3

Temporal Delta Layer: Exploiting Temporal
Sparsity in Deep Neural Networks for
Time-Series Data

Preetha Vijayan'2, Amirreza Yousefzadeh?,
Manolis Sifalakis?, and Rene van Leuken!

ITU Delft, Netherlands
2imec, Netherlands

Abstract

Real-time video processing using state-of-the-art deep neural networks
(DNN) has managed to achieve human-like accuracy in the recent past but
at the cost of considerable energy consumption, rendering them infeasible
for deployment on edge devices. The energy consumed by running DNNs on
hardware accelerators is dominated by the number of memory read/writes
and multiply-accumulate (MAC) operations required. This work explores
the role of activation sparsity in efficient DNN inference as a potential
solution. As matrix-vector multiplication of weights with activations is the
most predominant operation in DNNSs, skipping operations and memory
fetches where (at least) one of them is a zero can make inference more
energy efficient. Although spatial sparsification of activations is researched
extensively, introducing and exploiting temporal sparsity has received far less
attention in DNN literature. This work introduces a new DNN layer (called
temporal delta layer) whose primary objective is to induce temporal activation
sparsity during training. The temporal delta layer promotes activation sparsity
by performing delta operation that is aided by activation quantization and 1;
norm based penalty to the cost function. As a result, the final model behaves
like a conventional quantized DNN with high temporal activation sparsity
during inference. The new layer was incorporated into the standard ResNet50
architecture to be trained and tested on the popular human action recognition

35

36 Temporal Delta Layer: Exploiting Temporal Sparsity

dataset, UCF101. The method resulted in a 2x improvement in activation
sparsity, with a 5% reduction in accuracy.

3.1 Introduction

DNNs have lately managed to successfully analyze video data to perform
action recognition [1], object tracking [2], object detection [3], etc., with
human-like accuracy and robustness. Unfortunately, DNNs’ high accuracy
comes with considerable costs, in terms of computation and memory con-
sumption, resulting in high energy consumption. This makes them unsuitable
for always-on edge devices.

Techniques such as network pruning, quantization, regularization, and
knowledge distillation [4] [5] have helped reduce model size over time,
resulting in less compute and memory consumption overall. Sparsity is a
prominent aspect in all of the aforementioned methods. This is significant
because sparse tensors allow computations involving zero multiplication to
be skipped. They are also easy to store and retrieve in memory. In the DNN
literature, structural sparsity (of weights) and spatial sparsity (of activations)
are well-studied topics [6]. However, while being a popular concept in neuro-
morphic computing, temporal activation sparsity has received less attention
in the context of DNN.

This work applies the concept of change or delta based processing to
the training and inference phases of deep neural networks, drawing inspi-
ration from the human retina [7]. DNN inference, which processes each
frame independently with no regard to the temporal correlation is dense and
obscenely wasteful. Whereas, processing only the changes in the network can
lead to zero-skipping in sparse tensor operations minimizing the redundant
operations and memory accesses.

Therefore, the proposed methodology in this work induces temporal spar-
sity to theoretically any DNN by incorporating a new layer (named temporal
delta layer), which can be introduced in a DNN at any phase (training,
refinement, or inference only). This new layer can be integrated to an existing
architecture by positioning it after all or some of the ReLU activation layers
as deemed beneficial (see Figure 3.1). The inclusion of this layer does not
necessitate any changes to the preceding or following layers. Furthermore,
the new layer adds a novel sparsity penalty to the overall cost function of
the DNN during the training phase. This 1; norm based penalty minimizes
the activation density of the delta maps (i.e., temporal difference between
two consecutive feature maps). Apart from that, the new layer is compared

3.2 Related Works 37

Input Output

(a) Standard DNN

Input Output

(b) Proposed methodology

Conv layer with ReLU Temporal delta layer

activation

Figure 3.1 (a) Standard DNN, and (b) DNN with proposed temporal delta layer

in conjunction with two activation quantization methods, namely fixed-point
quantization (FXP) and learned step-size quantization (LSQ).

3.2 Related Works

Although DNNs are in essence bio-inspired, they have not been able to find
the balance between power consumption and accuracy yet, especially while
dealing with computationally heavy streaming signals. On the other hand, the
brain’s neocortex handles complex tasks like sensory perception, planning,
attention, and motor control while consuming less than 20 W [8]. Scalable
architecture, in-memory computation, parallel processing, communication
using spikes, low precision computation, sparse distributed representation,
asynchronous execution, and fault tolerance are some of the characteristics
of the biological neural networks that can be leveraged to bridge the energy
consumption gap between the brain and DNNs [9]. Among these, the pro-
posed methodology focuses on the viability of using sparsity within DNNs
to achieve energy efficiency. During a matrix-vector multiplication between
a weight matrix and an activation vector, zero elements in the tensor can be
skipped leading to computational as well as memory access reduction (see
Figure 1.2).

There are broadly two types of sparsity available in DNNs: weight spar-
sity (related to the interconnect between neurons) and activation sparsity

38 Temporal Delta Layer: Exploiting Temporal Sparsity

Ax [o]|1]ofofofo]3]o]0]0] Ax mzl

X X

Figure 3.2 Sparsity in activation (Ax) drastically reduce the memory fetches and multipli-
cations between Ax and columns of weight matrix, W, that correspond to zero [10].

(related to the number of neurons). Furthermore, activation sparsity can be
categorised into spatial and temporal sparsity, which exploits the spatial and
temporal correlation within the activations, respectively, [11]. Unlike weight
and spatial sparsity [12, 13, 14, 15], exploiting the temporal redundancy
of DNNs while processing streaming data as a means to reduce energy
consumption is a relatively less explored idea. Exploiting temporal sparsity
translates to skipping re-calculation of a function when its input remains
unchanged since the last update.

One of the methods to exploit temporal sparsity is to use the compressed
representation (like H.264, MPEG-4, etc.) of videos at the input stage itself.
These compression techniques only retain a few key-frames completely
and reconstruct others using motion vectors and residual error, thus using
temporal redundancy [16] [17]. Another path includes finding a neuron
model which is somewhere in between “frame-based DNN” and “event-based
spiking neural networks”. This work is an attempt in the aforementioned
direction. A similar work, CBInfer [18], proposes replacing all spatial con-
volution layers in a network with change-based temporal convolution layers
(or CBconv layers). In this, a signal change is propagated forward only
when a certain threshold is exceeded. Likewise, [19] tapped into temporal
sparsity by introducing Sigma-Delta Networks, where neurons in one layer
communicated with neurons in the next layer through discretized delta acti-
vations. An issue when it comes to CBlInfer is the potential error accumulation
over time as the method is threshold-based. If the neuron states are not
reset periodically, this threshold can cause drift in the approximation of the
activation signal and degrade the accuracy. Whereas, sigma-delta scheme

3.3 Methodology 39

experiments on smaller datasets like temporal MNIST, which might not be
a reliable confirmation of the method’s effectiveness.

3.3 Methodology

In video-based applications, traditional deep neural networks rely on frame-
based processing. That is, each frame is processed entirely through all the
layers of the model. However, there is very little change in going from one
frame to the next through time, which is called temporal locality. Therefore,
it is wasteful to perform computations to extract the features of the non-
changing parts of the individual frame. Taking that concept deeper into the
network, if feature maps of two consecutive frames are inspected after every
activation layer throughout the model, this temporal overlap can be observed.
Therefore, this work postulates that temporal sparsity can be significantly
increased by focusing the inference of the model only on the changing pixels
of the feature maps (or deltas).

3.3.1 Delta Inference

This work introduces a new layer that calculates the delta (or difference)
between two temporally consecutive feature maps and quantifies the degree
of these changes at only relevant locations in the frame. Since zero changes
are not propagated through the layer, the role of this layer may be perceived as
"analog event propagation". It is considered an "analog event" as it is not the
presence of change, but the magnitude of change that is propagated through.
To better understand it mathematically, in a standard DNN layer, the
output activation is related to its weights and input vector through Eq. 3.1
and 3.2.
Y, =WX,+ B 3.
Z = o(Yy) (3.2)
where W and B represent the weights and bias parameters, Xt represents the
input vector, and Yt represents the transitional state. Then, Zt is the output
vector which is the result of () - a non-linear activation function. ¢ indicates

that the tensor has a temporal dimension. However, in the temporal delta
layer, weight-input multiplication transforms into,

AY, = WAX; = W(X; — Xi_1) 3.3)

40 Temporal Delta Layer: Exploiting Temporal Sparsity

Y =AY, + Y
= W(Xy — Xo1) + W(Xo1 — Xy—) + ... + Yo, where Yy = B
— WX, + B,
(3.4)

AZy =7y — Zy 1 =0(Yy) —o(Yi—1), where o(Yy) =0 (3.5)

In Eq. 3.3, instead of using X; directly, only changes or AX; are
multiplied with W. Using the resulting AY;, the corresponding Y; can be
recursively calculated with Eq. 3.4, where Y;_; is the transitional state
obtained from the previous calculation. Eq. 3.5 is the final delta activation
output that is passed onto the next layer.

Another notable difference between the standard DNN layer and the
proposed layer is the role of bias. In delta based inference, bias is only used
as an initialization for the transitional state, Yy in Eq. 3.4. However, since
bias tensors do not change over time, their temporal difference is zero and is
removed from Eq. 3.3.

Now, as the input video is considered temporally correlated, the expec-
tation is that AX, and by association AZ,; are also temporally sparse. In
essence, the temporal sparsity between consecutive feature maps is cast on
the spatial sparsity of the delta map that is propagated. Additionally, Y; in Eq.
3.1 and 3.4 are always equal. This indicates that as long as the input is the
same, both standard DNN and temporal delta layer based DNN provide the
same result at any time step.

3.3.2 Sparsity Induction Using Activation Quantization

As shown in Figure 3.3, there is temporal redundancy evident in feature maps
of two consecutive frames. However, if looked closely, it can be observed
that these feature maps are similar but not identical as shown in Figure 3.3a
and 3.3b. Therefore, if two such consecutive feature maps are subtracted,
the resulting delta map has many near zero values, thus restricting the
potential increase in temporal sparsity (Figure 3.3c). This is mainly due to
the higher precision available in the floating point representation (FP32) of
the activations. For example, in IEEE 754 representation, a single-precision
32-bit floating point number has 1 bit for sign, 8 bits for the exponent and
23 bits for the significant. It, not only, leads to a very high dynamic range,
but also, increases the resolution or precision for numbers close to 0. The
number nearest to 0 is about +1.4 x 10~4°. Therefore, due to high resolution,
two similar floating point values have difficulty going to absolute zero when

3.3 Methodology 41

Original activation map - Frame 2 Original activation map - Frame 1 original activation maps - (Frame 2 - Frame 1)

oW E N

(a) (b) (0

Figure 3.3 Demonstration of two temporally consecutive activation maps leading to near
zero values (rather than absolute zeroes) after delta operation.

subtracted. A plausible solution to decrease the precision of the activations is
to use quantization.

In this work, a post-training quantization method (fixed point quantization
[20]) and a quantization aware training method (learnable step size quantiza-
tion [21]) are considered for comparison as a temporal sparsity facilitator for
the new layer.

3.3.2.1 Fixed Point Quantization

In this method, the floating point numbers are quantized to integer or fixed
point representation [20]. Unlike floating point, in fixed point representation,
the integer and the fractional part have fixed length. This limits both range
and precision. That is, if more bits are used to represent the integer part, it
subsequently decreases the precision and vice versa.

Method:

Firstly, a bitwidth is defined to which the 32-bit floating parameter is to be
quantized, BW. Then, the number of bits required to represent the unsigned
integer part of the parameter () is calculated as shown in Eq. 3.6.

I=1+ |loga (maz, ||)| (3.6)

A positive value of I means that I bits are required to represent the
absolute value of the integer part, while a negative value of I means that
the fractional part has I leading unused bits. Now, it is known that 1 bit is for
sign, so the number of fractional bits, F', is given by Eq. 3.7.

F=BW-1-1 3.7

42 Temporal Delta Layer: Exploiting Temporal Sparsity

Considering the parameters, BW - bitwidth, F - fractional bits, I - integer
bits, and S - sign bit, Eq. 3.8 maps the floating point parameter x to the fixed
point by,

xZ. By
Q(w)ZC(R(;F)’ £ 1) (3.8)

where R(.) is the round function, C'(x, a, b) is the clipping function, and t is
defined as,

. 2BW=S BW >1
o BW <1

Possible Drawback of Fixed Point Quantization:
Fixed point quantization, as shown above, is a fairly straightforward mapping
scheme and is easy to be included in the model training process during
the forward pass before the actual delta calculation. However, it poses a
limitation to the extent of quantization possible without sacrificing accuracy.
Typically, an 8-bit quantization can sustain floating point accuracy with this
method, but if the bitwidth goes below 8 bits, the accuracy starts to deteriorate
significantly. This is because, unlike weights, activations are dynamic and
activation patterns change from input to input making them more sensitive
to harsh quantization [22]. Also, quantizing the layers of a network to the
same bitwidth can mean that the inter-channel behaviour of the feature maps
are not captured properly. Since the number of fractional bits is usually
selected depending on the maximum activation value in a layer, this type
of quantization tends to cause excessive information loss in channels with a
smaller range.

3.3.2.2 Learned Step-Size Quantization

Quantization aware training is the most logical solution to the aforementioned
drawback as it can potentially recover the accuracy in low bit tasks given
enough time to train. Therefore, a symmetric uniform quantization scheme
is considered called Learned Step size Quantization (LSQ). This method
considers the quantizer itself as a trainable parameter which is trying to
minimize the task loss using backpropagation and stochastic gradient descent.
This serves two purposes: (a) step size, which is the width of quantization
bins, gets to be adaptive through the training according to the activation
distribution. It is vital to find an optimum step size because, as shown in
Figure 3.4, if the step size is too small or too large, it can lead to the quantized

3.3 Methodology 43

Quantized data

@ Rawvalue

@ Quantized value

Step size - Too small

Raw data 0

ot o
® ® Step size - Optimum
[) [
[} [J

0

i‘ Step size - Too large
\ E ;Ir \

0

Figure 3.4 Importance of step size in quantization: on the right side, in all three cases, the
data is quantized to five bins with different uniform step sizes. However, without optimum step
size value, the quantization can detrimentally alter the range and resolution of the original data.

data being a poor representation of the raw data. (b) as the step size is a model
parameter, it is also directly seeking to improve the metric of interest, i.e.
accuracy.

Method:

Given: x - the parameter to be quantized, s - step size, @y and () p - number
of negative and positive quantization levels respectively, and q(x;s) is the
quantized representation with the same scale as X,

[£].s, if —Qn <2 <Qp
q(z;s) = { —Qn.s, if7<-Qn (3.9
Qp.s, ifT>Qp
where | a| rounds the value to the nearest integer. Considering the number of
bits, b, to which the data is to be quantized, Qv = 0 for unsigned and Q y

= 2"~ for signed data. Similarly, Qp = 2~ for unsigned and 2*~* — 1 for
signed data.

Modified LSQ:
In this work, the original LSQ method is slightly modified to remove the clip-
ping function from the equations as (a) the bitwidth, b, required to calculate

44 Temporal Delta Layer: Exploiting Temporal Sparsity

QN and @Qp is not known. This is because the bitwidth is not pre-defined
and is determined using the activation statistics of each layer while training
which leads to a mixed precision model, which is more advantageous, and (b)
clipping leads to accuracy drop as it alters the range of the activation. That
is, if activations are clipped during training, there could be a significant dif-
ference between the real-valued activation value and the quantized activation
value, which in turn affects the gradient calculations and, therefore the SGD
optimization.

Thus, in temporal delta layer, the forward pass of the quantization
includes only scaling, rounding and de-scaling and can be mathematically
expressed as,

g(z;5) = | .5 (3.10)

s
The gradient of the Eq. 3.10 for backpropagation is given by Eq. 3.11.

Vaglass) =[] - = (3.11)

S

3.3.3 Sparsity Penalty

Quantized delta map, created using the above-mentioned methods, in itself
has a fair number of absolute zeroes (or sparsity) available. However, like
the biological brain, learning can help in increasing this sparsity further.
The inspiration for this came from an elegant set of experiments performed
by Y. Yu et al. [23]. The experiment showed a particular 30 seconds video
to rodent specimens and tracked their activation density during each pre-
sentation. It was found that activation density decreased as the number of
trials increased, i.e as the learning increased, the active neurons required for
inference decreases.

Adapting the said concept to this work, a /; norm based constraint
is introduced to the loss function. This is termed as the sparsity penalty.
Therefore, the new cost function can be mathematically expressed as cost
function = task loss + sparsity penalty, i.e,

l1 norm of active neurons in delta ma
Cost function = Task loss + \ (— / P

total number of neurons in delta map)
(3.12)

where task loss minimizes the error between the true value and the pre-
dicted value and, sparsity penalty minimizes the overall temporal activation

3.4 Experiments and Results 45

density. The A mentioned in Eq. 3.12 refers to the penalty co-efficient of the
cost function. If A is too small, the sparsity penalty takes little effect and
model accuracy is given more priority and if) is too large, sparsity becomes
the priority leading to very sparse models but with unacceptable accuracy.
The key is to find the balance between task loss and sparsity penalty.

3.4 Experiments and Results

In this section, the proposed methodology explained in section 3.4 is analyzed
to study how it helps achieve the desired temporal sparsity and accuracy.

3.4.1 Baseline

For baseline, the two-stream architecture [24] was used, with ResNet50 as the
feature extractor on both spatial and temporal streams. The dataset used was
UCF101, which is a widely used human action recognition dataset of ‘in-the-
wild’ action videos, obtained from YouTube, having 101 action categories
[25]. The spatial stream used single-frame RGB images of size (224, 224,
3) as the input, while the temporal stream used stacks of 10 RGB difference
frames of size (224, 224, 10 x 3) as the input. Also, both these inputs were
time distributed to apply the same layer to multiple frames simultaneously
and produce output that has time as the fourth dimension. Both the streams
were initialized with pre-trained ImageNet weights and fine-tuned with an
SGD optimizer.

Under the above-mentioned setup, spatial and temporal streams achieved
an accuracy of 75% and 70%, respectively. Then, both streams were average
fused to achieve a final classification accuracy of 82%. Also, in this scenario,
both streams were found to have an activation sparsity of ~ 47%.

3.4.2 Experiments

Scenario 1: The setup consecutively places the fixed point based quantization
layer and temporal delta layer after every activation layer in the network. The
temporal delta layer here also includes a 1; norm based penalty. The baseline
weights were used as a starting point, and all the layers including the temporal
delta layer is fine-tuned until acceptable convergence. The hyper-parameters
specifically required for this setup were bitwidth (to which the activations
were to be quantized) and penalty co-efficient to balance the tussle between
task loss and sparsity penalty.

46 Temporal Delta Layer: Exploiting Temporal Sparsity

Scenario 2: The setup is similar to the previous scenario except for the activa-
tion quantization method used. The previous experiment used fixed precision
quantization where all the activation layers in the network were quantized
to the same bitwidth. However, this experiment uses learnable step-size
quantization (LSQ), which performs channel-wise quantization depending
on the activation distribution resulting in mixed-precision quantization of the
activation maps.

The layer also introduces a hyperparameter during training (apart from
the penalty coefficient mentioned earlier) for the step size initialization.
Then, during training, the step size increases or decreases depending on the
activation distribution in each channel.

3.4.3 Result Analysis

Table 3.1 and 3.1 show the baseline accuracy and activation sparsity com-
pared against the two scenarios mentioned.

Firstly, when the temporal delta layers with fixed point quantized activa-
tions are included in the baseline model, it can be observed that the activation
sparsity increases considerably with a slight loss in accuracy in both streams.

Table 3.1 Spatial stream - comparison of accuracy and activation sparsity obtained through
the proposed scenarios against the baseline. In the case of fixed point quantization, the reported
results are for a bitwidth of 6 bits.

Model setup s . .
(Spatial stream) Accuracy Activation sparsity
Baseline 75% 48%
Tempore.ll delta lgyerv with 3% 74%
fixed point quantization
Temporal delta layer with 69% 86%

learned step-size quantization

Table 3.2 Temporal stream - comparison of accuracy and activation sparsity obtained

through the proposed scenarios against the benchmark. In the case of fixed point quantization,

the reported results are for a bitwidth of 7 bits.
Model setup

(Temporal stream) Accuracy Activation sparsity
Baseline 70% 47%
Temporgl delta la}yer. with 63% 67%

fixed point quantization

Temporal delta layer with 65% 89%

learned step-size quantization

3.4 Experiments and Results 47

This is because lowering the precision from 32 bits to 8 bits (or less) leads to
temporal differences of activations going to absolute zero.

Additionally, the reason for close-to baseline accuracy in the method
involving fixed point quantization can be attributed to fractional bit allocation
flexibility. That is, as the bitwidth is fixed, the number of integer bits required
is decided depending on the activation distribution within the layer, and the
rest of the bits are assigned as fractional bits. This makes sure that the pre-
cision of the activation is compromised for range. Also, another contributing
factor for accuracy sustenance is that the first and the last layers of the model
are not quantized, similar to works like [26][27]. This is because the first
and last layer has a lot of information density. Those are the layers where
input pixels turn into features and features turn into output probabilities,
respectively, which makes them more sensitive to quantization.

Although the activation sparsity gain in the case of the temporal delta
layer with fixed point quantization is better than the baseline, it is still not
sufficiently high as required. In this effort, the bitwidth of the activations are
decreased in the expectation of increasing sparsity. However, as the bitwidth
goes below a certain value (6 bits for spatial and 7 bits for temporal stream),
sparsity increases, but accuracy starts to deteriorate beyond recovery, as
shown in Table 3.3. This is because quantizing all layers of a network to the
same bitwidth can mean that the inter-channel variations of the feature maps
are not fully accounted for. Since the number of fractional bits is usually
selected to cover the maximum activation value in a layer, the fixed bitwidth
quantization tends to cause excessive information loss in channels with a
smaller dynamic range. Therefore, it can be inferred that mixed-precision
quantization of activations is a better approach to obtain good sparsity without
compromising accuracy.

Table 3.3 Result of decreasing activation bitwidth in fixed point quantization method. For
spatial stream, decreasing below 6 bits caused the accuracy to drop considerably. For temporal
stream, the same happened below 7 bits.

Spatial stream Temporal stream
Activation Accuracy Activation Accuracy Activation
bitwidth (%) sparsity (%) (%) sparsity (%)
32 75 50 70 47
8 75 68 70 65
7 75 71 68 70
6 73 75 61 73
5 65 80 - -

20 Initial

48 Temporal Delta Layer: Exploiting Temporal Sparsity

i}
g0
@
15
10
) I I||
00 ' Y - I
0 It 0 a
Layer index

Figure 3.5 Evolution of quantization step size from initialization to convergence in LSQ.
As step-size is a learnable parameter, it gets re-adjusted during training to cause minimum
information loss in each layer.

0

Finally, using the temporal delta layer where incoming activations are
quantized using learnable step-size quantization (LSQ) gives the best results
for both spatial and temporal streams. As the step size is a learnable param-
eter, it gives the model enough flexibility to result in a mixed precision
model, where each channel in a layer has a bitwidth that suits its activation
distribution. This kind of channel-wise quantization minimizes the impact of
low-precision rounding. It is also evident in Figure 3.5 that as the training
nears convergence, the values of the step size differ according to the acti-
vation distribution and bitwidth required to represent each layer. Moreover,
consistent with the expectation, the first and last layers during training opts for
smaller step sizes implying they need more bitwidth for their representation.

Table 3.4 Final results from two-stream network after average fusing the spatial and tempo-
ral stream weights. With 5% accuracy loss, the proposed method almost doubles the activation
sparsity available in comparison to the baseline.

Baseline Proposed method

Model Accuracy Activation Accuracy Activation
type (%) sparsity (%) (%) sparsity (%)

Spatial 75 50 69 86
stream
Temporal 70 46 65 89
stream
Two-stream
(Average 82 47 77 88

fused)

3.5 Conclusion 49

The weights generated using this method was then average fused to find
the final two-stream network accuracy and activation sparsity (Table 3.4).
Finally, the proposed method can achieve an overall 88% activation sparsity
with 5% accuracy loss.

3.5 Conclusion

Intuitively, the proposed new temporal delta layer projects the temporal
activation sparsity between two consecutive feature maps onto the spatial
activation sparsity of their delta map. When executing sparse tensor mul-
tiplications in hardware, this spatial sparsity can be used to decrease the
computations and memory accesses. As shown in Table 3.4, the proposed
method resulted in 88% overall activation sparsity with a trade-off of 5%
accuracy drop on UCF-101 dataset.

The collateral benefit of the obtained temporal sparsity is that the compu-
tations does not increase linearly with the increase in frame rate. In typical
DNNs, doubling the frame rate would automatically necessitate doubling the
computations. However, in the case of temporal delta layer based model,
increasing the frame rate will not only improve the temporal precision of
the network but also increase its temporal sparsity limiting the computations
required [28].

The downside of using the temporal delta layer is that it requires keeping
track of previous activations in order to perform delta operations. As a
result, the overall memory footprint grows, putting more reliance on off-chip
memory. However, the rising popularity of novel memory technologies (like
resistive RAM [29], embedded Flash memory [30], etc.) may improve the
cost calculations in the near future.

Disclaimer: This paper is a distillation of the research done by one of the
authors as a part of her master thesis and is partially published in chapter 3
of [32]. The complete thesis, along with the results and analysis, is available
online [31].

Acknowledgment

This work is partially funded by research and innovation projects TEMPO
(ECSEL JU under grant agreement No 826655), ANDANTE (ECSEL JU
under grant agreement No 876925) and DAIS (KDT JU under grant agree-
ment No 101007273), SunRISE (EUREKA cluster PENTA2018e-17004-
SunRISE) and Comp4Drones (ECSEL JU grant agreement No. 826610).

50 Temporal Delta Layer: Exploiting Temporal Sparsity

The JU receives support from the European Union’s Horizon 2020 research
and innovation programme and Sweden, Spain, Portugal, Belgium, Germany,
Slovenia, Czech Republic, Netherlands, Denmark, Norway and Turkey.

References

[1] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool,
“Temporal segment networks: Towards good practices for deep action
recognition,” in European conference on computer vision, pp. 20-36,
Springer, 2016.

[2] K. Chen and W. Tao, “Once for all: a two-flow convolutional neural
network for visual tracking,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 28, no. 12, pp. 3377-3386, 2017.

[3] K. Kang, H. Li, J. Yan, X. Zeng, B. Yang, T. Xiao, C. Zhang, Z. Wang,
R. Wang, X. Wang, et al., “T-cnn: Tubelets with convolutional neural
networks for object detection from videos,” IEEE Transactions on Cir-
cuits and Systems for Video Technology, vol. 28, no. 10, pp. 2896-2907,
2017.

[4] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[5] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

[6] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” arXiv preprint arXiv:1608.03665,
2016.

[7] M. Mahowald, “The silicon retina,” in An Analog VLSI System for
Stereoscopic Vision, pp. 4-65, Springer, 1994.

[8] J. W. Mink, R. J. Blumenschine, and D. B. Adams, “Ratio of central
nervous system to body metabolism in vertebrates: its constancy and
functional basis,” American Journal of Physiology-Regulatory, Integra-
tive and Comparative Physiology, vol. 241, no. 3, pp. R203-R212,
1981.

[9] A. Yousefzadeh, M. A. Khoei, S. Hosseini, P. Holanda, S. Leroux,
O. Moreira, J. Tapson, B. Dhoedt, P. Simoens, T. Serrano-Gotarredona,
et al., “Asynchronous spiking neurons, the natural key to exploit tempo-
ral sparsity,” IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, vol. 9, no. 4, pp. 668-678, 2019.

References 51

[10] C. Gao, D. Neil, E. Ceolini, S.-C. Liu, and T. Delbruck, “Deltarnn:
A power-efficient recurrent neural network accelerator,” in Proceed-
ings of the 2018 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pp. 21-30, 2018.

[11] O. Moreira, A. Yousefzadeh, F. Chersi, G. Cinserin, R.-J. Zwartenkot,
A. Kapoor, P. Qiao, P. Kievits, M. Khoei, L. Rouillard, et al., “Neuron-
flow: a neuromorphic processor architecture for live ai applications,” in
2020 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 840-845, IEEE, 2020.

[12] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse,
trainable neural networks,” arXiv preprint arXiv:1803.03635, 2018.

[13] H. Yang, W. Wen, and H. Li, “Deephoyer: Learning sparser neural
network with differentiable scale-invariant sparsity measures,” arXiv
preprint arXiv:1908.09979, 2019.

[14] S. Seto, M. T. Wells, and W. Zhang, “Halo: Learning to prune neural net-
works with shrinkage,” in Proceedings of the 2021 SIAM International
Conference on Data Mining (SDM), pp. 558-566, SIAM, 2021.

[15] M. Mahmoud, K. Siu, and A. Moshovos, “Diffy: A déja vu-free differ-
ential deep neural network accelerator,” in 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pp. 134-147,
IEEE, 2018.

[16] C.-Y. Wu, M. Zaheer, H. Hu, R. Manmatha, A. J. Smola, and
P. Kridhenbiihl, “Compressed video action recognition,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 6026-6035, 2018.

[17] M. Buckler, P. Bedoukian, S. Jayasuriya, and A. Sampson, “Eva?:
Exploiting temporal redundancy in live computer vision,” in 2018
ACM/IEEE 45th Annual International Symposium on Computer Archi-
tecture (ISCA), pp. 533-546, IEEE, 2018.

[18] L. Cavigelli, P. Degen, and L. Benini, “Cbinfer: Change-based inference
for convolutional neural networks on video data,” in Proceedings of the
11th International Conference on Distributed Smart Cameras, pp. 1-8,
2017.

[19] P. O’Connor and M. Welling, “Sigma delta quantized networks,” arXiv
preprint arXiv:1611.02024, 2016.

[20] P.-E. Novac, G. B. Hacene, A. Pegatoquet, B. Miramond, and V. Gripon,
“Quantization and deployment of deep neural networks on microcon-
trollers,” Sensors, vol. 21, no. 9, p. 2984, 2021.

52 Temporal Delta Layer: Exploiting Temporal Sparsity

[21] S. K. Esser, J. L. McKinstry, D. Bablani, R. Appuswamy, and
D. S. Modha, “Learned step size quantization,” arXiv preprint
arXiv:1902.08153, 2019.

[22] R. Krishnamoorthi, “Quantizing deep convolutional networks for effi-
cient inference: A whitepaper,” arXiv preprint arXiv:1806.08342, 2018.

[23] Y. Yu, R. Hira, J. N. Stirman, W. Yu, I. T. Smith, and S. L. Smith,
“Mice use robust and common strategies to discriminate natural scenes,’
Scientific reports, vol. 8, no. 1, pp. 1-13, 2018.

[24] K. Simonyan and A. Zisserman, “Two-stream convolutional networks
for action recognition in videos,” arXiv preprint arXiv:1406.2199, 2014.

[25] K. Soomro, A. R. Zamir, and M. Shah, “Ucfl0l: A dataset of
101 human actions classes from videos in the wild,” arXiv preprint
arXiv:1212.0402, 2012.

[26] J. Choi, Z. Wang, S. Venkataramani, P. I.-J. Chuang, V. Srinivasan,
and K. Gopalakrishnan, “Pact: Parameterized clipping activation for
quantized neural networks,” arXiv preprint arXiv:1805.06085, 2018.

[27] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-net:
Training low bitwidth convolutional neural networks with low bitwidth
gradients,” arXiv preprint arXiv:1606.06160, 2016.

[28] M. A. Khoei, A. Yousefzadeh, A. Pourtaherian, O. Moreira, and J. Tap-
son, “Sparnet: Sparse asynchronous neural network execution for energy
efficient inference,” in 2020 2nd IEEE International Conference on Arti-
ficial Intelligence Circuits and Systems (AICAS), pp. 256-260, IEEE,
2020.

[29] S. Huang, A. Ankit, P. Silveira, R. Antunes, S. R. Chalamalasetti,
I. El Hajj, D. E. Kim, G. Aguiar, P. Bruel, S. Serebryakov, et al., “Mixed
precision quantization for reram-based dnn inference accelerators,”
in 2021 26th Asia and South Pacific Design Automation Conference
(ASP-DAC), pp. 372-377, IEEE, 2021.

[30] M. Kang, H. Kim, H. Shin, J. Sim, K. Kim, and L.-S. Kim, “S-flash:
A nand flash-based deep neural network accelerator exploiting bit-level
sparsity,” IEEE Transactions on Computers, 2021.

[31] P. Vijayan, “Temporal Delta Layer.” http://resolver.tudelft.nl/uuid:
0806241d-9037-4094-a197-6e65d64822b.

[32] O. Vermesan and M. Diaz Nava (Eds), Intelligent Edge-Embedded
Technologies for Digitising Industry ISBN: 9788770226103, River
Publishers, Gistrup, Denmark, 2022.

http://resolver.tudelft.nl/uuid:0806241d-9037-4094-a197-6e65d6482f2b
http://resolver.tudelft.nl/uuid:0806241d-9037-4094-a197-6e65d6482f2b

