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Abstract
For semiconductor manufacturing, easy access to causal knowledge docu-
mented in free texts facilitates timely Failure Modes and Effects Analysis
(FMEA), which plays an important role to reduce failures and to decrease
production cost. Causal relation extraction is the tasks of identifying causal
knowledge in natural text and to provide a higher level of structure. How-
ever, the lack of publicly available benchmark causality datasets remains
a bottleneck in the semiconductor domain. This work addresses this issue
and presents the S2ORC-SemiCause benchmark dataset. It is based on the
S2ORC corpus, which has been filtered for literature on semiconductor
research, and consecutively annotated by humans for causal relations. The
resulting dataset differs from existing causality datasets of other domain in
the long spans of causes and effects, as well as causal cue phrases exclusive
to the domain semiconductor research. As a consequence, this novel datasets
poses challenges even for state-of-the-art token classification models such as
S2ORC-SciBERT. Thus this dataset serves as benchmark for causal relation
extraction for the semiconductor domain.

Keywords: causality, relation extraction, information extraction, bertology,
annotation.

91



92 S2ORC-SemiCause: Annotating and Analysing Causality

7.1 Introduction

Although causality represents a simple logical idea, it becomes a complex
phenomenon when appearing in textual form. Natural language provides a
wide variety of structures to represent causal relationships that can obfuscate
the causal relations expressed via cause and effect. The task of causal rela-
tion extraction aims at extracting sentences containing causal language and
identifying causal constituents and their relations [17].

In the last years significant progress have been made in automatizing
the identification of causal cues and extraction of causal relation in natu-
ral language, defining it as a multi-way classification problem of semantic
relationships [6], designing a lexicon of causal constructions [2, 3], and
insights how to achieve high inter-rater agreement [13]. Approaches have
been developed in scientific domains traditionally dominated by textual infor-
mation, such as biomedical sciences. Here, models to process causal relations
are facilitated and accelerated with the development of benchmark datasets
such as BioCause [10]. Such datasets not only allow for comparison and
automatic evaluation of custom causal extractors, but also allow for training
high performing supervised models.

For semiconductor manufacturing, much of existing knowledge can be
considered to be causal, highlighted by approaches like Ishikawa causal dia-
grams as well as the Failure Modes and Effects Analysis (FMEA) tool which
captures root causes of potential failures. Even though such FMEA document
provides more structure than natural language text, dedicated pre-processing
is required before further processing [12]. A signification amount of such
causal knowledge is captured in textual documents, such as reports and
knowledge bases. However, there is no publicly available annotated dataset
for causal relation extraction yet. As a consequence, in this work we propose
such a dataset, named S2ORC-SemiCause. The source for the documents of
this novel dataset is the S2ORC academic corpus, which has been filtered for
documents of relevance for the semiconductor domain. Human annotators
identified causal cues and causal relations in the documents of the corpus.
To achieve consistent and reproducible results, an annotation guideline was
created and the annotation processes was conducted in multiple phases. To
provide baseline performance, the pre-trained language model BERT [1],
which is currently considered state of the art for many natural language
processing (NLP) tasks was adapted for the task. An error analysis gives
insights on the challenges of future causal relation extraction methods.
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In summary, our main contributions are:

• S2ORC-SemiCause, a causality dataset for the semiconductor domain
that aims to provide a benchmark for causal relation extraction perfor-
mances and facilitate research on dedicated methods;

• Practical annotation guidelines designed to yield high inter-annotator
agreement for semiconductor literature, to enable the creation of further,
similar datasets;

• Identified the key differences of S2ORC-SemiCause compared to other
domains, and highlighted the resulting challenges for state-of-the-art
NLP models.

7.2 Dataset Creation

7.2.1 Corpus

Our semiconductor corpus is selected from the 24 million papers in the
engineering and related domains from the S2ORC corpus [8] (total 81.8
million papers). The subdomain is further filtered using a series of keywords
specific for the semiconductor domain, such as device locations, electrical
and physical faults, technologies (e.g. SFET), Focused Ion Beam, etc. For a
paper to be selected, it needs to include at least four of these keywords.

From the resulting subset of 21 thousand papers, 400 abstract and 400
paragraphs are randomly sampled, among which 600 sentences are selected
randomly for annotation.

7.2.2 Annotation Guideline

We have adapted the annotation guidelines1 from the creation of BECauSE
Corpus 2.0 [3]. The main differences are (1) the relation types "Motivation"
and "Purpose" are further merged into one type (name "Purpose") since it is
found from previous work [5] that annotators have difficulty distinguishing
these two types; (2) "max-span" rule, namely, the span should include full
phrase or clause. The "max-span" rule not only retains important context
information for the causal relations, but also enables higher inter-annotator
agreement. This was also motivated that it assumed to be easier to auto-
matically reduce a phrase to its heads, instead of expanding a short, existing
annotation.

1The annotation guideline will be make public at https://github.com/tugraz-isds/kd.
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Table 7.1 Inter-annotator agreement for the first two iterations. Arg1 (cause) refers to the
span of the arguments that lead to Arg2 (effect) for the respective relation type.

Iteration 1 Iteration 2
Relation classification Cohen’s κ 0.65 0.80
Consequence Arg1 F1 0.55 0.71
Consequence Arg2 F1 0.60 0.81
Purpose Arg1 F1 0.00 0.92
Purpose Arg2 F1 0.00 0.80
F1 micro average 0.49 0.78

Table 7.2 Comparison of labels generated by both annotators for Iteration 2. Examples
and total counts (in number of arguments) for each type also given. Arg1 and Arg2

are highlighted with blue and yellow background, respectively. Partial overlapped texts are
highlighted with green background.

Type # Example sentence
Exact match 54 In fact, and for the soil in question, the capillary rise process is low , so

the indirectly loss by evaporative loss is low too .

Partial
overlap

8 This result suggests a possible dynamical influence

of the mesospheric layers on the lower atmospheric levels .

Only one
annotator

14 The wing displaces away from the ground , as a result of

the reduction in (-ve) lift .

7.2.3 Annotation Methodology

Since the annotations should contain as little ambiguity as possible, we aimed
to design a methodology to achieve consistent annotations. To this end, the
dataset was annotated in a total of 3 iterations. For the first two iterations
with 50 sentences each, both annotators label the same set, so that inter-
annotator-agreement (IAA) can be evaluated. Between the two iterations, the
two annotators discussed the results and updated the guideline.

Table 7.1 shows that there are significant improvement in Inter-Annotator
Agreement (IAA) from iteration 1 to iteration 2, both in terms of Cohen’s κ,
and F1. The main improvement comes from (1) direction for Purpose relation
(namely, arg2 should be the purpose); (2) "max-span" rule, namely, the span
should include full phrase or clause.

With Iteration 2, the two annotators reached a substantial agreement,
where both Cohen’s κ for relation classification and F1 for argument spans
are around 0.8. For reference, in Dunietz et al. [3] a Cohen’s κ of 0.70 was
reported for the relation type. Results of detailed inspection are summarized
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Table 7.3 Descriptive statistics of benchmark datasets. Overview of CoNLL-2003 (train-
ing split) and BC5CDR (training split) for named entity recognition, as well as causality
dataset BioCause (full dataset), and S2ORC-SemiCause (training split).

CoNLL-2003 BC5CDR BioCause S2ORC-SemiCause

#sentences 14,042 4,612 37,422 360
Avg. sentence length (in tokens) 14.5 25.0 7.8 32.0
Avg. argument length (in tokens) 1.4 1.5 3.6 9.5

in Table 7.2. For 54 arguments, both annotators agree in both span and
argument type. The remaining disagreements are from (1) one annotator
misses a relation (14 occurrences); (2) only partial overlap of the annotated
spans by both annotators (8 occurrences).

Based on the insights from the updated baseline, the first set of document
was revisited and both set of annotations from the first two iterations were
then merged manually. In addition, for the 3rd iteration, two extra sets of 250
sentences were annotated by each annotators. As a result, our dataset consist
of 600 sentences annotated with Consequence and Purpose relations.

7.2.4 Dataset Statistics

We notice that compared to other benchmark NER datasets, such as
CoNLL2003 [4], BC5CDR [7], and BioCause [10] (see Table 7.3), S2ORC-
SemiCause dataset differs in terms of (1) smaller size; (2) longer sentence
length; (3) longer argument length. While data size is found to be generally
sufficient for entity recognition tasks [14], and longer sentence length is
found to be preferred [14], the effect of longer argument length remains to
be evaluated.

7.2.5 Causal Cue Phrases

When present, the causal cue phrases are also annotated. Figure 7.1 depicts
the most common cue phrases for both relation types. "To" is the most
frequently occurring cue because it is by far the most dominating cue phrase
for relation type purpose. The cue phrases for consequence are much more
diverse. Compared to other corpus of general domain [9, 11], in S2ORC-
SemiCause dataset, cue words such as increase, decrease, improve, reduce
are also ranked very high.
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Figure 7.1 Causal cue phrases ranked by frequency for all sentences in S2ORC-
SemiCause dataset.

7.3 Baseline Performance

To establish a point of reference for the community, we provide an initial
baseline performance. For the baseline approach we considered the causal
relation extraction task as an sequence classification task. As a technical
realisation, we fine-tuned BERT on the down-stream task of token-level
classification [1]. An error analysis is then performed to identify the main
challenges in extracting causal relations from scientific publications in
semiconductor research.

7.3.1 Train-Test Split

The total 600 sentences are split into training, validation, and test sets, with
the ratio 60 : 20 : 20, stratified on relation type2. In addition, also the
iterations were stratified evenly to avoid unwanted biases. The descriptive
statistics for each split is listed in Table 7.4.

7.3.2 Causal Argument Extraction

As recommended in [1], which describes a similar scenario, we considered
the task as a token-level classification. Namely, a pretrained BERT model is
stacked with a linear layer on top of the hidden-states output, before fine-
tuned on training examples. And the pretrained S2ORC-SciBERT model [8]
is selected for fine-tuning using transformers library from Hugging Face [16].

2We release all data for future studies at https://github.com/tugraz-isds/kd
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Table 7.4 Descriptive statistics of S2ORC-SemiCause dataset. #-sent: total number of anno-
tated sentences, #-sent no relations: number of sentences without causality, Argument: total
amount and mean length (token span) of all annotated argument, Consequence/Purpose:
amount and mean length of cause and effect arguments for the respective relation types.

#-sent
#-sent

no relations

Argument Consequence Purpose
cause effect cause effect

count mean count mean count mean count mean count mean

overall 600 291 670 9.4 258 8.4 290 9.2 58 10.8 64 12.9
train 360 174 405 9.5 155 8.5 178 9.1 34 11.1 38 13.5
dev 120 55 122 9.3 49 8.1 52 8.8 10 9.7 11 16.1
test 120 62 143 9.3 54 8.3 60 9.9 14 10.9 15 8.9

Table 7.5 Baseline performance using BERT with a token classification head. Both the F1

scores and the standard derivation over 7 different runs are shown. Despite the small sample
size, the standard deviation remain low, similar to previous work [14].

Relation Argument # F1 F1-filter F1-filter partial
Consequence Arg1 54 0.43 ± 0.03 0.48 ± 0.02 0.59 ± 0.01
Consequence Arg2 60 0.45 ± 0.03 0.50 ± 0.03 0.62 ± 0.02
Purpose Arg1 14 0.20 ± 0.07 0.25 ± 0.10 0.50 ± 0.05
Purpose Arg2 15 0.31 ± 0.06 0.36 ± 0.08 0.57 ± 0.07

micro average 143 0.39 ± 0.02 0.45 ± 0.02 0.59 ± 0.01

The resulting F1 scores3 are shown in Table 7.5 and is remarkable lower than
for other benchmark NER datasets when down-sampled to similar size [14].

7.3.3 Error Analysis

In order to understand the causes for the low F1 score of the baseline model,
an error analysis is performed.

Length of Argument Span
Firstly, a manual inspection revealed that for 30 ± 4 (out of the total 120)
sentences, the fine-tuned model predicts sequences similar to [O I I · · · ],
i.e., the models did not learn that an argument must always start with a "B"
type with the IOB (Inside–Outside–Beginning) notation.

We hypothesize that this might be because our argument spans are much
longer than other datasets (see Table 7.4 and Table 7.3). As a result, either the
self-attention might no longer efficiently keep track of the [B I · · · ] pattern,
or the over-abundant "I" class might bias the model loss.

3The best performance is found using learning rate 1.5e − 4, batch size 8, warm up steps
10, and 10 epochs.
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Table 7.6 Comparison of predicted and annotated argument spans for the test split. Exam-
ples and total counts (in number of arguments) for correct prediction and for each error
source are also given. Arg 1 and Arg 2 are highlighted with blue and yellow background,

respectively. Partial overlapped texts are highlighted with green background.

Type # Example sentence
Exact match 68 The broad peak at 5 eV is due to N(2p) electrons .

Partial
overlap

41 These safe zones are provided to a model predictive controller as

reference to generate feasible trajectories for a vehicle .

Spurious 46 The roles of initial concentrations , space dimension and ratio of the

reactant diKusinties in the modification of the reaction rate by many -

particle eMects are compared with computer simulations.

Missed 34 This result validates the bolometric IR luminosities derived from

MIR luminosities .

Following this hypothesis, we expect better performances for shorter
arguments than for longer. Indeed we observe that correct predictions are
shorter by 2.7 tokens on average (p_value = 0.008).

To quantify the effect of such incorrect [O I I · · · ] sequences, we re-
evaluated F1 score after filtering out such predictions. The results are shown
in Table 7.5 as "F1-filter", and an improvement of 6 points is observed
compared to the F1 score before filtering.

Predictions with Partial Overlap
Out of the predicted argument, 41 were counted as incorrect, but overlapped
partially (see example in Table 7.6), and manual inspection suggest that they
often contain valid causal information.

Following [15], the model performance can be evaluated taking into
account partial overlaps. The results are listed in Table 7.5 as "F1-filter
partial", and the average F1 score becomes 0.59, which is about 80% of
human performance (inter-annotator F1 value of 0.78), and is inline with the
sample-size scaling as reported previously [14].

Spurious and Missed Predictions
Spurious examples (false positives) are the cases where the model predicts
a relation while annotators do not label. After manual inspection, we find it
arguable that some spurious predictions made by the model might actually
be valid causal relations as well. For example, the spurious example shown
in Table 7.6 is arguably causal as well following the (The role of ... in ...)
construct.
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Missed examples (false negatives) are the cases where annotators have
labelled while the model fails to predict a relation. For example, the missed
example shown in Table 7.6 uses the rare causal trigger derived from, which
might be the reason why the model failed to recognize.

7.4 Conclusions

Causality is critical knowledge in semiconductor manufacturing. In order to
enable automatic causality recognition, we created the S2ORC-SemiCause
dataset by annotating 600 sentences with 670 arguments for causal rela-
tion extraction from a subset of semiconductor literature taken from the
S2ORC dataset. This unique dataset challenges established state-of-the-art
techniques, because of its long spans for each argument. This benchmark
dataset is intended to spur further research, fuel development of machine
learning models, and to provide benefit to the NLP research in semiconductor
domain.
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