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Abstract

This short article explains why the Epiphany architecture is a proper refer-
ence for digital large-scale neuromorphic design. We compare the Epiphany
architecture with several modern digital neuromorphic processors. We show
the result of mapping the binary LeNet-5 neural network into few modern
neuromorphic architectures and demonstrate the efficient use of memory in
Epiphany. Finally, we show the results of our benchmarking experiments
with Epiphany and propose a few suggestions to improve the architecture
for neuromorphic applications. Epiphany can update a neuron on average in
120ns which is enough for many real-time neuromorphic applications.
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2.1 Introduction and Background

Neuromorphic sensing and computing systems mimic the functions and the
computational primitives of the nervous systems. Nevertheless, state-of-the-
art Deep Neural Networks (DNNs) have exceeded the accuracy of biological
brains (including the human brain) in specific tasks like video/audio process-
ing, decision-making, planning and playing games. However, all of these
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tasks are done without considering one of the main restrictions in bio-
evolution, the "energy consumption". The biological restrictions pushed the
evolution toward power-efficient algorithms and architectures. The human
brain is an extreme example that consumes a considerable portion (around
20%) of the human body’s energy while it has less than 3% of the total
weight.

Even though the elements of the biological fabric in the brain are not
as fast and arguably as power efficient as our modern silicon technologies,
no computing platform can get close to the compute efficiency of the bio-
logical brain for processing natural signals. The brain is a perfect example
of algorithm-hardware co-optimization. As mentioned, the ultimate goal of
bio-inspired processing is to process the raw sensory data with the minimum
amount of power consumption.

The Epiphany architecture was first introduced back in 2009 [1] as a high-
performance energy-efficient many-core architecture suitable for real-time
embedded systems. Epiphany’s architecture contains many RISC proces-
sor cores connected with a packet-based mesh Network-On-Chip (NoC).
Figure 5.1 shows the big picture of the Epiphany’s architecture. This archi-
tecture is different from the mainstream von-Neumann type multi-core
processors since in Epiphany, the cores are connected directly via a NoC

Figure 2.1 Overall scalable architecture of Epiphany-III [1].
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without using a single shared memory to communicate. The mesh packet
switch network in Epiphany results in highly efficient local data movement
between neighbouring processors. However, it introduces a possible non-
deterministic behaviour as the order of the packets in the mesh network is not
guaranteed. Despite implementing a synchronization mechanism, the RISC
processors work individually, and the architecture is not designed for strict
synchronous execution (since it harms the scalability feature). Hence, pro-
gramming epiphany with a conventional programming model is challenging.
Therefore, Epiphany has never gained enough attention in the mainstream
general-purpose processor market.

In 2011, Adapteva, a kick-starter company, introduced the first processor
based on the Epiphany architecture (Figure 5.2). It contains a 16 RISC core
Epiphany chip, expandable to be used in a 256 multi-chip platform (4096
cores in total). The chip is implemented in a 65nm technology node and
consumes less than 2 Watts. A few months later, Adapteva introduced a bigger
version of the processor with 64 cores. The latest version of the processor [2]
was announced in 2016 and contains 1024 cores.

Despite the failure of Epiphany in the general-purpose compute domain,
it has a very similar architecture to the neuromorphic processors which were
introduced a few years later (e.g., SpiNNaker in 2013 [3], IBM TrueNorth in
2015 [4], Intel Loihi in 2018 [5], BrainChip AKIDA in 2019 [6] and GML
NeuronFlow in 2020 [7]). The main goal of neuromorphic engineering is
to build a brain-inspired processor to execute variations of Spiking Neural

Figure 2.2 Adapteva launched an $99 Epiphany-III based single board computer as their
first product.
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Network (SNN) algorithms for real-time sensory signal processing. Program-
ming to implement neural networks using conventional programming models
and compilers is difficult (and inefficient), which resulted in a new paradigm
shift in the programming models. A neural network usually contains neurons
(as the processing unit) and weighted synapses/axons to connect the neurons
in a graph like architecture. Therefore, several new graph-based programming
models (like TensorFlow from Google and PyTorch from Facebook) are
introduced to efficiently execute such applications.

The architecture is made up of eNode processing cores and eMesh routers
to build connectivity networks. Each eNode contains a RISC processor
(1GHz, with an integer and a floating-point ALU and a 64-word register file),
4 memory banks (each 64b× 1024w) to store data (like synaptic weights and
neuron states), and the instructions (like the neuron model) locally, a Network
Interface (NI), Direct Memory Access (DMA) to handle incoming/outgoing
packets, a few general timers (for example to implement periodic leakage)
and a memory BUS interconnect which allows access to each memory bank
simultaneously. The eMesh routers handle 3 separate networks. A high-
performance network for sending one packet of data (spike) to the other
cores with the maximum speed of one packet per clock cycle) and two lower
performance networks (one for reading from another core’s memory and one
for off-chip communication) are introduced to make the programming easier.
These programming models allow for easy splitting of the computational
load over several processing units and mapping synaptic connectivity into
the NoC. Therefore, they are a good fit for architectures like Epiphany.

Like the other neuromorphic architectures, Epiphany is extremely scal-
able, performs near memory processing, is optimized for local data movement
(local connectivity) and asynchronous processing. The eMesh network is
flexible enough to time multiplex any arbitrary synaptic connections. Besides,
the eCores are flexible enough to implement different neuron models. Most
importantly, the architecture is straightforward, which allows easy design
space exploration and benchmarking. Finally, unlike all the other neuromor-
phic platforms it is accessible and affordable which makes it a suitable plat-
form for benchmarking new neuromorphic platforms and innovative ideas.

2.2 Comparison with a Few Well-Known Digital
Neuromorphic Platforms

Probably the SpiNNaker architecture [3] (introduced in 2013) is the most sim-
ilar neuromorphic platform to Epiphany. SpiNNaker contains several ARM
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cores as the processing units connected through an advanced asynchronous
packet-switched network.

Therefore, like Epiphany, the processing core is very flexible and can
implement different neuron models with various mapping schemes. Unlike
Epiphany, each SpiNNaker chip contains only one router, with a higher
complexity level than the Epiphany’s eMesh router. The SpiNNaker’s NoC
allows for multi-casting (using source-based addressing with a programmable
routing table), which is an optimization on top of the plain mesh NoC.

Contrary to SpiNNaker, IBM TrueNorth [4] (introduced in 2015) uses
a plain mesh packet-switched network but with optimized processing cores.
Therefore, the NoC in IBM TrueNorth is very similar to the Epiphany. Each
core in the TrueNorth architecture is fixed to emulate 256 neurons, and
each neuron with 256 input synapse (a crossbar architecture) and a single
output axon (connectable to 256 neurons in any other core). The cores update
all the neurons every 1ms. The synaptic weights are limited to be binary.
This optimized processing core resulted in an ultra-low-power neuron update
(about 26pJ). However, having such constrained cores makes the deployment
of many neuromorphic applications either impossible or inefficient.

In Intel Loihi [5] (introduced in 2018), the processing cores are more
flexible than TrueNorth, and the interconnect is a simple packet-switched
mesh. Each core in Loihi emulates 1024 neurons with a fixed neuron model,
but the number of input synapses to each neuron and their resolution is
flexible (1kb of synaptic memory per neuron). The number of output axons is
also flexible, and one axon can be shared among many neurons. Loihi cores
accelerate a bio-inspired learning algorithm. The cost of these flexibility is
having a higher neuron update energy (about 80pJ) in comparison with the
TrueNorth (while using a better technology node).

In addition to the three previous research platforms, many companies
started to build neuromorphic processors for commercial purposes. For
example, BrainChip AKIDA (introduced in 2019) and GML NeuronFlow
(introduced in 2020) have similar architectures to Loihi.

One of the features in the research of neuromorphic chips is asynchronous
processing and communication. In Loihi, the asynchronization level is inside
the core’s logic blocks. In SpiNNaker and TrueNorth, the cores are work-
ing asynchronously with each other in a Globally Asynchronous Locally
Synchronous (GALS) structure. In Epiphany, NeuronFlow, and AKIDA, the
asynchronousity level is pushed toward the boundaries of the chip (asyn-
chronous chip to chip connectivity). Despite where is the boundary of
asynchronousity, it is essential for scalability.
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Nevertheless, in all the mentioned architectures, the cores still work
individually with each other. Therefore, the implementation of a globally
synchronous algorithm is not optimal in neuromorphic architectures.

2.3 Major Challenges in Neuromorphic Architectures

Since neuromorphic architecture design aims to follow the principles of bio-
inspired processing mechanism in the available nano-electronic technologies,
facing several challenges that result from the platform constraints is normal.
Many innovative schemes have been introduced to overcome the difficul-
ties of developing neuromorphic technology and spiking neural network
algorithm design. These challenges are discussed below.

2.3.1 Memory Allocation

One of the main challenges in neuromorphic design is the available amount
of local memory near or inside the processing element where the data is con-
sumed. In the brain, there is no separation between memory and computation.
This feature eliminates a) the memory bandwidth bottleneck issue and b) the
high cost of data movement between the processing and a far-away memory
block. To mimic this feature, neuromorphic chips use distributed memories
near or inside the processing elements (to keep the synaptic weights and
neuron states close to the processing unit). However, the onchip memory
made by using the conventional SRAM memory technology is not area-
efficient (compared to DRAM and Flash) and therefore expensive. Besides
using a new denser memory technology [8], one of the solutions to overcome
this problem is the proper memory management and maximum reuse of the
memory bits.

The important elements to be stored in each processing core are the spike
queue(s), synaptic weights, neuron states, and axons (destination addresses).
The depth and width of these memories heavily depend on the executable
neuron model and supported connectivities. Table 5.1 shows the memory
allocations in different neuromorphic chips.

Flexibility in the memory allocations allows for optimized mapping of
a neural network in the processor. Different neurons in the neural network
have a different number of inputs/outputs and different amounts of activities.
Some neuromorphic chips allow flexible parameter resolution to trade-off
accuracy and SNN size [5]. Since the range of the parameters is sometimes
more important than the resolutions of the parameters, using smaller floating-
point representations (like BrainFloat16 [9]) may results in better accuracy
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Table 2.1 Memory fragmentations in some digital large-scale neuromorphic chips

Architecture Total
Memory

Spike
queue

Neurons Synapses Axons

TrueNorth [4] 110kb fixed
allocations
(426b per
neuron)

256*16b 256 fixed
neuron type

256*256*1b 256*26b
(1 per

neuron)

Loihi [5] 2Mb N/A 1024 fixed
neuron type

1Mb
Flexible

resolution
(1b to 9b)

Weight
sharing

4k
flexibly
shared

NeuronFlow [7] 120kb N/A 1024 few
neuron
types

1k*8b
Weight
sharing

1k
flexibly
shared

SpiNNaker [3] 768kb
256kb

instruction
memory
512kb data

memory

Flexible Flexible
pro-

grammable
neuron type

Flexible
resolution

only
integer
ALU

Flexible

Epiphany [1] 256kb in 4
banks, each

with
64b data

width

Flexible Flexible
pro-

grammable
neuron type

Flexible
resolution
Int/float
ALUs

Flexible

and power/area performance than using a larger inter (like int32) format.
Therefore, it is possible to trade-off the memory footprint and complexity
of the operations.

Another method to use the memory space efficiently is to store a com-
pressed form of the parameters when there is a high amount of sparsity in the
synaptic weight tensor [10]. Weight sharing is another method to efficiently
use the memory for spiking Convolutional Neural Networks (sCNN) [5] [7].

The Epiphany contains 256kb of memory per core and is the most flexible
architecture in Table 5.1. In the table N/A means we could not find the data
publicly. Axons are the destination core addresses to route spikes from a
neuron. All the numbers in this table are for a single processing core inside
the mentioned neuromorphic chip. All the above-mentioned schemes can be
implemented in Epiphany to optimally use the memory space. To demonstrate
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Table 2.2 Mapping LeNet-5 neural network (with binary weights) in different neuromorphic
architectures

Architecture Number
of used
neurons

Average
number of
synapses per
neuron

Number of
individual
stored weights

Number
of used
cores

Total
memory
used

LeNet-5
(before
deployment)

6518 144.5 61k - -

TrueNorth [4] 40k 256 941k
(144.5×6518)

155 17Mb

Loihi [5] 6518 1024 61k 7 14Mb

NeuronFlow [7] 6518 1024 61k 7 840kb

SpiNNaker [3] 6518 144.5 61k 1 768kb

Epiphany 6518 144.5 61k 1 256kb

the value of flexibility for efficient use of memory, in Table 5.2 we show
the result of mapping the binary LeNet-5 [11] into the above-mentioned
neuromorphic architecture. The average pooling layers are optimized out in
the mapping (as average pooling is a linear operation and does not consume
stateful neurons). The mappings are hand optimized with only memory
constraint. In TrueNorth, several neurons need to be combined to make a
single neuron with enough synapses and axons. Also, since weight-sharing
is not used, the weight for each synapse needs to be stored individually. In
the flexible architectures, the neuron states are assumed to be 16b, without
refractory mechanism and with a single threshold per channel. Mapping in
SpiNNaker is done with the “Convnet Optimized Implementation” which is
described in [12]. Total memory used is (number of cores×memory per core).

2.3.2 Efficient Communication

Using a packet to communicate spikes between cores can be very inefficient.
A spike packet that carries a single bit of data (spike) contains several bits
for the address. For example, a spike packet in SpiNNaker contains 44b of
data to communicate a single binary spike in the AER format [13]. There are
several possible solutions to reduce the number of bits for communicating
spikes. One solution is to use a more complex neuron model (for example
[14] and [15]) with a lower firing rate (trading off operation complexity with
the number of packets). Another solution is to compress several spikes into
one event. For instance, when the destination core for several packets is the
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same, we can compress them easily in one hyper-packet. Epiphany’s packets
are fixed in size (104b packet with a 64b payload data) but the format of
payload data is programmable.

TrueNorth [4] and NeuronFlow [7] use a relative addressing scheme
which allows reducing the number of bits for the destination address in the
packet when a limited communication range is acceptable. For example, in a
platform with 4096 cores, if the destination address contains only 4b, a core
can only communicate with 16 neighbouring cores which might be sufficient
for many applications. This results in a saving of 8b per packet (from 12b
address in a 4096-cores system to 4b-address). Another method to reduce the
number of packets is the multi-casting feature which is used in SpiNNaker
[3]. In this case, a core can only send one spike out and this spike will be
multicasted in the NoC and near the destination cores. Epiphany uses the
basic mesh NoC interconnect which is a shortcoming but contributes to its
simplicity.

2.3.3 Mapping SNN onto Hardware

An optimized mapping algorithm can reduce the memory footprint (by per-
forming maximum sharing of parameters), balance the loads in different cores
(as not all the neurons in an SNN are equally active) and reduce the core-to-
core communications (since it is expensive in terms of power consumption
and latency). Having a flexible number of neurons per core and synapses
per neuron allows the mapping optimizer to find a better solution. The
Epiphany platform can be used to benchmark different mapping algorithms
in the neuromorphic domain because of its flexible and unified memory
architecture.

2.3.4 On-chip Learning

On-chip learning is supported as a futuristic feature in some neuromorphic
chips (like Loihi [5] and AKIDA [16]). However, implementation a hardware
acceleration for on-chip learning is challenging. First, because the algorithm
domain is very dynamic (experimental), it is difficult to find a suitable
algorithm for a wide range of applications. Second, many applications can
be pre-trained and only require fine-tuning after deployment. Therefore, the
learning acceleration might be used only for a few last layers of the neural
network (after general feature extraction layers). Epiphany does not have
a hardware accelerated learning engine, but it allows for software imple-
mentation of those algorithms and therefore benchmarking the new learning
algorithms.
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2.3.5 Idle Power Consumption

One of the challenges in event-based neuromorphic processors is the power
consumption when the cores are in the idle state (no event to be processed).
It is reported that around 30% of power consumption for TrueNorth [4] and
Loihi [17] is the idle power. This can be even worse when the application
is sparser. It is possible to reduce idle power consumption by using asyn-
chronous design or clock gating when no input spike is processed. Also, using
a non-volatile memory technology helps to reduce leakage in the memory
cells (since neuromorphic chips are mostly memory dominant). Epiphany
supports dynamic clock gating for the processing cores. In this case, a core
can only wake up by an interrupt (for example, receiving a new input packet).

2.4 Measurements from Epiphany

In this section, we present some of our measurements using the Epiphany
processor to provide a sense of its performance for possible neuromorphic
applications.

We implemented a neural network with a Leaky integrate and Fire
(LIF) neuron model with different parameters in Epiphany and measured
processing time for different processes, which can be used as a reference
for assessment of Epiphany when one wants to use it as a neuromorphic
processor. Our measurements in this work consider the processing time (no
power measurement) and are performed using the hardware timers inside the
cores.

The compiled instructions (not hand-optimized) for our experiments took
around 52kb of the used cores’ memory. Since the instruction code is almost
similar for all the cores, it will be copied in each core’s memory. It is therefore
recommended to use bigger cores (more memory), so instruction memory
takes only a small fraction of the total memory and is used for a higher
number of neurons.

Figure 5.3 shows a flowchart of our neuron model with the processing
cycle time attached to each block, where N is the number of neurons, F is the
number of firings, X is the neuron state, W is the synaptic weight, Thr is the
firing threshold, Time is the current time (read from Timer), LFT is the last
firing time (stored per neuron), Ref is the refractory time and LR is the leak
rate.

An input spike enters the eCore through the DMA and interrupts the RISC
core. Then a process handles this spike and puts it in a FIFO (made with
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Figure 2.3 Flow chart of processing a LIF neuron with processing time measured in
Epiphany.

a software process). Thereafter, the target neurons will get updated. After
updates, the threshold of neurons is checked, and the refractory check is
executed for each firing. If both checks pass, the firing process starts, and
the RISC core commands to the DMA to transmit a spike packet. Membrane
leakage is also an independent process that starts with a timer interrupt.

Each cycle takes 1ns when using a 1GHz clock frequency. For example,
processing a single spike from the first convolutional layer of LeNet-5 to the
second convolutional layer requires to update 16×5×5 neurons. When the
second layer is implemented in a core and 1% of the updated neurons fire, the
processing time takes around 46us. The leak process on all these 400 neurons
takes around 12us. Our measurements are averaged over many experiments
and therefore the numbers in this figure are reasonable estimations. Since
the neuron model is programmable, one may decide to remove some of
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the components (like refractory) or make it more complex (for example by
introduction of an individual threshold for every neuron)

In Figure 5.3 we showed that updating a neuron with a single spike
takes around 120ns on average. We know that TrueNorth can update all of
the neurons in a core every 1ms, to be suitable for real-time neuromorphic
applications. If we assume a reasonable sparsity in the input spikes in each
time-step (32 input spikes per neuron with 256 input synapses), with 120ns
update time, Epiphany can also process the 256 neurons in less than 1ms.

2.5 Conclusion

This article demonstrates that the Epiphany processor is compatible with neu-
romorphic computing. Overall, it has a similar architecture to the well-known
neuromorphic processors and is flexible enough for the implementation of
new ideas. Unlike Epiphany, all the mentioned neuromorphic processors
contain optimized elements that add complexity to the architecture and make
it less flexible to be a reference benchmarking architecture (flexibility vs
efficiency trade-off). For example, having a fixed number of neurons per core
(in TrueNorth, Loihi, and NeuronFlow) does not allow for optimized resource
management during mapping. Also, having an accelerated learning mech-
anism (in Loihi) may be unnecessary for many applications. Additionally,
suppose one wants to know the performance improvement of the SpiNNaker
processor due to its optimized NoC. In that case, Epiphany is an excellent
platform to compare to, due to its simplicity and flexibility.

As mentioned, not having any accelerator makes the epiphany less effi-
cient compared to the accelerated architectures (like Loihi), but it increases
its value for benchmarking the performance improvement of any accelerators.

We have implemented a neural network system and measured the pro-
cessing time for different components of the LIF neuron model. It is already
visible that some small improvements (like having a hardware FIFO) can
improve the performance of the system. Increasing the size of the core results
in better memory saving, but the designer should scale the performance of the
cores as well (by the implementation of the schemes like multi-threading [5]
and SIMD, as it is implemented in the forthcoming SpiNNaker2.0 platform
[18]). Other improvements (like adding a more suitable interconnect) can
be examined and is a topic for our future research. All source code used to
benchmark the system and perform hands-on experiments is freely available
upon request ({amirreza.yousefzadeh, gert-jan.vanschaik}@imec.nl)
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