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Abstract

Surface defects generated during semiconductor wafers processing are among
the main challenges in micro- and nanofabrication. The wafers are typically
scanned using optical microscopy and then the images are inspected by
human experts. That tends to be a quite slow and tiring process. The devel-
opment of a reliable machine vision-based system for correct identification
and classification of wafer defect types for replacement of manual inspection
is a challenging task, due to the variety of possible defects. In this work
we developed a machine vision system for the inspection of semiconductor
wafers and detection of surface defects. The system integrates an optical
scanning microscopy system and an AI algorithm based on the Mask R-
CNN architecture. The system was trained using a dataset of microscopic
images of wafers with Micro Electro-Mechanical Systems (MEMS), silicon
photonics and superconductor devices at different fabrication stages including
surface defects. The achieved accuracy and detection speed makes the system
promising for cleanroom applications.

Keywords: AI, machine vision, semiconductor wafer, defect detection,
convolutional neural network, Mask R-CNN.

5.1 Introduction and Background

One of the main challenges in micro- and nanofabrication is the identification
and classification of surface defects. The defects are unavoidably generated
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during processes such as chemical-mechanical polishing, photolithography,
etching, diffusion and ion implantation, oxidation, metallization, and others
[1][2]. The increasing complexity and density of semiconductor devices leads
to an increase of the number of surface defects and dictates stricter require-
ments for defect detection. For example, contamination particles harmless
for some design rules at the same time could be critical as the device
dimensions grow smaller. The defect criteria are also varying in different
locations of devices: for example, defects in a movable part or in the hermetic
bond-sealing frame of a MEMS device are usually more severe than in
secondary structures. Figure 5.1 illustrates microscopic images with surface
defects generated during the microfabrication of different superconductor and
semiconductor devices. Typical types of defects include particles, photoresist
spots, edge defects, scratches, etc. It becomes evident that defect detection
is an extremely important procedure, especially at the critical areas of the
devices.

Figure 5.1 Examples of microscopic images of various superconductor and semiconductor
devices with surface defects
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VTT Micronova semiconductor fab is a Finnish national research infras-
tructure for micro-, nano- and quantum technology. The research areas
include MEMS, photonic, quantum and other specialty components that can
be used to create a wide range of sensors and devices. At VTT, the current
visual inspection process of the wafer surface is manually performed by
human experts. The wafers are scanned using optical microscopy, and then
the images are inspected by the human experts. Since the inspection task
requires extreme concentration, the time that an expert can perform the task
is quite limited. Additionally, it tends to be a quite slow, tiring process and
susceptible to human mistakes. Identification of defects by experts alone can
potentially result in false identifications due to fatigue and lack of objectivity.
The goal of this work is the development of a reliable machine vision-based
system for the correct identification of wafer defects in the hope of replacing
manual inspection. Moreover, this system would be directly integrated in
the wafer inspection production line. Such a system would speed up the
defect inspection, simplify the analysis and eventually help to improve the
fabrication yield.

5.2 Machine Vision-based System Description

The general architecture of the developed machine vision system is shown
in Figure 5.2. The wafers are inspected by a semi-automatic microscopy
scanning system. In this work we tested both IJ 13 IR-inspector and Muetec
CD3000 optical scanning system. The system produces a set of microscopic
images, covering the full area of the wafer.

For the training of neural networks, we prepared an image dataset using
microscopic images of wafers with MEMS, silicon photonics and super-
conductor devices at different fabrication stages including surface defects.
The initial set included images of different resolutions and magnifications.
First, we manually labelled the defects on each image and then cropped the
areas with defects. The cropping allowed the increase of the dataset size
and provided faster and more consistent training. Next, a data augmentation
technique was used to increase the amount of data by adding slightly modified
copies of already existing data, or newly created synthetic data from existing
data. That procedure acts as a regularizer and helps to reduce overfitting
when training a machine learning model [3]. In this case, the augmentation
included mirror and rotation image transformation, as well as a change of
the RGB spectre of the images. The full procedure of dataset preparation is
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Figure 5.2 General architecture of the developed machine vision system

schematically shown in Figure 5.3. The dataset was split into training and
validation sets, containing 935 and 165 images each.

Here we used a Convolutional Neural Network (CNN): a special type
of deep learning algorithm, used primarily for image recognition and pro-
cessing. CNNs are inspired by the organization of the animal visual cortex
[4][5] and are designed to learn spatial hierarchies of features, from low- to
high-level patterns. We developed an algorithm based on the Mask R-CNN
architecture [6], which is a state-of-the-art algorithm for object detection -
a computer vision technique that enables the identification and location of
objects in an image or video. Mask R-CNN is the latest stage of evolution
of CNNs, providing high detection accuracy. At the same time, it requires
more computational resources compared to faster algorithms, such as YOLO
[7]. Mask R-CNN consists of two stages. The first stage, called a Region

Original image Defect labelling and image crop Data augmentation

Figure 5.3 A scheme of the image dataset preparation, including labelling, cropping and
data augmentation
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Proposal Network, proposes candidate object bounding boxes. The second
stage extracts features using Region of Interest Pool from each candidate
box, then performs classification and bounding-box regression and outputs
a binary mask for each Region. The ResNet-101 [8] convolutional back-
bone architecture was used for feature extraction over an entire image. The
algorithm was optimized for so-called binary classification, which provides
results in “defect vs background” format, without classification of defects,
shown in Figure 5.4. The general comparison of the algorithm’s performance
to other object detection algorithms can be found in Refs [6] and [9].

Among the main requirements for the system are the functional suitability
for defect detection, the integration of the scanning optical microscope and
the server with the AI software, the usability for cleanroom users who are not
familiar with the details of implementation, and the readability and visualiza-
tion of the detection results for the users. The main KPIs for the system were:
detection accuracy, time of processing a single image and evaluation by the
cleanroom users from the points of usability and result readability. The AI
algorithm based on the Mask R-CNN architecture passed several rounds of
optimization and testing using microscopic images of various microelectronic
devices.

There has been a significant progress in the application of deep learning
techniques for wafer defect detection and classification [10]. The main inno-
vation elements of this work compared to the state of the art is the integration
of the algorithm with the scanning microscopy system, and training of the
system using the dataset containing images of various devices at different
stages of processing, instead of standard image databases available online. It
allows the system to better distinguish between wafer defects and features of
the devices and provides reliable detection of wafer defects for a wide range
of semiconductor components.

To improve the system usability for the end-users, we implemented a
Graphical User Interface adapted for cleanroom personnel not familiar with
AI systems. The software was installed on a PC/server with NVIDIA Quadro
RTX 5000 16GB GPU at the VTT Micronova cleanroom. Then the algorithm
was integrated with the optical scanning microscopy system Muetec CD3000
by connection through the internal network. To improve the readability of
the results, the system provides binary classification defect vs background
with results available in both graphical and text formats. The feedback from
the cleanroom experts helped in the improvement of system usability after
several iterations of optimization. The testing results at the latest dataset
with 192 images of 1600x1200px resolution and 5x optical magnification,
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Figure 5.4 Example of binary classification of wafer defects: defect vs background

demonstrated 86% accuracy with a detection time of 1÷2 seconds per image.
The accuracy of the system is approximately on the same level as that
of a human operator, although it also depends a lot on the experience of
the operators and their tiredness. The experts estimated 86% accuracy as
sufficient for applications at VTT cleanroom but mentioned that only about
15% of the detected defects were critical for wafer processing. Unfortunately,
the criteria of a defect being critical or non-critical is very device-specific and
cannot be easily generalized. After the system provides the detection results,
the final decision on the importance of the defects for processing had to be
made by the cleanroom experts.

Regarding the system scalability, in the current work we did not have
the goal of moving towards smaller technology nodes, although such scaling
might require utilization of faster neural networks, like one-stage YOLO
detectors. In general, the main expected impact of the system development
is the reduction of the overall working time required for wafer defect inspec-
tion. We believe that the system will help saving valuable working time of
cleanroom experts, improve fabrication yield and reduce fabrication cost.

5.3 Conclusion

We developed a system for the detection of wafer surface defects. The system
integrates an optical scanning microscopy system and an AI algorithm based
on the Mask R-CNN architecture. The image dataset used for training and
testing the system included microscopic images of wafers with MEMS,
silicon photonics and superconductor devices at different fabrication stages
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including surface defects. The system demonstrated functional suitability for
defect detection, high accuracy, and reasonable detection speed, making it
suitable for potential cleanroom applications.
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Gutiérrez, “On the Performance of One-Stage and Two-Stage Object
Detectors in Autonomous Vehicles Using Camera Data”, Remote Sens.
13, 89, 2021.

[8] K. He, X. Zhang, S. Ren, J. Sun, “Deep Residual Learning for Image
Recognition”, Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 770-778, 2016.



80 AI Machine Vision System for Wafer Defect Detection

[9] Z. Zhao, P. Zheng, S. Xu, X. Wu, “Object Detection With Deep Learn-
ing: A Review”, IEEE Transactions on Neural Networks and Learning
Systems, 30, 11, 2019.

[10] U. Batool, M. I. Shapiai, M. Tahir, Z. H. Ismail, N. J. Zakaria, A.
Elfakharany, “A Systematic Review of Deep Learning for Silicon Wafer
Defect Recognition”, IEEE Access, 9, 116573, 2021.


