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Abstract

In an ever more connected world, semiconductor devices represent the core of
every technically sophisticated system. The desired quality and effectiveness
of such a system through assembly and packaging processes is high demand-
ing. In order to achieve an expected quality, the output of each process must
be inspected either manually or rule-based. The latter would lead to high
over-reject rates which require a lot of additional manual effort. Moreover,
such an inspection is sort of handcrafted by engineers, who can only extract
shallow features. As a result, either more yield-losses due to an increase in the
rejection rate or more products with low quality will be shipped. Therefore,
the demand for advanced image inspection techniques is constantly increas-
ing. Recently, machine learning and deep learning algorithms are playing an
increasingly critical role to fulfil this demand and therefore have been intro-
duced in multiple applications. In this paper, an overview of the potential use
of advanced machine learning techniques is explored by showcasing of image
and wirebonding inspection in semiconductor manufacturing. The results are
very promising and show that AI models can find failures accurately in a
complex environment.
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integration, transfer learning, scalability.
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6.1 Introduction and Background

Semiconductor manufacturing produces the most highly advanced microchips
in the world. A manufacturing process of these chips goes through mul-
tiple sequences and interacting sub-processes and during that operates in
extreme quality-demanding conditions. Thus, it has an increasing complexity
and demand on quality requirements, as electronics increasingly become an
important part of modern society. In principle semiconductor manufacturing
is equipped with lots of sensors to monitor the processes but it lacks a suitable
way to make use of this data. However, due to the complexity of the processes
and unknown correlation among the collected data, such traditional tech-
niques become quite limited. Here’s where AI takes the initiative and offers
a promising solution for feature extraction, condition monitoring and fault
modelling for anomaly/defect detection using sophisticated algorithms [5].
Therefore, one of the success factors in optimizing the industrial processes is
either automatic anomaly detection, supervised learning or both, which leads
to prevent production flaws, herewith improving quality, increasing yields
and making benefits. The popular way of anomaly detection in many of
industrial application is by adjusting digital camera parameters or sensors
during collecting images or time series data. This is basically an image or
signal anomaly detection problem that is searching later on for patterns that
are different from normal data [4]. As a human one can easily manage such
task by recognizing of normal patterns, but this is relatively not easy for
machines. Unlike other classical approach, image anomaly detection faces
some of the following difficult challenges: class imbalance, quality of data,
and unknown anomaly [4]. A prevalence of abnormal events are generally
exception, whereas normal events account for a significant proportion. Some
techniques usually handle the anomaly detection problem as a “one-class”
problem. Here models learn by using the normal data as truth ground and
afterwards evaluates whether the new data belong to this truth ground or
not, by the degree of similarity to the truth ground. In the early applications
of surface defect detection, the background is often modeled by designing
handmade features on defect-free data. For example, Bennatnoun et al. used
blobs technique [3] to characterize the correct texture and to detect deviations
through changes in the charter ships of generated blobs. Amet et al. [2]
used wavelet filters to extract different scales of defect-free images, then
extracted the informative features of different frequency scales of images.
However, most of these methods focus can work with homogeneous date
with good quality and would require a prior knowledge. Generally, still some
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challenges which strongly depend on the field of application. Thus, there is no
universal pattern or system, which does not directly allow to use techniques
developed for one application to another. Thus, machine/deep learning offers
promising solutions in such complex environment. However, the former can
be adapted or scaled to other application or use cases. Due to these above-
mentioned challenges unsupervised anomaly detection on multi-dimensional
data is very highly demanding in machine learning and business applications
[6]. Please note, this paper is extended of the published work in [1]. The
latter focused on the data preparation, labelling techniques and preliminary
results. A new contribution related to quantities, framework and transfer
learning and scalability is presented. Therefore, a short description about the
data is introduced. Then, labelling approach is shortly discussed. Afterwards,
framework is depicted and effective of transfer learning is discussed. Finally,
the results are showed and conclusion is drawn.

6.2 Dataset Description

This manuscript showcases dealing with time series data as well as with
images at different processes during packaging. The data for the first case
is collected in the early phase, at wirebonding process. These data are
collected from three different sensors. Namely a current sensor, located at
the transducer, a displacement sensor measuring the deformation of the wire
respectively the path of the bonding tool and a frequency sensor, also located
at the transducer of the wirebonder. Each of these sensors collects roughly
432 features during 143 timestamps. However, the collected data are highly
redundant (see Figure 6.1). This is because there is multiple bond connection
on one device which share the same process parameters and behave quite
similar. However, sometimes, contamination of the device or a misadjusted
machine would cause misaligned or deformed bonds, see Figure 6.1. Here,
there is a need to develop a ML solution for detecting such deviations. Sim-
ilarly, the biggest challenge of the outgoing optical inspection (OOI), in the
second use case, is the defect detection on the heatsink, see Figure 6.1, which
consists of a rough copper surface. It needs to inspected for scratches, metal
or mold particles as well as for mechanical damage like imprints. However,
this surface shows a very high variety in appearance, as it is oxidized during
preceding high temperature testing steps. Hence, the inspection cannot be
carried out using rule-based algorithms, as the oxidized areas cannot be
distinguished clearly from true defects by a rule-based algorithm. In this
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measuring the deformation of the wire respectively the path of the bonding tool 
and a frequency sensor, also located at the transducer of the wirebonder. Each of 
these sensors collects roughly 432 features during 143 timestamps. However, the 
collected data are highly redundant (see Figure 2.1). This is because there is 
multiple bond connection on one device which share the same process parameters 
and behave quite similar. However, sometimes, contamination of the device or a 
misadjusted machine would cause misaligned or deformed bonds, see Figure 2.2. 
Here, there is a need to develop a ML solution for detecting such deviations. 
Similarly, the biggest challenge of the outgoing optical inspection (OOI), in the 
second use case, is the defect detection on the heatsink, see Figure 2.3, which 
consists of a rough copper surface. It needs to inspected for scratches, metal or 
mold particles as well as for mechanical damage like imprints. However, this 
surface shows a very high variety in appearance, as it is oxidized during preceding 
high temperature testing steps. Hence, the inspection cannot be carried out using 
rule-based algorithms, as the oxidized areas cannot be distinguished clearly from 
true defects by a rule-based algorithm. In this context, trained personnel took care 
of the heatsink inspection and was used to label the image data, roughly 300 
images, for supervised learning. 

 

 
Figure 2.4. Left: Curve with abnormal minimum position (red) in comparison to normal 

ones (white) of recorded sensor data duringwirebonding process.Right: shows an example 
of abnormal OOI image with shown crack on the surface. 

 

2.1. Data collection &labelling 

Data labelling is an essential step in a machine learning area. Here, the common 
phrase” Garbage in - Garbage out” is used very commonly in the ML community, 
that means the quality of the model strongly depends on the quality of the 
(labelled) training data. In this work, two approached are considered:  

• X → Y  

Figure 6.1 Left: Curve with abnormal minimum position (red) in comparison to normal
ones (white) of recorded sensor data during wirebonding process. Right: shows an example of
abnormal OOI image with shown crack on the surface.

context, trained personnel took care of the heatsink inspection and was used
to label the image data, roughly 300 images, for supervised learning.

6.2.1 Data Collection and Labelling

Data labelling is an essential step in a machine learning area. Here, the
common phrase “Garbage in - Garbage out” is used very commonly in the
ML community, that means the quality of the model strongly depends on
the quality of the (labelled) training data. In this work, two approached are
considered:
• X→ Y
Indeed, data labelling is a task that requires a lot of manual work. In

this approach, labelling data(images) is done based on human experience.
Luckily, only few percent of data had to reviewed after applying the tool
introduced in [1] for reducing the effort. This process is done by review
the sorted data of historical images and recognize on the defects by looking
closely at heat sink surface. Thus, there is no need for prior knowledge about
the status of Y machine to sort out X data. Afterwards, simply, the data can
be categorized into two categories as either healthy(good) or unhealthy(fail).
These data, then, can be used for training the AI model. This approach is used
for labelling the first case OOI.
• Y→ X
Contrary to the first approach, in this approach human’s experience unfor-

tunately is not fully helpful for labelling data, as the data is very complex.
Hence, the design of experiment (DOE) is set by checking the machine status
while collecting data. Therefore, a predefined mis-adjustment in Y wire bond
should be known to get deviation on X data.
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Figure 6.2 Flow chart of development and deployment life cycle for AI solution at IFX.
In development phase data scientists could use different programming language as the final
model can be converted to ONNX. In deployment phase, the vision frame can simply access
to ONNX and run during inference time.

6.3 Development and Deployment

In order to satisfy the robustness requirements of AI model, we propose
the AI framework to be adapted to the best practices with the following
characteristics

• Short adaption cycles.
• Testing in every stage and automatically integration and deployment.
• Reproducible processes and reliable software releases.

Figure 6.2 shows a typical DevOps process which is the basis for contin-
uous integration and delivery. Thus, the following feedback loops are added
to the process in order to integrate central ML lifecycle steps:

• Define and build a suitable model and improve it based on demo feed-
back through experiments using any suitable programming language.

• Converting the optimal model, based on observed model performance,
into ONNX (or other suitable format) and integrating it to the target AI
platform.

• Retrain, when it is needed, an operational model based on new real-life
data and report the performance.

• Adapt result of the whole process based on the performance of the
models on productive data.

However, for deployment, it gets more complex, because of additional
types of IFX infrastructure must be considered. Here, Figure 6.3 shows the
process which is extended by the new development into the existing IFX



86 Failure Detection in Silicon Package

 5 

 
Figure 3.1: Flow chart of development and deployment life cycle for AI solution at IFX. In 
development phase data scientists could use different programming language as the final 
model can be converted to ONNX. In deployment phase, the vision frame can simply 
access to ONNX and run during inference time. 

However, for deployment, it gets more complex, because of additional types of 
IFX infrastructure must be considered. Here, Figure 3.2 shows the process which 
is extended by the new development into the existing IFX infrastructure. From the 
perspective of a classic ML lifecycle, the role setting of Business Analysts 
together with Data Scientists and Data Engineers is sufficient for conducting a 
working ML solution which proves to deliver all required benefits. 

 
Figure 3.2: Process flow integration of the developed AD solution into an existing IFX 
infrastructure. 

4. TRANSFER LEARNING AND SCALABILITY 
Transfer learning is simply fine-tuning previously trained neural networks. In this 
context we transfer the trained model on OOI data into other processes of 
packaging, see Figure 4.6Thus, instead of creating an AI model from scratch, only 
a few images of the new process are enough for finetuning the pre-trained model 
of OOI images. Interestingly, not only the collected images from new process are 
similar to the OOI images but the defect types as well. As a result, the model 

Figure 6.3 Process flow integration of the developed AD solution into an existing IFX
infrastructure.

infrastructure. From the perspective of a classic ML lifecycle, the role setting
of Business Analysts together with Data Scientists and Data Engineers is
sufficient for conducting a working ML solution which proves to deliver all
required benefits.

6.4 Transfer Learning and Scalability

Transfer learning is simply fine-tuning previously trained neural networks. In
this context we transfer the trained model on OOI data into other processes
of packaging, see Figure 6.4 Thus, instead of creating an AI model from
scratch, only a few images of the new process are enough for fine tuning
the pre-trained model of OOI images. Interestingly, not only the collected
images from new process are similar to the OOI images but the defect types
as well. As a result, the model reports a high accuracy as is shown in Table ??.
The anomaly detection for the wire bonding process has a wide range of
application, as there are multiple Infineon sites and multiple machines of
the same type. The training of an anomaly detection model can benefit from
unlabelled data under the assumption that the majority of the data is good.
Given the general high yield this assumption is valid. Given multiple similar
machines there are two approaches to scale one model to multiple machines.

• Using data from multiple machines for the training. Thus, the model
implicitly learns differences between the machines and the same model
can be used for multiple machines.

• Using an anomaly detection model, which was trained on a prior defined
machine and setting up all other machines to behave most similar to the
selected machine. Thus, all other machines generate raw data of the same
input space as the selected machine.
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reports a high accuracy as is shown in Table 5.2. The anomaly detection for the 
wirebonding process has a wide range of application, as there are multiple 
Infineon sites and multiple machines of the same type. The training of an anomaly 
detection model can benefit from unlabelled data under the assumption that the 
majority of the data is good. Given the general high yield this assumption is valid. 
Given multiple similar machines there are two approaches to scale one model to 
multiple machines. 

•  • Using data from multiple machines for the training. Thus, the model 
implicitly learns differences between the machines and the same model 
can be used for multiple machines.  

• • Using an anomaly detection model, which was trained on a prior defined 
machine and setting up all other machines to behave most similar to the 
selected machine. Thus, all other machines generate raw data of the same 
input space as the selected machine.  

With this procedure it was possible to scale one model to s complete production 
line with more than 30 machines. 

 
 

Figure 4.1: show the flow processes during silicon package, the backside blue arrow shows 
the position of transfer learning from OOI backwards to taken images after molding 
process, see Figure 4.2. 

Figure 6.4 show the flow processes during silicon package, the backside blue arrow shows
the position of transfer learning from OOI backwards to taken images after molding process,
see Figure 6.5 7 

 
Figure 4.2: shows an example of the OOI image on left side (This image is taken before 
shopping and after electrical test) and example of image after molding process on right 
side.  

5. RESULTS AND DISCUSSION 
For wire bonding use case, two different approaches to validate the system were 
made. The first one was to simply calculate the percentage of devices which 
showed an anomaly in the dataset and compare this to the process yield. If these 
percentages align this is a good indicator that the anomaly detection represents the 
product quality. Additionally, a statistical significantly correlation between high 
anomaly values and bad electrical test results is considered. For the second 
approach, we gathered multiple devices which showed a high anomaly value and 
examined them thoroughly. In all of the cases different influences could be found 
on the device, like a contaminated device, reduced shear value or input material 
which was out of specifications. But not all findings, even though varying from 
the normal, will lead to a malfunctioning device. However, an important aspect of 
the used anomaly detection was that the result is an anomaly score, indicating how 
different the raw data from normal is not a Boolean indication anomaly / no 
anomaly. Thus, it is necessary to find an optimal threshold on which the difference 
in the raw data influences the quality of the product. An important impact of the 
work was also the adaptation of the approach to a performant data management 
infrastructure; i. e. the development of automatable methods for the detection of 
conspicuous parameter behaviour and its marking and storage. The evaluation was 
based on sample data and statistical analysis of standard deviations considering 
Nelson’s rules. The work carried out covers both the familiarization with the 
various technologies and their variants, the adaptation of the methods to the 
subject area, and the prototypical implementation and testing of the algorithms by 
embedding them in automated analysis pipelines. Currently the anomaly detection 
for wirebonding is running on over 40 machines on 3 different IFX sites. During a 
runtime of 4 months, several misadjusted bonders were detected, random errors 
and contaminated devices. However, currently a big focus is set to fully integrate 
the model not only in the infrastructure but also in the day to day workflow of the 
operators, this also includes a clear definition of action plans for found deviations 
and trainings of operators. For OOI use case, after collecting images, the labeled 
images are pre-processed first by cropping the region of interest and normalization 
the intensity values between 0 and 1. These images are sent to CNN for training 

Figure 6.5 shows an example of the OOI image on left side (This image is taken before
shopping and after electrical test) and example of image after molding process on right side.

With this procedure it was possible to scale one model to s complete
production line with more than 30 machines.

6.5 Result and Discussion

For wire bonding use case, two different approaches to validate the sys-
tem were made. The first one was to simply calculate the percentage of
devices which showed an anomaly in the dataset and compare this to the
process yield. If these percentages align this is a good indicator that the
anomaly detection represents the product quality. Additionally, a statistical
significantly correlation between high anomaly values and bad electrical
test results is considered. For the second approach, we gathered multiple
devices which showed a high anomaly value and examined them thoroughly.
In all of the cases different influences could be found on the device, like
a contaminated device, reduced shear value or input material which was
out of specifications. But not all findings, even though varying from the
normal, will lead to a malfunctioning device. However, an important aspect
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of the used anomaly detection was that the result is an anomaly score,
indicating how different the raw data from normal is not a Boolean indication
anomaly / no anomaly. Thus, it is necessary to find an optimal threshold on
which the difference in the raw data influences the quality of the product.
An important impact of the work was also the adaptation of the approach
to a performant data management infrastructure; i. e. the development of
automatable methods for the detection of conspicuous parameter behaviour
and its marking and storage. The evaluation was based on sample data and
statistical analysis of standard deviations considering Nelson’s rules. The
work carried out covers both the familiarization with the various technologies
and their variants, the adaptation of the methods to the subject area, and
the prototypical implementation and testing of the algorithms by embedding
them in automated analysis pipelines. Currently the anomaly detection for
wirebonding is running on over 40 machines on 3 different IFX sites. During
a runtime of 4 months, several misadjusted bonders were detected, random
errors and contaminated devices. However, currently a big focus is set to
fully integrate the model not only in the infrastructure but also in the day to
day workflow of the operators, this also includes a clear definition of action
plans for found deviations and trainings of operators. For OOI use case, after
collecting images, the labeled images are pre-processed first by cropping the
region of interest and normalization the intensity values between 0 and 1.
These images are sent to CNN for training purpose. The CNN consist of
100 layers. The latter consisting of different blocks. Each block contains
the convolutional, pooling and ReLU layer. Also, before the last layer, fully
connected layer, a strict regularization factor is added in order to avoid over-
fitting issue by adding dropout layer with value 0.6. The data was splited into
80% training and 20% validation data. The model reported with accuracy
higher than 99%. Afterwards, the model is tested on productive data with
roughly 25k images. Table 6.1 shows the confusion matrix with the important
measures, sensitivity, specificity and accuracy. As, one can see that model to
follow zero defect philosophy, as sensitivity value is 100%. The accuracy
also is less than 1%. Hence, only the latter have to be reviewed by an expert.
Moreover, the performance model after scaling to anew process is still very
robust. As one can see in the Table 6.2, which shows the reported results by
a model when run on productive data of the new process. Although, one can
see there is one escapee in bottom surface (BOT), but the accuracy is still
higher than 99%.
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Table 6.1 Show the confusion matrix and metrics of the CNN model on productive data for
BOT and TOP of OOI images.

Table 6.2 Show the confusion matrix and metrics of the CNN model on productive data for
BOT and TOP of the new process.

6.6 Conclusion and Outlooks

In this paper, two use cases show the potential benefits of using AI models in
detecting abnormalities in industrial packages. Moreover, the methodology
shows the possibility of scaling such solutions to new similar use cases or
machines with minimum effort. As a result, not only the manual effort would
significantly be reduced, but also costs and the quality of the products would
be improved. Additionally, the long-term goal is not only to find the deviation
but to detect exactly the root cause behind it. However, there is still a lot of
work left, unrealized potentials benefit of AI solutions, but IFX has already
taken a step forward in the right direction. Thus, semiconductor community
is investing more with AI to harvest its benefits in the short and, most
importantly, long term. Generally, the results are promising and would be a
good alternative to classical approaches. The next steps are monitoring, opti-
mization and more validation for both solutions in a productive environment.
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