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Preface

Industrial Artificial Intelligence Technologies and Applications

Digitalisation and Industry 5.0 are changing how manufacturing facilities
operate by deploying many sensors/actuators, edge computing, and IIoT
devices and forming intelligent networks of collaborative machines that are
able to collect, aggregate, and intelligently process data at a network’s edge.

Given the vast amount of data produced by IloT devices, computing at
the edge is required. In this context, edge computing plays an important
role — the edge should provide computing resources for edge intelligence
with dependability, data management, and aggregation provision in mind.
Edge intelligence — for example, Al technologies with edge computing for
training/learning, testing, or inference — is essential for IloT applications to
build models that can learn from a large amount of aggregated data.

Edge computing is a distributed computing paradigm that brings compu-
tation and data storage closer to a device’s location. Al algorithms process the
data created on a device with or without an internet connection. These new
Al-based algorithms allow data to be processed within a few milliseconds,
providing real-time feedback.

The Al models operate on the devices themselves without the need for
a cloud connection and without the problems associated with data latency,
which results in much faster data processing and support for use cases that
require real-time inferencing.

Major challenges remain in achieving this potential due to the inherent
complexity of designing and deploying energy-efficient edge Al algorithms
and architectures, the intricacy of complex variations in neural network
architectures, and the underlying limited processing capabilities of edge Al
accelerators.

Industrial-edge Al can run on various hardware platforms, from ordinary
microcontrollers (MCUs) to advanced neural processing devices. IloT edge
Al-connected devices use embedded algorithms to monitor device behaviour
and collect and process device data. Devices make decisions, automatically
correct problems, and predict future performance.

XV



XVi  Preface

Al-based technologies are used across industries by introducing intelli-
gent techniques, including machine and deep learning, cognitive computing,
and computer vision. The application of the techniques and methods of Al in
the industrial sector is a crucial reference source that provides vital research
on implementing advanced technological techniques in this sector.

This book offers comprehensive coverage of the topics presented at
the “International Workshop on Edge Artificial Intelligence for Industrial
Applications (EAI4IA)” in Vienna, 25-26 July 2022. EAI4IA is co-located
with the 315¢ International Joint Conference on Artificial Intelligence and the
234 European Conference on Artificial Intelligence (IICAI-ECAI 2022). It
combines the ideas and concepts developed by researchers and practitioners
working on providing edge Al methods, techniques, and tools for use in
industrial applications.

By highlighting important topics, such as embedded Al for semiconduc-
tor manufacturing and trustworthy, dependable, and explainable Al for the
digitising industry, verification, validation and benchmarking of Al systems
and technologies, Al model development workflows and hardware target plat-
forms deployment, the book explores the challenges faced by Al technologies
deployed in various industrial application domains.

The book is ideally structured and designed for researchers, develop-
ers, managers, academics, analysts, post-graduate students, and practitioners
seeking current research on the involvement of industrial-edge Al It com-
bines the latest methodologies, tools, and techniques related to Al and IloT
in a joint volume to build insight into their sustainable deployment in various
industrial sectors.

The book is structured around four different topics:

1. Verification, Validation and Benchmarking of AI Systems and
Technologies.

2. Trustworthy, Dependable Al for Digitising Industry.

3. Embedded Al for semiconductor manufacturing.

4. AI model development workflow and HW target platforms
deployment.

In the following, the papers published in this book are briefly discussed.

S. Narduzzi, L. Mateu, P. Jokic, E. Azarkhish, and A. Dunbar: “Bench-
marking Neuromorphic Computing for Inference” tackle the challenge of
benchmarking aiming at providing a fair and user-friendly method. The
authors introduce the challenge and finally come up with possible key
performance indicators.



Preface Xvii

M. Molendijk, K. Vadivel, F. Corradi, G-J. van Schaik, A. Youse-
fzadeh, and H. Corporaal: “Benchmarking the Epiphany Processor as a
Reference Neuromorphic Architecture” compare different implementations
of neuromorphic processors and present suggestions for improvements.

P. Vijayan, A. Yousefzadeh, M. Sifalakis, and R. van Leuken: “Temporal
Delta Layer: Exploiting Temporal Sparsity in Deep Neural Networks for
Time-Series Data” deal with improving the learning of time-series data in the
context of deep neural networks. In particular, the authors consider sparsity
and show experimentally overall improvements.

D. Purice, M. Ludwig, and C. Lenz: “An End-to-End Al-based Automated
Process for Semiconductor Device Parameter Extraction” present a validation
pipeline aiming at gaining trust in semiconductor devices relying on authen-
ticity checking. The authors further evaluate their approach by considering
several artificial neural network architectures.

D. Morits, M. Rizzo Piton, and T. Laakko: “Al machine vision system for
wafer defect detection” discuss the use of machine learning for fault detection
based on images in the context of semiconductor manufacturing.

S. Al-Baddai and J. Papadoudis: “Failure detection in silicon package”
discuss the use of machine learning techniques for wire-bonding inspection
occurring during the packaging of semiconductors. The authors report on the
accuracy of failure detection using machine learning in the complex industrial
environment.

X. L. Liu, Eileen Salhofer, A. Safont Andreu, and R. Kern: “S20RC-
SemiCause: Annotating and analysing causality in the semiconductor
domain” introduce a benchmark dataset to be used in the context of cause-
effect reasoning for extracting causal relations.

A. Wandesleben, D. Truffier-Boutry, V. Brackmann, B. Lilienthal-Uhlig,
M. Jaysnkar, S. Beckx, I. Madarevic, A. Demarest, B. Hintze, F. Hochschulz,
Y. Le Tiec, A. Spessot, and F. Nemouchi: “Feasibility of wafer exchange
for European Edge Al pilot lines” focus on contamination monitoring for
allowing to exchange wafers among different facilities. In particular, the
authors presented an analysis of whether such an exchange would be feasible
considering three European research institutes.

D. Kaufmann and F. Wotawa: A framework for integrating automated
diagnosis into simulation” discuss a framework that allows the integration
of model-based diagnosis algorithms in physical simulation. The framework
can be used for verifying and validating diagnosis implementations for cyber-
physical systems.



Xviii  Preface

S. Narduzzi, D. Favre, N. Pazos Escudero, and A. Dunbar: “Deploying a
Convolutional Neural Network on Edge MCU and Neuromorphic Hardware
Platforms” discuss the deployment of neural networks for edge computing
considering different platforms. The authors also report on the perceived
effort of deployment for each of the platforms.

R. Prokscha, M. Schneider, and A. Ho8: “Efficient Edge Deployment
Demonstrated on YOLOvVS and Coral Edge TPU”consider the question of
deployment of machine learning on the edge.

O. Vermesan and M. Coppola: "Embedded Edge Intelligent Processing
for End-To-End Predictive Maintenance in Industrial Applications” pre-
sented the use of machine learning for edge computing supporting predictive
maintenance using different technologies, workflows, and datasets.

L. A. Steffenel, A. Langlet, L. Hollard, L. Mohimont, N. Gaveau, M.
Copola, C. Pierlot, and M. Rondeau: ”Al-Driven Strategies to Implement
a Grapevine Downy Mildew Warning System” outline the use of machine
learning for identifying infections occurring in vineyards and present an
experimental evaluation comparing different machine learning algorithms.

F. Wotawa and O. Tazl: ”On the Verification of Diagnosis Models” focus
on challenges of verification and in particular testing applied to logic-based
diagnosis. The authors consider testing system models and use a running
example for demonstrating how such models can be tested and come up with
open research questions.
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