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Abstract

In this paper, we assess the usage of machine learning techniques to predict
the infection events of Downy Mildew. Every year, Champagne vineyards
are exposed to grapevine diseases that affect the plants and fruits, most
caused by fungi. Using data from an agro-meteorological station, we compare
machine learning performances against traditional prediction methods for
Downy Mildew (Plasmopara viticola) infections. Indeed, depending on the
year, we obtain 82 to 97% accuracy for primary infections and 98% for
secondary infections. These results may guide the development of Edge Al
applications integrated to meteorological stations and agricultural sensors,and
help winegrowers to rationalize the vine’s treatment, limiting the damages
and the usage of fungicide or chemical products.

Keywords: artificial intelligence, Downy Mildew, CNN, random forest,
SVM.

13.1 Introduction

Every year, Champagne vineyards are exposed to grapevine fungal diseases
that affect the plants and fruits. Black rot (Guignardia bidwellii), Downy
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mildew (Plasmopara viticola), Powdery mildew (Erysiphe necator), and
Graymold (Botrytis cinerea) are examples of diseases that can affect grape
quality and hinder the productivity. Each fungus develops under certain
environmental conditions and detecting favourable conditions for the spread
of the diseases may lead to proactive actions to prevent its dissemination.

In the specific case of the Downy Mildew caused by Plasmopara viticola,
there are two cycles of infestation that affect the grapevine. The first one is
caused by sexual spores (called primary infections) and the second one by the
dissemination of asexual (secondary infections) [4].

The mechanical identification of the fungus development cycles and their
forecast has already been the subject of several works, including [8][5] or
[7]. Indeed, several of these works define algorithms to identify the primary
or secondary infection events using a combination of weather and ground
observed variables, which led to the creation of decision-support systems
for the vine-growers. However, these algorithms are limited to strict input
parameters, which are not always available, and do not explore the potential
of hidden correlations with other data variables such as dew point, cloud
coverage or vapor pressure deficit.

Artificial intelligence, on the other side,relies only on the dataset rather
than on models. It uses computing power to expand the search for patterns
and correlations among a broader and richer dataset, often reaching similar
or better results than existing models.

Despite its potential, artificial intelligence has been rarely used to identify
Downy Mildew infections. Among the precursor works, we can cite Chen
et al. [3], which applied several regression models as well as random forest
and gradient boost to predict severe infection events in the Bordeaux vine-
yard. Volpi et al. [9] also use decision trees and random forests to identify
different diseases in Tuscany, Italy, but relying on meteorological data from
ERAS5-Land instead of in-site sensors.

Interestingly, artificial intelligence is more used to monitor crops through
image systems rather than weather sensors. For instance, [1][2] use image
recognition techniques to identify the intensity of the infections on water-
melon or squash crops using hyperspectral images from aerial views. Another
work [6] uses Convolutional Neural Networks to detect Plasmopara viticola
Spores in microscopic images.

In this paper, we explore the interest of using machine learning techniques
to identify Downy Mildew infections using datasets obtained from regular
agro-meteorological sensors. Our aim is both to identify the most efficient
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and robust methods and to prepare the path to their implementation on Edge
Al devices deployed directly on the vineyards.

The remainder of this paper is organized as follows: Section 13.2 presents
the datasets and research methodology used in this work. Section 13.3 intro-
duces the different machine learning techniques used in this work, as well as
their implementation specifications. In Section 13.4 we present a comparative
study of machine learning strategies, aiming at their accuracy as well as their
robustness over the years. Section 13.5 goes beyond the simple results by
discussing the impact of Al-based algorithms on the monitoring of crops.
Finally, Section 13.6 concludes this work.

13.2 Research Material and Methodology

13.2.1 Datasets

The data used in this paper was obtained from a Promété AGRI-300 weather
station installed at “Moulin de la Housse” vineyard from Vranken-Pommery
group in Reims'. This station provides hourly readings from several features
of interest:

* Wind speed [Km/h] (max, average)

* Wind gust [Km/h] (max)

* Relative humidity [%] (max, min, average)
* Pluviometry [/m?]

* Leaf wetting duration [min]

* Dew point [C] (min, average)

* Solar radiation [W/m?] (average)

* Air temperature [C] (max, min, average)

* Vapor press deficit [kPa] (min, average)

More than 20k entries were recorded for each feature from 2019 to 2021,
except for the Leaf wetting duration that could only be recorded in 2019/2020
as the sensor stop working in February 2021.

The presented machine learning approaches are implemented, optimized
and evaluated on a Nvidia DGXI1 server that includes eight Tesla V100
GPUs connected through an NVlink network supporting up to 40 GB/s bidi-
rectional bandwidth. Regarding programming tools, we have implemented
our approaches using the Python language with scikit-learn, Tensorflow and
Keras libraries.

"Data could be provided upon request
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13.2.2 Labelling Methodology

To train machine learning models to identify Mildew favourable situations,
we adopted a supervised learning approach. To label the training dataset,
we applied the algorithms proposed by [7]. Two different Mildew infection
alert situations are identified in that work, each one with strict requirements.
Hence, primary infections are related to the conditions for winter spores’
germination, which may occur when the average daily temperature exceeds
10 °C and the precipitation within the last 48h reaches 10 mm (called “3-
10” flag). If rainfall or gentle breeze (i.e., wind of speed greater than 3.4m/s)
occurs at night within the following 48h, primary infection has presumably
occurred, causing the start of the incubation period of Plasmopora viticola.
Figure 13.1 schematizes this algorithm.

Second mildew infections may happen when the incubation period from
the first infection has been completed. It depends on favourable night condi-
tions (FNCs) conditions where the weather is humid (relative humidity (RH)
>80%), and the temperature is higher than 12°C for at least 2h. In such case,
the secondary infection warning is raised if we also observe more than 2h
of uninterrupted leaf wetness (LW) and average temperature (T) above 10°C,
with precipitation or strong wind that can increase spore spread. Figure 13.2
schematizes this algorithm.

Thanks to these two algorithms, we create two binary labels, one for pri-
mary alert and the other for secondary alert, used in independent classification
models. These labels are only used during the training phase, as our objective
is to obtain accurate predictions based on the raw input data from the weather
station sensors.

13.3 Machine Learning Models

This section presents different strategies to model the Downy Mildew warn-
ing system using machine-learning techniques. As presented in Section 13.2,
our dataset covers three years (2019-2021) and includes several features
directly related to the algorithms from [7] such as temperature, relative
humidity, pluviometry, wind speed or leaf wetness. Other algorithms vari-
ables were adapted from existing data, so the absence of solar radiation
(provided by the weather station) was used as an indicator for night time
instead of a calculation based solely on the date.

We deliberately kept other variables not cited in the original algorithms,
such as the dew point and the vapor press deficit. As stated before, our aim
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Figure 13.1 Algorithm for primary infection alarms [7]

is to explore potential correlations with additional variables. Similarly, we do
not compare the accuracy with the real risks in the vineyard but only with the
expected labels. Performing such comparison requires on-site evaluation and
a separate tagging from a human operator, which is part of our future works.

Another point to consider is how to enter the dataset as alerts depend on
historical events from at least the last 48h. Instead of using mode complex
time-series models such as LSTM or GRU, we chose to feed the algorithms
with a concatenation of the features recorded in the last 48h. This approach
allows us to express the problem in a simpler way that can be approached
using a wider range of machine learning techniques, including some best
adapted to constrained environments such as those in a Edge Al scenario.

As a result, we model the problem as a binary classification problem, i.e.,
for each level of infection alert (primary or secondary), we create separated
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alert”/ “not alert” labels. We decided to split it into two binary classification
problems instead of a multi-class classification problem to favour each alert
type’s accuracy. Henceforth, we choose to compare five well-known binary
classification techniques:

 Decision trees

¢ Random forest

* Support Vector Machines (SVM)

¢ Dense Neural Networks (DNN)

e Convolutional Neural Networks (CNN)

Decision Trees and Support Vector Machine predictors use the basic
scikit-learn implementation (DecisionTreeClassifier and SVC, respectively)
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with no additional optimisation. Random Forests (RandomForestClassifier)
were trained with the parameter n iterators = 1000.

The Dense Neural Network implemented in Keras using seven Dense
layers with respectively 200, 100, 100, 50, 50,10, and 2 outputs. Activator
ReLU was used in all but the last layer (None); the model was compiled with
Binary Crossentropy (from logits=True) loss, Adam optimizer, and Binary
Accuracy metrics.

Finally, the Convolutional Neural Network was implemented in Keras,
using at the input two conv2D layers (32 and 64 outputs, respectively), with
3x3 padding, 0.2 dropout and ReL.U activation. Once flatted, a Dense network
with 100 outputs, 0.5 dropout and ReLU activation sits just before a final
Dense network with 2 outputs (Sigmoid activation).

As the dataset only covers three years, we adopted a cross-validation
approach where, for each technique, we generated a different model for each
respective year (2019, 2020 or 2021). Therefore, each model was trained only
with the data from its own year, split into 90% training and 10% testing parts
(randomly shuffled) and later submitted to cross-validation against the other
years. Not only the cross-validation helps identifying the most robust model
but also allows to investigate the impact of the 2021 weather profile, which
differed from the two previous ones due to several climatic events (early
crop freeze, rainy weather) that favoured the spread of diseases and led to
a massive reduction in crop production and quality.

13.4 Results
13.4.1 Primary Mildew Infection Alerts

As stated above, we create three different training-validation datasets, one for
each year. Therefore, Table 13.1 compares the accuracy score from the 2019’s
model when applied to 2020 and 2021. The best scores are presented in bold,
showing that two techniques detach from the others: CNN and SVM. CNN
shows slight better scores in the 2021 dataset but is closely followed by SVM.

In the case of the 2020’s model, Random Forest and SVM perform well
for the 2019 case, and almost all techniques (except simple Decision Tree)
present similar results for the 2021 case (see Table 13.2). Finally, the 2021’s
model Random Forest seems the best technique for the 2019 dataset, while
SVM is better in the case of the 2020 dataset (Table 13.3). We can, however,
point out that Random Forest achieves good results in this latter case, even if
not as good as the SVM scores. If the* best” technique varies from year to
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Table 13.1 Accuracy of 2019 Primary Infection Models

2019 2020 2021
Decision Tree - 0.607 0.597
Random Forest - 0.841 0.743
Support Vector Machines - 0.978 0.821
Dense Neural Network - 0.909 0.815
Convolutional Neural Network - 0.978 0.822

Table 13.2  Accuracy of 2020 Primary Infection Models

2019 2020 2021
Decision Tree 0.925 - 0.797
Random Forest 0.935 - 0.821
Support Vector Machines 0.935 - 0.821
Dense Neural Network 0.925 - 0.821
Convolutional Neural Network 0.932 - 0.821

Table 13.3 Accuracy of 2021 Primary Infection Models

2019 2020 2021
Decision Tree 0.921 0.881 -
Random Forest 0.938 0.961 -
Support Vector Machines 0.935 0.974 -
Dense Neural Network 0.910 0.849 -
Convolutional Neural Network 0.915 0.895 -

year, both SVM and CNNs show robust results, closely followed by Random
Forest.The choice reposes therefore in the computing capabilities available to
the devices.

We can also see that 2021 was different from the previous ones. If models
from 2019 or 2020 achieve lower scores when predicting 2021 alerts, we can
also say that models trained with 2021 data are among the best ones when
predicting alerts for the previous years. This was somehow expected, as 2021
was rich in favourable events for spreading diseases in the vineyard.

13.4.2 Secondary Mildew Infection Alerts

As the meteorological station stopped recording leaf wetness in February
2021, we could not tag Secondary Mildew Infections on the 2021 dataset.
Nonetheless, we compare both 2019 and 2021 models in cross-validation, as
we previously did for the Primary Mildew Infection.

Hence, Table 13.4 condenses the results from all machine learning tech-
niques when cross validating each year’s models. Secondary Infection alerts
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Table 13.4 Accuracy of 2021 Primary Infection Models

2019 (model 2020) 2020 (model 2019)
Decision Tree 0.960 0.895
Random Forest 0.979 0.988
Support Vector Machines 0.979 0.991
Dense Neural Network 0.932 0.991
Convolutional Neural 0.980 0.991

Network

seem much easier to identify, with higher accuracy scores. Unfortunately, the
absence of a 2021 dataset does not allow a broader comparison under different
weather conditions (2021 presented the lowest accuracy in the Primary Alert
experiments).

Once again, CNN presents the highest accuracy scores, closely followed
by SVM and Random Forest. Indeed, we shall point-out that SVN and
Random Forest are good candidates when considering the implementation
on environments with performance restrictions, such as in the case of IoT /
Edge AL

13.5 Discussion

The results obtained here are encouraging but shall be considered in the
context of the reduced span of the dataset gathered from a single agro-
meteorological station installed since 2019. A deeper analysis would require
several years of data, as performed by [3] or [9].

However, our main objective was to conceive a proof of concept inscribed
in the efforts of the European project AI4DI to develop and disseminate an
environmental monitoring system based on different industrial sensors (e.g.,
TEROS, Bosch BME68x, ST Microelectronics) connected to STM32WL
enhanced by a machine learning core. These sensors are expected to enable
continuous monitoring of the environment, the soil, meteorological condi-
tions, and/or plant performances.

Besides implementing AI models on the STM32WL, some sensors can
also be enriched with a machine learning core. This is the case of the LSM6D
SOX sensor from ST Microelectronics, which comprises a set of configurable
parameters and decision trees able to run Al algorithms in the sensor itself.
Hence, this environment would benefit from simpler models such as random
forest and SVM, rather than CNN.
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Today, while many agricultural weather meteorological stations are avail-
able on the market, innovation comes from implementing Edge Al directly
on the sensors or, in some cases, in the gateways. Therefore, the current work
represents a primary effort to identify good and robust models that could be
deployed in an edge Al environment.

13.6 Conclusion

Every year, Champagne vineyards are exposed to grapevine diseases that
affect the plants and fruits, and the Downy Mildew, caused by Plasmopara
viticola is a common disease. Forecasting the infection events of Downy
Mildew may help vine growers to rationalize the treatment of the vine,
limiting the damages and the usage of fungicide or chemical products.

In this paper, we compare the accuracy of several machine learning
techniques when applied to datasets from the Champagne region. By creating
multiple models and using cross-validation across different years, we were
able to identify three candidate techniques with close results, namely Convo-
lutional Neural Networks, Support Vector Machines and Random Forest.

If CNN seems to be more robust across different years, the accuracy
difference is minimal,and the other techniques present an interest in the case
of deployment over an Edge Al infrastructure. Indeed, we aim to prepare
the path to the implementation of Downy Mildew forecast models on Edge
Al sensing devices that will be deployed directly on the vineyards to closely
monitor the crops.
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