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Abstract

In the last decade, there has been significant progress in the IoT domain due
to the advances in the accuracy of neural networks and the industrialization
of efficient neural network accelerator ASICs. However, intelligent devices
will need to be omnipresent to create a seamless consumer experience. To
make this a reality, further progress is still needed in the low-power embedded
machine learning domain. Neuromorphic computing is a technology suited
to such low-power intelligent sensing. However, neuromorphic computing is
hampered today by the fragmentation of the hardware providers and the diffi-
culty of embedding and comparing the algorithms’ performance. The lack of
standard key performance indicators spanning across the hardware-software
domains makes it difficult to benchmark different solutions for a given appli-
cation on a fair basis. In this paper, we summarize the current benchmarking
solutions used in both hardware and software for neuromorphic systems,
which are in general applicable to low-power systems. We then discuss the
challenges in creating a fair and user-friendly method to benchmark such
systems, before suggesting a clear methodology that includes possible key
performance indicators.

Keywords: neuromorphic, inference, accelerators, benchmarking, low
power, IoT, ASIC, key performance indicators.
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1.1 Introduction

The performance necessary for consumer uptake of 1oT devices has not been
achieved yet. Intelligent always-on edge devices and sensors powered by Al
and running on ultra-low power devices require outstanding energy efficien-
cies, low latency (real-time), high-throughput, and uncompromised accuracy.
Neuromorphic computing rises to the challenge; however, the neuromorphic
computing landscape is fragmented with no universal Key Performance
Indicators (KPI), and comparison on a fair basis remains illusive [1]. The
landscape is complex: comparisons should consider various aspects such as
industrial maturity, CMOS technology implications, arithmetic precision, sil-
icon area, power consumption, and accuracy obtained from neural networks
running on the devices. Comparing target use-cases has the advantage of
looking at the system-wide requirements but adds additional complexity. For
example, if we take into account the inference frequency, this affects the
current leakage and active power, significantly impacting the mean power
consumption of the system.

The most commonly accepted quantitative metrics for benchmarking neu-
romorphic hardware are TOPS (Tera Operations Per Second) for throughput,
TOPS/W for energy efficiency, and TOPS/mm?2 for area efficiency. Hardware
metrics rarely take into account the algorithmic structure. For software, the
performance of Machine Learning (ML) algorithms is usually defined for a
given task. Their KPIs generally target the prediction performance in terms of
reached objective (often accuracy). Until recently, the KPIs rarely accounted
for algorithm complexity, the computational cost, or the structure which
impacts its performance on a given hardware.

Moreover, these metrics are only applicable to traditional neural net-
works, such as Deep Neural Network (DNNs), while for Spiking Neural
Networks (SNN), other metrics such as energy per synaptic operation for
energy efficiency are used. Indeed, the very nature of these DNNs and SNNs
prohibits a comparison based on standard NN parameters.

The main questions asked by end-users, system integrators, and sen-
sor manufacturers are: what is the best solution for the application, and
whether a given neuromorphic processor provides some advantages over
the state-of-art microcontrollers. The inability to answer these questions
thwarts the industrial interest. This white paper provides a brief guide to
relevant metrics for fair benchmarking of neuromorphic inference accelerator
ASICs, aiming to help compare different hardware approaches for various
use-cases.
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The paper is organized as follows: Section 1.2 provides an overview of
the state-of-the-art benchmarking of inference accelerators at algorithm and
hardware levels. Then we look specifically at the KPIs which are applicable
to neuromorphic or power-sensitive applications, explaining what influences
the metrics. Section 1.3 explains why combining KPIs for both hardware and
algorithms is essential for fair benchmarking of neuromorphic computing.
Finally, Section 1.4 summarizes and concludes the paper.

1.2 State-of-the-art in Benchmarking

Benchmarking of NNs inference performance for a task occurs at both the
algorithm and hardware levels. The use-case provides the constraints and
optimizations to be achieved through the combination of the ML model
and the hardware. Currently, ML algorithms and hardware are usually
benchmarked independently with their own metrics.

For ML algorithms, task-related metrics are the standard. Usually, the
task-related metrics are independent of the nature of the ML model used,
allowing the comparison between the algorithmic techniques used to per-
form the task: while the algorithm may change, the way to assess the
performance of the algorithm on a certain task (e.g., image classification)
remains the same. This methodology allows rapid development of deep
learning techniques by comparing the performance of the algorithms on
a given task. In order to target resource-limited IoT applications, metrics
measuring the complexity of the model exist, such as the number of param-
eters, sparsity, depth, and (floating-point) operation counts, are taken into
account. These KPIs are measurable via simulation of the model, and most
of the current deep learning libraries now provide functions that report
these KPIs.

On the other hand, hardware KPIs are extracted from the deployment
platform while running a certain algorithmic model. They can be either
simulated or computed by running the target application on the device. These
KPIs usually include power consumption (estimation), latency, and memory
metrics. In other words, they provide performance results of an ML algorithm
for a certain use case on a specific hardware platform. This gives a good
representation of how a single device works for a given use-case but makes
benchmarking difficult. In the following sections, we present the current state-
of-the-art solutions to benchmarking software and hardware with a focus on
low-power devices. A summary of the standard KPIs is given in Table 1.1.



4 Benchmarking Neuromorphic Computing for Inference

(f) sa[nog
$/00UdIJU]
sw

sw

ZHIN

sinq
ww/SdOoL
M/SdOL
aqds/r
sdoukg/r
doyr

smq

an

L
(/5dOL) SdOL
(M) SHem

%

suq
$dO('1)
(SPPYIN) SOVIN

%

jun

[oPOW UTBLIAD B I0J QUISJUI Uk JUIUUNI UdyM WAISAS Y} Aq pawnsuod ASroug
Pu02as Jad saduaIdJUT JO JOqUINN

douaroyur uojrad 01 papeau dwil],

Qouaejul 10§ Apeal 11 oyew pue AIOWW Ul [JPOW ) PEO] 0) dWIL],

arempiey ay) jo Aouonbaiy wnwirxej

(019 ‘sasdeuks/suonau Jo JoquINU) SINIOANIYIIE JIOMIIU JO SIUTRISUOD IZIS
(010 “18ayur ‘quiod Suneoy) suoneanoe pue sojewered ay) Jo UOISIA
Luw 12d suonerado eia],

nem 19d puooas 1od suonerado eia],

oy1ds auo Andaxd 0) parinbar A31oug

s1ojsuen Krowaw Aressaoou Surpnpour uonerado ondeuks ouo utiojiad 01 A31oug
s1ojsuen Arowow A1essaoou Surpnjour uonerado ouo utojiad 01 A31oug
([RUI)XO/[RUINUT) AIOWAUI WO LI BILP WNWIXR]A

az1s Krowaw diyo uQ

wa)sAs Ay} JO BAIL UODI[IS

(owm jo porrad 110ys 1940 Yead) puooas 1ad suonerado Jo raquinN

apowt yead/a[pt ur wAsAs oy Jo uondwnsuod 1mod

uonmuydq

QouaIayur Je [opow ay) £q paonpoid suoneredo sndeuds jo raquunN

([9A3] UOINAU IO [IAJ] [SPOW) PANIWR d1e sAYIds Ay YoIym e ey

panwe soyids Jo requnN

SIomiau dy) ur 1oKe[ AU JO 19Jjnq UONBATIR WNWIXR]A!

son[ea asieds jo oney

(suonau pue) s1oke[ Jo ad£) pue ToquInN

(010 “189yur ‘quiod Suneoy) suoneanoe pue swjwered ay) Jo UOISIA]
(019 ‘saselq ‘s)ySrom) [apow Ay ut s1jewered Jo roquinu [BIO],

SOVIA XZ 01 Jua[eArnba pawnsse uayo ‘suonerado (yuiod-Suneoy) jo roquinN
suonerado (suonippe-Kdnnur) genuwnooe-Ajdnnu jo requinN

QAIND DY AY) Iopun BaIe A,

SSB[D B JO a1e1 aAnisod asfey oy Jsurese ajer aanisod ann oy 10jd
[[8991 pue uoisIdaId Ay Jo uBaW dIUOUWLIEH

ordues 10d uorsioaid aFeroae oy Jo ueow Ay,

sojdwres Jo Joquinu [e10) Y 1940 s2ANIS0d 3s[e] Jo oney
sojdwes Jo Joquinu [e10) 9y J9A0 SIATIESAU an1) JO ONEY
sojdwres Jo Joquinu [e10) ) 1940 saAnIsod anx Jo oney

sse[o 1ad sojdues payisse[d A[1921100 Jo oner 2y sandwo)
(S99U91IN200 SSB[I AQ PaIyS1am) 1aseIep dy) I9A0 sa[durexa payIsse[d A[1931100 Jo onel ay) sandwo)
[SB) USAIS © JO [203 Y} S2INSBAW PUB SAUILLIANR

uopuydq

douarayur Jod AS1oug
ndysnouy [, / ore1 douaId)u]
Kouarerp

oun dn-oyep

Kouanbarg 210D "XeN
9ZIS YI0MIOU WNWITXL]A]
UoIs1d1d

Kouaroyo eary

Kouaroyge A31oug

oy1ds 1od A31ou0 uBIN
suonerado ondeuks 1od A31oug
uonerado 1od AS10ug
yIprmpueq KIOWI

2715 KIOWA

az1s aIq

suone1ado Jo raquinN (edd)
uondwnsuod 1mod (ead/2IPI)

sdoukg

Kouanbarg ayidg /7 e ayidg
Juno) aidg

UONBANOY WINWIXBIA
Knsredg

mPnng

UoISIOdIg

SIo)oWeIe]

Kixordwo)

(DOV) 2AIND 2Y) 19pun BaIy

(DO¥) dnsuadeIRyd Sunerado 10A1000y

2100§-T4
(dvur) uoistoaid oSeIoAe UBIIA

(Ad:D) ey 2ANISOd 95[e]

Kyoy1oads / (YINLL) ey 2AneSoN oni],
11809y / AMADISUSS / (Yd.L) Y 2ANISO4 dnI],

UoISIAIJ

KorIndoy (pasuereq)
uonouny 2A1N93[qQ
ILIPIA

SId 2IempIeH

SId3 [PPON

SIdX dseL

‘surewop ayj Jo

Kouapuadop-10ur oy 93exSN[[I 03 S|IY PIUIQUOD SUWIOS UOTJUSUI OS[E IA) “SUTBWIOP dIeMPIeY PUE S[OPOW ‘SYSe) 10J S[Y JUBAS[OY  T°T dIqBL



1.2 State-of-the-art in Benchmarking 5

1.2.1 Machine Learning

Machine learning techniques, and especially deep learning algorithms, are
engineered iteratively for a given task’s performance. ML algorithms are
typically compared in terms of accuracy for a given task, such as seg-
mentation or classification on a specified dataset. The task performance
comparison is nowadays well established in the ML community. For clas-
sification tasks, accuracy, precision, recall, receiver operating characteristics
(ROC), and area under the curve (AUC) are some of the most frequently used
metrics. A typical example of a table is shown in Table 1.2. We refer the
reader to [2, 3, 4] for a more detailed overview of relevant metrics in ML
tasks.

In order to give fair comparison for different domains of deep learning,
training and test datasets have been established. According to PapersWith-
Code [6], computer vision-related tasks have the largest number of datasets,
with long-established quasi-standards such as CIFAR [7], ImageNet [8], and
COCO [5]. Specific computer vision tasks have their own standard datasets,
such as KITTI [10] for autonomous driving and FDDB [11] and WIDER
Face [12] for face detection applications. Natural Language Processing (NLP)
tasks are the second most popular tasks for machine learning, with near
2000 datasets comprising GLUE [13] and SQuAD [14] benchmarks. Audio,
biomedical and physics-related tasks equally have their own datasets. It
should be mentioned that other ML techniques also have their own equivalent
dataset for example reinforcement learning (RL) tasks also have their own
standard benchmarks e.g. OpenAl Gym [15] which contains a set of tasks
to test reinforcement learning algorithms. Here the tasks take place in a
virtual environment, and all the physics and interactions are handled by the
environment.

Table 1.2 Accuracy (Acc) for different object detection settings on COCO test-dev. Adapted

from [9].

Model Acc Accsy Accrs Accs Accy Accy,
YOLOV2 21.6 44.0 19.2 5.0 224 35.5
SSD513 31.2 50.4 33.3 10.2 345 49.8
DSSD513 33.2 53.3 35.2 13.0 354 51.1

RetinaNet (ours) 39.1 59.1 42.3 21.8 42.7 50.2
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The importance of the data set

The importance of the datasets can clearly be seen when looking at SNNs.
Currently, the performance of SNNs does not reach DNN performance.
Research in SNNs has focused on the structure of the network and learning
algorithms rather than on task performance. Thus, the work used well-
known datasets for DNNs and transformed them into event-based versions,
such as MNIST-DVS, N-MNIST, and N-Caltech101[16]. Only recently, with
the technology of event-based cameras, have SNN been applied to adapted
datasets for various use-cases (e.g., DVS128[17] and TIDIGITS[18]). These
new datasets will now allow us to see if SNNs can truly rival their DNN
counterparts.

The standard ML benchmarking, as discussed above, usually focuses
on accuracy. This means that the resources needed due to the underlying
algorithm complexity, and thus power consumption, are ignored. In resource-
constrained use cases such as those in edge ML, the models are designed
to provide a computational advantage. For resource-constrained systems
assessing the algorithmic performance on a target task, algorithms can be
compared in terms of complexity, which determines the runtime constraints.
In classical machine learning, there are well-established metrics for compar-
ing the complexity of algorithms. For example, decision trees are defined
by the number of nodes and depth of the tree [19]. NNs, on the other hand,
are usually compared in terms of number of parameters or number of MAC
operations [20, 21, 22]. We refer the reader to the survey by Hu et al. [23]
for further discussion about model complexity. Table 1.3 shows a classic
representation of results for an edge ML algorithm, taking into account the
resources used:

In low power systems, the number of operations, multiply-accumulate
(MAC), or multiply-add (MAD) are also used as an NN optimization param-
eter. The computation latency of an arithmetic block is also highly dependent

Table 1.3 Representation of resource-constrained KPIs, adapted from [20].

Network mAP Params MAdds CPU inference time
SSD300 23.2 36.1M 35.2B -
SSD512 26.8 36.1M 99.5B -
YOLOvV2 21.6 50.7M 17.5B -
MNetV1+SSDLite 22.2 5.1M 1.3B 270ms

MNetV2+SSDLite 22.1 4.3M 0.8B 200ms
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on the precision used to represent the weights and activation of the NN
(i.e., 8bit computations usually run at higher frequencies than for 32bits).
For tiny devices, the type and number of layers of neural networks may
be a metric of interest, as some hardware may be optimized for certain
architectures: some platforms support separable convolutions, while others
do not. The maximum supported activation size for a network layer can also
be a limiting factor since some models might exceed this constraint for some
embedded platforms.

Standard SNN topologies have also been compared using frameworks
[24]. Among the metrics that can be used to compare SNN models, the type of
neurons and synapses, the number of emitted spikes and synaptic operations,
and the rate of the SNNs are the most often used.

It remains difficult, however, to compare cross-paradigm algorithms,
especially when comparing deep learning with emerging paradigms like
SNNs. While some efforts have been made to compare ANN and SNNs [25],
a standard set of metrics has still to be defined.

1.2.2 Hardware

An increasing number of hardware evaluation tools aim at benchmarking
ML applications directly on the hardware. For example, QuTiBench [37]
presents a benchmarking tool that takes algorithmic optimization and co-
design into account. The MLMark[27] benchmark targets ML applications
running on MCUs at the edge. However, both QuTiBench and MLMark
models are too large for tiny applications and require large memories,
which are not available on tiny edge devices. TinyMLPerf [28] provides
benchmarks for tiny systems based on imposed models and tasks, yield-
ing the latency and speed-related KPIs. Submission of results using other
network architectures is allowed in its open division. Further tools, like
SMAUG [29], MAESTRO[30] and Aladdin[31], provide software solu-
tions to emulate workloads on deep-learning accelerators using varying
topologies.

The power consumption of edge ML processing hardware is of utmost
interest as it directly impacts the battery lifetime of a system. Dynamic
power dominates in most high-throughput applications, while leakage power
is only significant in low duty cycle modes[32], where power gating, body
biasing, and voltage scaling techniques are employed to reduce leakage.
Peak power consumption corresponds to the maximum power consumption
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measured, which becomes relevant for battery- or energy harvesting-supplied
applications.

The throughput metric indicates the number of operations that the hard-
ware can perform per second, while latency is the time needed to perform an
entire inference. Note that the peak throughput can usually not be reached for
all network topologies, and latency does not directly scale with paralleliza-
tion, as the peak throughput does[33]. Thus, latency is a combined HW/SW
metric. It can be measured by running multiple inferences and afterward
averaging the execution time. All parameters to run the inference should be
loaded before measuring the inference time.

The CMOS technology employed for the hardware design impacts the
die size and the area efficiency, and thus also directly determines its cost.
Area efficiency provides a figure of merit between the throughput, limited
by hardware resources and frequency, that can be achieved per area. On-
chip memory size provides a raw estimation of the number of parameters
of the NN that can be stored on the chip. In a multi-core architecture,
usually, both the number of neurons and number of synapses per core
are given.

Energy efficiency refers to the throughput that can be achieved per watt,
which is equivalent to the number of operations per Joule. For obtaining
this KPI, a NN is deployed to an inference accelerator, while execution time
and power consumption are measured for performing inference. In the case
of NNs, the multiply and accumulate (MAC) operation corresponds to two
operations. Note that the bit precision of each operation directly impacts
both the accuracy and the energy efficiency (e.g., 32bits float versus 8bits
integer) and must therefore be carefully traded off. Energy per operation and
energy per neuron are fair metrics if the bit resolution is provided since
they are independent of the NN algorithm employed and therefore only
hardware-related.

Some hardware only supports a limited number of layers and layer types
with restricted dimensions. Others provide optimizations and specialized
units. These optimizations, while not being directly comparable, have a strong
impact on the hardware KPIs. Furthermore, power consumption is influenced
by the core voltage supply, which depends on the CMOS technology used
for the hardware design. Thus, the energy efficiency metric (TOPS/W) can be
misleading unless all hardware restrictions are known. The same applies to
other representations like GOPS/W. Typical display of performance in terms
of OPS and associated power are presented in Table 1.4. and from these



1.3 Guidelines 9

Table 1.4 Typical display of performance comparison of neuromorphic hardware platforms,
adapted from [34].

Accelerator Type Target application Performance
NVIDIA Jetson Nano GPU Embedded 472 GOPS @ 5- 10 W
Nvidia Jetson TX2 GPU Edge 1,3 TOPS @ 7,5W
NVIDIA Jetson AGX Xavier GPU Edge 30 TOPS @ 30 W
NVIDIA Drive AGX Pegasus GPU Automotive 320 TOPS
Intel Movidius Myriad 2 bzw. Myriad X~ Chip Embedded/Edge DL/Vision 4 TOPS @ 1 W (Myriad X)
MobilEye EyeQ4 Chip Automotive 2.5TOPS @ 3W
GreenWaves GAP8 Chip Battery powered Al 200 MOPS bis 8 GOPS @ <100mW
Canaan Kendryte K210 Chip Embedded Vision & Audio 250 GOPS @ 300mW
Google Coral Edge TPU Chip Edge 4 TOPS @ <2,5W
Lattice sensAl Stack Soft IP-Core Embedded <lmW-1W
Videantis v-MP6000UDXM Soft IP-Core Embedded DL/Vision <6,6 TOPS @ 400 MHz

Table 1.5 Recent display of performance comparison of neuromorphic hardware platforms,
adapted from [35].

Eyeriss ENVISION Thinker UNPU This work
Technology 65nm 28nm 65nm 65nm 65nm
Area 1176k gates 1950k gates 2950k gates ~ 4.0mmx4.0mm 2695k gates
(NAND-2)  (NAND-2)  (NAND-2) (Die Area) (NAND-2)
On-chip SRAM (kB) 181.5 144 348 256 246
Max Core Frequency (MHz) 200 200 200 200 200
Bit Precision 16b 4b/8b/16b 8b/16b 1b-16b 8b
Num. of MACs 168 (16b) 512 (8b) 1024 (8b) 13824 (bit-serial) 384 (8b)
DNN Model AlexNet AlexNet AlexNet AlexNet sparse AlexNet  sparse MobileNet
Batch Size 4 N/A 15 N/A 1 1
Core Frequency (MHz) 200 200 200 200 200 200
Bit Precision 16b N/A adaptive 8b 8b 8b
Inference/sec (CONV only) 34.7 47 - 346 342.4 -
(Overall) - - 2543 - 278.7 1470.6
(CONV only) 124.8 1068.2 - 1097.5 743.4 -
Inference/J 0 amny N B 876.6 - 664.6 2560.3

terms the TOPS/W metric can be extrapolated. However, recent publications
provide combined metrics as it is shown in Table 1.5.

Processing hardware is limited by the supported arithmetic precisions
for parameters and activations, with the previously mentioned effects on
accuracy. Some hardware implementations allow for several bit resolutions,
allowing to dynamically trade-off throughput, memory needs, and accuracy.
Generally, lower precisions lead to lower algorithmic accuracy.

1.3 Guidelines

Benchmarking of ML applications cannot be tackled as a standalone problem
at the level of either only hardware or algorithms. A holistic view requires
a wide range of expertise and domains. It requires a multidisciplinary and
multidimensional approach considering, among other things, the hardware
platform, the NN (model), and the use-case under evaluation. In order to make
the right choices for building blocks, the system integrator needs to know
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the KPIs for a given use-case that different NNs will be able to deliver on
different hardware platforms.

This section explains why a multidisciplinary approach combining both
algorithms and hardware is needed to avoid drawing unfair and mis-
leading conclusions and comparisons. In the following, we first describe
what is unfair and fair benchmarking in Section 1.1, and then present a
combined KPI approach and guidelines for benchmarking in sections 1.2
and 1.3.

1.3.1 Fair and Unfair Benchmarking

With the new generations of hardware accelerators, many optimizations in
hardware try to co-optimize energy and performance, such as zero-skipping
components, in-memory computing, and multi-core convolution units. How-
ever, it is sometimes unclear if these optimization features are correctly
exploited when embedding complex deep learning models. This lack of
transparency in the optimizations and embedding processes of the models
results in sub-optimal deployments in the hardware. Furthermore, SDK doc-
umentation for a large number of accelerators is unclear or lacks critical
content for high-level developers and data scientists to perform inference-
time optimizations. This makes the embedding process and the subsequent
measurements of the KPIs difficult.

Today, most models deployed on hardware are trained on GPU machines
and deployed on target hardware platforms using their respective optimiza-
tions. The wide variety of optimizations employed in different hardware
implementations [36,37] target specific use-cases, which might favor one or
the other (benchmarking) algorithms (and the underlying layer types), further
complicating fair benchmarking. Thus, there are hardware solutions that out-
perform others by orders of magnitude for specific tasks while providing poor
performance in others. This type of benchmarking is unfair, as the models
are not optimized and thus do not take advantage fully of each platform.
Their KPIs are comparable, but the benchmarking is unfair with respect
to the hardware, as a specially designed model for a particular platform
could be more performant than another model deployed on another platform,
see Figure 1.1a. This shows that use-case-agnostic benchmarking can be
misleading. A platform might receive a low score with general benchmarks,
while performing excellently for a hardware-tailored task.

In contrast, a fair benchmarking based on a defined use-case (indepen-
dently of the model used) would exploit all the tools and optimizations
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provided by the constructor to exploit the hardware to its full potential.
However, the results of the benchmarks can be challenging to compare,
as the base model and optimizations are different between the compared
hardware, see Figure 1.1b. If we compare with conventional benchmarking
of processors, the benchmarks do not account for the underlying optimiza-
tions; a superscalar processor will be benchmarked against a non-superscalar
processor using the same tests.

One particular aspect to take into account in the design of an inference
accelerator is the selection of the CMOS technology and embedded non-
volatile memory (eNVM). If eNVM is used for leveraging from the lack
of power consumption for retaining the stored values after writing, the
qualification of the memory by the foundry in the selected CMOS process
is necessary for its industrialization and therefore a crucial criterion. The
selection of the CMOS process has an impact on the cost and size of the
inference accelerator IP that needs to be considered. Moreover, the CMOS
process has also an impact on the active power and leakage power of the
inference ASIC and needs to be part of the information provided for a fair
comparison between inference accelerators fabricated in different CMOS
processes.

There still remain challenges in the method of comparison. Benchmarking
approaches for Von-Neumann architectures are relatively widespread and
standardized [38, 39]. By contrast, clear benchmarking methodologies for
non-Von-Neumann architectures do not exist yet, making them difficult to
compare. In particular, neuromorphic circuit design is an emerging multidis-
ciplinary challenge that is still in an exploratory phase making the comparison
of the underlying hardware difficult due to its variety. Although many existing
techniques report significantly reduced energy consumption figures, they still
compare themselves to standard low-power microcontrollers.

Benchmarking should be done at different stages and abstraction levels,
considering various aspects such as the algorithm performance, the technical
characteristics, the architectural parameters, and the flexibility and amenities
hardware provides for a specific use-case. As of today, different KPI values
can be obtained with the same algorithm and same hardware just by changing
the use-case from always-on to event-based.

1.3.2 Combined KPIs and Approaches for Benchmarking

The application deployment KPIs are at the intersection of the performance
indicators required by a given use-case, the model solving the task, and
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Figure 1.1 Benchmarking fairness. (a) Unfair benchmarking: the KPIs are comparable,
but the benchmarked hardware platforms are not exploited to their full potential. (b) Fair
benchmarking: the hardware platforms are exploited to their full potential, but the resulting

combined KPIs (KPI¢ ) are not comparable.

the hardware system on which the application is deployed, see Figure 1.2.
Because of the large number of KPIs that can be reported, it is difficult to
have an objective comparison between different platforms, as a platform can
perform well on certain KPIs and poorly on others (e.g., simulating an SNN
on a CNN accelerator). Furthermore, not all platforms report the same set of
metrics and the metrics are not usually convertible to each other (e.g., energy

consumption is not always relying only on MAC operations).

Model
KPIs

Hardware \\\\

KPIs

Task
KPIs

Figure 1.2 Combined KPIs for fair benchmarking
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Some task-related metrics heavily depend on the use-case and application
scenarios, and should be used only in these specific cases. For example, the
performance of a keyword spotting algorithm should not be compared with
the one of an object classification algorithm, even though both aim at high
accuracy. For these reasons, a (small) set of KPIs are desirable which have
the following properties:

* Orthogonality

* Reproducibility

* Objectiveness

» Use-case independence

To assess the performance of NN models running on hardware for a
certain use-case, the KPIs should be combined, as shown in Table 1, to
express the performance of the application on the hardware platform. In
this regard, Fra et al. [40] have proposed a multi-metric approach taking
into account: 1) accuracy, 2) number of parameters of the NN, 3) memory
footprint in MB. These three metrics provide an overview of the NNs: which
one provides better results in the classification task and which one has a
smaller memory footprint. Further metrics which should now be taken into
consideration are: 4) Energy consumption per inference, 5) the number of
operations per second.

The resulting KPIs of the deployment could also contain an indicator
about the flexibility of the hardware accelerator. For comparison in terms of
flexibility, it is necessary to indicate the supported layer types, the supported
bit resolution for inputs, parameters and activation functions, and the sizes
of the kernel filters. By combining metrics that depend on the NN algorithm
and the hardware, a fair comparison for a use-case can be achieved if the
number of parameters of the NN is optimized and the dataset employed is
the same.

1.3.3 Outlook : Use-case Based Benchmarking

A solution to the afore-mentioned challenge would be to propose a use-case-
dependent benchmarking that does not rely at all on the model architectures
of the given model. For an industrial setting, it is interesting to obtain high
performance independently of the techniques used. What matters is that the
application performs within the given constraints of the use-case.

A solution is illustrated in Figure 1.3. In this paradigm, a use-case
would be defined by some target KPIs to reach, such as minimum accuracy
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Figure 1.3 Benchmarking pipeline based on use-cases. An automated search finds the best
possible model exploiting the performance offered by each target hardware platforms. The
resulting combined KPIs are comparable.

and maximum energy. To benchmark the hardware, an automated search
technique, such as Network Architecture Search (NAS), would try to find
the model that fits the target hardware and then optimize the model further
to improve the latency or memory use. This type of benchmarking would be
use-case dependent and model agnostic, beside the meta-model composing
the automated search. Such benchmarking method would output comparable
(combined) KPIs, making the comparison of hardware and the selection of
the best one possible. Of course, an extensive benchmarking suite covering
several use-cases (audio-based, image-based, classification, regression, etc.)
is necessary to ensure fairness across domains.

Following the methodology presented, there are some guidelines to follow
in order to ensure that the extracted KPIs respect the properties presented in
the section 1.2. In addition to measuring the combined KPIs, it is necessary
to provide information on the entire deployment pipeline. Indeed, the KPIs
related to the solved task, the (final) model deployed on the hardware, the
characteristics of the hardware, and finally, the combined KPIs based on the
previous information can be calculated.

The use-cases should be clearly defined and cover several machine learn-
ing tasks. Although the methodology can be applied to a single use-case
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to compare a few hardware platforms, the industrial application cases are
generally broad. It is, therefore, preferable to select a neuromorphic platform
that offers the best performance for a wide range of tasks. This can only be
achieved with a benchmarking tool that is diversified in terms of the tasks to
be solved.

The methodology also requires a complete software tool chain to
have rapid and reproducible deployments of the NNs on the hardware.
Quantization-aware training tools or even better hardware-aware training
tools compatible with the target hardware platforms are beneficial. The
efficient execution of algorithms does not only depend on the hardware archi-
tecture, like the processing resources, but equally on an efficient mapping
strategy that schedules the hardware resources for high throughput and low
power consumption. Depending on the architecture, algorithm-to-hardware
compilers or on-board schedulers ensure this optimization.

Finally, adequate documentation about the hardware technology, the
search algorithm used for benchmarking, the use-case realized by the bench-
mark, and the interpretation of the results provided by the benchmark is
necessary to empower the user in its selection of the most suitable hardware
platform.

1.4 Conclusion

In this paper, we have summarized the standard techniques for benchmarking
NN accelerator hardware and ML software, in addition, we have specified the
KPIs that are most relevant for resource aware inference. We have through
example shown that, in ultra-low-power or neuromorphic systems, separating
hardware and ML algorithms and use-case parameters leads to an ineffective
means of comparison. Only when considering these three in a holistic manner,
can system be benchmarked. Integrating KPIs that allow benchmarking at the
system level in this way is complex. It is important to do this as the inability to
benchmark the IoT systems today is reducing the uptake by industry. In this
paper, we have proposed a benchmarking methodology based on use-cases
where the ML algorithm is adapted to the hardware to allow fair comparison.
Finally, we provide a guideline on what aspects are important to take into
account while developing such benchmarking tool to ensure that the resulting
KPIs are comparable.
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