity of 2.1 Ah. The battery cells are divided into seven groups
of four cells each. Every group of cells was cycled with a different profile.
A reference charge and discharge were carried out at regular intervals. Since
the data set only contains time, current, voltage, and temperature the capacity
and the resulting SOH were computed for each reference discharge. Then the
calculated capacity and SOH were used to train the model. As input, the last
100 capacity values of a reference discharge were used and as output, the
corresponding SOH was predicted. 22 cells were randomly picked as training
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Figure 1.2.6 Constant current discharge profiles of a LIB [17].

data and the remaining six cells were used for testing purposes. The used
model hyper parameters are a kernel size of 5, a dropout value of 0.2 and a
batch size of 128. The model was trained for 2000 epochs.

In Figure 1.2.6, the reference discharge profiles are shown of a LIB is
shown. The initial capacity of the LIB with 100 % SOH is 2.1 Ah. With
increasing aging, the capacity and thus the SOH decreases. The neural
network used in this work consists of three layers with seven neurons each.
Furthermore, the TCN is trained by using Adam’s optimizer, which is an
adaptive learning rate optimization algorithm that is specifically designed for
deep learning applications [10]. The input for the TCN contains the capacity
profile of the LIB.

In Figure 1.2.7, the SOH estimated by the TCN, and the reference
measurement are plotted. The TCN predicts the SOH very accurately for the
whole lifespan of the LIB. The integral mean squared error (MSE) for all
predictions is approximately 0.9 %.

Here the high adaptability and self-learning ability from neural networks
are coming to the fore, especially for real-world data with dynamically
changing environment and operating conditions. Therefore, the TCN can
provide reliable SOH estimations for the whole lifetime of LIB.
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Figure 1.2.7 SOH prediction using a TCN with a reference measurement for the whole
lifetime of a LIB.

1.2.6 Conclusion

For a safe, economically, and energetically efficient and sustainable
utilization of retired EV batteries, reliable and accurate state parameter
predictions are an indispensable prerequisite. To ensure a safe operation,
an accurate prediction of the LIBs state of health (SOH) is essential.
Traditionally, physical based SOH estimators are often limited due to
their poor robustness regarding the highly non-linear dependence of the
SOH on the changes of environment and working conditions during the
operation. Data-driven approaches have shown their potential to overcome
the drawbacks of traditional SOH estimation algorithms [16]. In the AI4DI
project and its demonstrator “autonomous reconfigurable battery system”,
a novel machine learning algorithm called TCN was implemented that
combines beneficial properties of long-short term memory recurrent neural
networks while being computationally more efficient [17]. In this paper, it has
been shown that using a TCN the SOH of a LIB can be accurately predicted
with an MSE error over the whole LIB lifetime with less than 1%. As a result,
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with this approach, the uncertainty of the heterogeneous performances and
characteristics of retired electric vehicle batteries can be drastically reduced.
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