
9
A Framework for Integrating Automated

Diagnosis into Simulation

David Kaufmann and Franz Wotawa

Graz University of Technology, Austria

Abstract

Automatically detecting and locating faults in systems is of particular interest
for mitigating undesired effects during operation. Many diagnosis approaches
have been proposed including model-based diagnosis, which allows to derive
diagnoses from system models directly. In this paper, we present a framework
bringing together simulation models with diagnosis allowing for evaluating
and testing diagnosis models close to its real world application. The frame-
work makes use of functional mock-up units for bringing together simulation
models and enables their integration with ordinary programs written in either
Python or Java. We present the integration of simulation and diagnosis using
a two-lamp example model.

Keywords: model-based diagnosis, fault detection, fault localization, phys-
ical simulation.

9.1 Introduction

To keep systems operational, we need to carry out diagnoses regularly. Diag-
nosis includes the detection of failures, the localization of corresponding root
causes, and repair. We carry out regular maintenance activities that include
diagnosis and predictions regarding the remaining lifetime of components to
prevent systems from breaking during use. However, there is no guarantee

113



114 A Framework for Integrating Automated Diagnosis into Simulation

that system components are not breaking during operation, even when carry-
ing out maintenance as requested. In some cases, it is sufficient to indicate
such a failure, i.e., via presenting a warning or error message and passing
mitigation measures to someone else. Unfortunately, there are systems like
autonomous systems where we can hardly achieve such a mitigation process.
For example, in fully autonomous driving, there is no driver anymore for
passing control. Therefore, there is a need for coming up with advanced
diagnosis solutions that cover detection, localization, and repair. A practical
real world problem demonstration of an on-board control agent was validated
in the year 1999, within the scope of Deep Space One, a space exploration
mission, carried out by NASA. Regarding this, the authors of the paper [4]
describe developed methods related to model-based programming principles,
including the area of model-based diagnosis. The methods were applied on
autonomous systems, designed for high reliability, operating as subject of a
spacecraft system.

When we want to integrate advanced diagnosis into systems, we need to
come up with means for allowing us to easily couple monitoring with diagno-
sis. As stated by the authors in [3], the coupling enables the diagnosis method
to detect and localize faults based on observations, obtained by monitoring a
cyber-physical system (CPS). Furthermore, we require close integration of
today’s development processes, which rely on system simulation. The latter
aspect is of uttermost importance for showing early that diagnosis based on
monitoring can improve the overall behaviour of a system even when working
not as expected. We contribute to this challenge and present a framework
for integrating different simulation models and diagnoses. The framework
utilizes combining functional mock-up units (FMUs) that may originate from
modeling environments like OpenModelica1 with ordinary programming lan-
guages like Java or Python. We use these language capabilities to integrate
diagnosis functionality. The architecture of our framework is based on the
client-server pattern and implemented using Docker containers.

Using our framework, we can easily add diagnoses into systems. In
addition, we can use this framework for carrying out verification and valida-
tion of the system functionality enhanced with diagnosis capabilities. In this
manuscript, we present the framework and show the integration of diagnosis.
For the latter purpose, we make use of a simple example. We will make
the framework and the underlying diagnosis engine available for free and as
open-source. The framework contributes to research area of Edge Artificial

1see https://openmodelica.org



9.2 Model-based Diagnosis 11513.2 Model-based Diagnosis 3

B

S

L1 L2

Figure 13.1 A simple electric circuit comprising bulbs, a switch and a battery.

open-source. The framework contributes to research area of Edge Artificial
Intelligence because it enables the direct use of diagnosis functionality that is
based on Artificial Intelligence methodology in systems without the necessity
for communication with other systems.

We structure the paper as follows. First, we discuss the foundations
behind the used diagnosis method, i.e., model-based diagnosis. Afterwards,
we describe the simulation framework that is based functional mock-up units
using a small example. We further show how diagnosis can be integrated into
this framework, and finally we conclude the paper.

13.2 Model-based Diagnosis

Diagnosis, i.e., the detection of failures and the identification of faults, have
been of interest for several decades. In the early eighties of the last century,
Davis and colleagues [1, 2] introduced the basic concepts behind model-
based diagnosis. The idea is to utilize a model of the system directly for
detecting and locating faults. Reiter [5] formalized the idea utilizing first-
order logic. For a more recent paper we refer to Wotawa and Kaufmann [8]
where the authors introduced how advanced reasoning systems can be used
for computing diagnosis. For recent applications of diagnosis in the context
of CPS have a look at [3, 9, 7, 6].

In the following, we illustrate the basic concepts using a small example
circuit comprising a battery B, a switch S, and two bulbs L1, L2. The bulbs
are put in parallel and both should provide light when the switch is turned on
and the battery is not empty. Otherwise, both bulbs do not deliver any light.
We depict the circuit in Figure 13.1. If we know that the switch S is on, and
the battery is working as expected, then we also would expect both bulbs to be
illuminated. In case one bulb is emitting light but the other is not, we would
immediately to derive that the bulb with no transmitting light is broken.

Figure 9.1 A simple electric circuit comprising bulbs, a switch and a battery.

Intelligence because it enables the direct use of diagnosis functionality that is
based on Artificial Intelligence methodology in systems without the necessity
for communication with other systems.

We structure the paper as follows. First, we discuss the foundations
behind the used diagnosis method, i.e., model-based diagnosis. Afterwards,
we describe the simulation framework that is based functional mock-up units
using a small example. We further show how diagnosis can be integrated into
this framework, and finally we conclude the paper.

9.2 Model-based Diagnosis

Diagnosis, i.e., the detection of failures and the identification of faults, have
been of interest for several decades. In the early eighties of the last century,
Davis and colleagues [1][2] introduced the basic concepts behind model-
based diagnosis. The idea is to utilize a model of the system directly for
detecting and locating faults. Reiter [5] formalized the idea utilizing first-
order logic. For a more recent paper we refer to Wotawa and Kaufmann [8]
where the authors introduced how advanced reasoning systems can be used
for computing diagnosis. For recent applications of diagnosis in the context
of CPS have a look at [3][9][7][6].

In the following, we illustrate the basic concepts using a small example
circuit comprising a battery B, a switch S, and two bulbs L1, L2. The bulbs
are put in parallel and both should provide light when the switch is turned on
and the battery is not empty. Otherwise, both bulbs do not deliver any light.
We depict the circuit in Figure 9.1. If we know that the switch S is on, and the
battery is working as expected, then we also would expect both bulbs to be
illuminated. In case one bulb is emitting light but the other is not, we would
immediately to derive that the bulb with no transmitting light is broken.



116 A Framework for Integrating Automated Diagnosis into Simulation

To compute diagnoses from system models, we first need to come up
with a model of the system that we want to diagnose. Such models comprise
components and their connections, via ports. Hence, in the following, we
discuss the component models, and a model of connections separately. For the
electric circuit, we simplify modelling by only considering that components
like batteries are providing electrical power, some are transferring power
like switches, and others are consuming power. Furthermore, we utilize first-
order logic for formalization where we follow Prolog syntax2. For all the
component models we describe how values are computed assuming that the
component is of a particular type and that it is working as expected. For the
type we use a predicate type\2 and for stating the component to be correct a
predicate nab\1.

Battery A component X that is a battery is when working correctly providing
a nominal power at its output.
val(pow(X),nominal) :- type(X,bat), nab(X).

Switch A component X that is a switch works as follows. If it is on and
working as expected, then the output must have the same value as the
input port and vice versa. If it is off, the switch is not transferring any
power.
val(out_pow(X),V) :- type(X,sw), on(X),

val(in_pow(X),V), nab(X).
val(in_pow(X),V) :- type(X,sw), on(X),

val(out_pow(X),V), nab(X).
val(out_pow(X),zero) :- type(X,sw), off(X), nab(X).

Lamp A lamp X is on, whenever there is a power on its input. If it emits
light, then there must be power on its input. If there is no power at the
input of X, then the light must be off.

val(light(X),on) :- type(X,lamp), val(in_pow(X),
nominal), nab(X).

val(in_pow(X), nominal) :- type(X,lamp),
val(light(X),on).

val(light(X),off) :- type(X, lamp),
val(in_pow(X),zero), nab(X).

2We are using Prolog syntax because recent solvers like Clingo (see
https://potassco.org/clingo/) are relying on it.



9.2 Model-based Diagnosis 117

For completing the model, we introduce connections using a predicate
conn\2 that allows to state two ports to be connected. The behaviour of a
component comprises the transfer of values in both directions, and stating
that it is impossible to have different values at a connection. The following
rules are covering this behaviour:

val(X,V) :- conn(X,Y), val(Y,V).
val(Y,V) :- conn(X,Y), val(X,V).

:- val(X,V), val(X,W), not V=W.

To use a model for diagnosis we only need to define the structure of the
system making use of the component models. For the two bulb example, we
define a battery, a switch, and two bulbs that are connected accordingly to
Figure 9.1.

type(b, bat).
type(s, sw).
type(l1, lamp).
type(l2, lamp).

conn(in_pow(s), pow(b)).
conn(out_pow(s), in_pow(l1)).
conn(out_pow(s), in_pow(l2)).

To use this model for diagnosis, we further need observations. We might
state that the switch s is on, bulb l1 is not on but l2 is. Again we can make use
of Prolog to represent this knowledge as facts:

on(s).
val(light(l1),off).
val(light(l2),on).

When using a diagnosis engine like described in [8] we obtain one single
fault diagnosis {l1}. But how is this working? The diagnosis engine makes
use of a simple mechanism. It searches for a truth setting to the nab\1
predicates, such that the model together with these assumptions is not leading
to a contradiction. When assuming l1 to be not working, the fact that lamp
l2 is on can be derived. However, we cannot derive anything else that would
lead to a contradiction.



118 A Framework for Integrating Automated Diagnosis into Simulation

Note that this simple model is also working in other more interesting
cases. Let us assume that the switch is on but no light is on. For this case,
the diagnosis engine delivers three diagnoses: {b}, {s}, and {l1, l2} stating
the either the battery is empty, the switch is broken, or both lamps are not
working at the same time. Another interesting case that might occur is setting
the switch to off, put still one lamp, i.e., l1 is on. In this case we only obtain
a double fault diagnosis {s, l2} stating that the switch is not working as
expected and lamp l2 as well.

9.3 Simulation and Diagnosis Framework

In the following section, we introduce a framework making use of two
collaborating tools, comprising a simulation environment for function
mock-up unit (FMU)3 models and a diagnose application based on the
theorem solver Clingo4. Figure 9.2 gives a brief overview of the framework
and the operating principles. The FMU simulation tool server is utilized
to run a CPS model within the given simulation environment, whereas
the client enables to control the simulation. The separation enables to
execute other applications, tools and methods after each simulation time step
update, as the ASP Diagnose Tool (see Section 9.3.2). The mentioned tool
receives the observations provided by the simulation framework and a settings
configuration to compute the diagnose of a system, based on an abstract
model, developed with the declarative programming language ASP (Answer
Set Programming). Further, the diagnose may be used to control the inputs
and parameter to restore a safe operating system or to bring the system in a
state to prevent harm to the system or environment.

9.3.1 FMU Simulation Tool

The developed application provides an entire environment to load, configure,
run, observe and control simulations related to CPS models. In general,
the application is set up as a client-server system to distribute the structure
between the provider of a service, the server, and the service requester,
the client. The service executed on the server is defined as the simulator
environment providing the options to observe and control the simulation
by client requests during run-time. The reason of using a client-server

3see https://fmi-standard.org
4see https://potassco.org/clingo/



9.3 Simulation and Diagnosis Framework 119

Figure 9.2 Illustration of the simulation and diagnose environment as well as the overall
operating principles. The framework of the FMU Simulation Tool provides an interface to
enable the integration of a diagnose tool and/or other methods. The models can be substituted
by any others in the provided framework.

system is to detach the simulation environment and the observation/control
process. The separation enables the user to utilize individual programming
environments/languages as client, whereas the server works independent to
the selected client environment, receiving and sending the control commands
and simulation observations via a REST (Representational State Transfer)
application programming interface. In order to run a simulation of a CPS
model with the described application, a fundamental requirement is to
generate a standardized FMU from the given model. Common modeling
software as OpenModelica or Matlab5 have a FMU generation tool already
implemented, but there are also other applications, as e.g. UniFMU 6,
which are capable of generating a FMU from different language source
code (Python, Java or C/C++). A FMU enables to use a general simulation
environment for all kind of models, although they are build on different
sources. The simulation environment is developed to execute a step by step

5see https://de.mathworks.com/products/matlab.html
6see https://github.com/INTO-CPS-Association/unifmu



120 A Framework for Integrating Automated Diagnosis into Simulation

(for a given time step) simulation. To enable that feature, it is essential that
the FMU is generated as a co-simulation model. Within a co-simulation setup,
the numerical solver is embedded and supplied by the generated FMU. By the
provided interface methods, the FMU can be controlled by setting the inputs
and parameter, computing the next simulation time step, and reading the
resulting observations. The given setup, enables to execute tools and methods
while the simulation is paused after a simulated time step.

9.3.2 ASP Diagnose Tool

To enable diagnoses based on observations of a given CPS model,
we developed a diagnose tool. This tool is built up on the theorem
solver Clingo and makes use of the provided methods within a Python
environment. In addition the tool provides extended functionalities, e.g.
including observations as simulation outputs, inputs, states, modes or time
and applying optional settings as limiting the number of required answer
sets, setting the maximum fault size search space for abnormal component
behaviour, considering additional fault modes and adding other constraints to
be considered.

The tool is designed to iterate through each fault size in ascending order,
whereas fault size zero indicates a normal operating system without detecting
any abnormal behaviour in the diagnosed components. The procedure is
repeated for each fault size, except when the model is satisfied for fault
size zero, what is interpreted as no abnormal component is present for the
given observation. The detailed theorem solver implementation structure is
shown in algorithm 1, which was initially introduced and applied by Wotawa,
Nica and Kaufmann [3]. In the following, we briefly describe the setup of
the stated algorithm. First the input model is initiated, defined as an abstract
model (M ), comprising the system description (SD), observations (Obs) and
additional fault modes (FM ) to guide the diagnosis search. We start with an
empty diagnosis set (DS) and compute diagnosis of a certain size, iterating
from 0 to n. Line 4 shows how the limitation of the number for abnormal
predicates is applied to the model (Mf ), before the solver is called (line
5). A specified answer set is returned and filtered for abnormal predicates
(S) only. To prevent the multiple occurrence of abnormal elements (C) in
the iterations, the corresponding integrity constraints are added to the model
(Mf ) as stated in line 12. In relation to the given example in Section 9.2,
a integrity constraint at fault size 1 could be stated as :- ab(l1). for a
detected abnormal behaviour of the component lamp 1.



9.4 Experiment 121

Besides the main diagnose algorithm, the tool enables different output
options to simplify the evaluation of the received diagnose. Thus, the received
data can be exported in a JSON file, CSV file or directly printed in the
terminal during run-time. The output results are the detailed computed
diagnose, the total number of found diagnosis for each fault size, an indicator
for strong faults and the diagnose time separated for each fault size and in
total. As input, the tool requires the Prolog model, representing the CPS as
abstract model (see Section 9.2), and the related observation/constraint file
with all necessary input information to execute the diagnose process.

In reference to Figure 9.2, we show the simulation tool update loop,
where an update is triggered and the observations are received. Further the
observations are passed by the method interface as input to the implemented
diagnose tool. Before calling the diagnose, some configurations are specified,
as the abstract model, the maximum number of computing answer sets, the
maximum fault size of interest and the observations, which are generated
based on the simulation output information. In addition, the diagnose output
format, e.g., JSON or CSV can be selected. Last, the ASP theorem solver
with the given model, configuration and simulation observations is executed.
After receiving the diagnose result of the current time frame, it is stored in
the defined format structure and the simulation is continued with the next
time step in the loop.

9.4 Experiment

To show the applicability of the framework, we make use of the
two-lamps-model concept as shown in Figure 9.1. For the simulation, a
model of the two-lamps-model (see Listing 1) is generated in OpenModelica
comprising a battery (5.0V ), a closing switch and two light bulbs (100Ω).
Besides the connection of each component, the model also describes inputs,
which can be set during the simulation. These inputs are covering the fault
type of each component and the operational switch logic. To give an example
of the component programming, the switch model is shown in more detail
at Listing 2. Besides the component mode, the equations also represent the
behaviour based on different fault states, e.g. a broken switch, resulting in
an infinite high internal resistor value equal to an open electrical circuit.
An equivalent fault state is implemented for each component as shown in
Table 9.1.

Moreover the OpenModelica model is converted into a co-simulation
FMU, which enables to use the model in the described FMU simulation tool.



122 A Framework for Integrating Automated Diagnosis into Simulation

Algorithm 1 ASPDiag(SD,Obs, FM,n)
For a more detailed description of the algorithm see [3].
Input: An ASP diagnosis model M , and the desired cardinality n
Output: All minimal diagnoses up to n

1: Let DS be {}
2: Let Mf be M .
3: for i = 0 to n do
4: M ′

f = Mf ∪ { :- not numABs(i). }
5: S = F

(
ASPSolver(M ′

f )
)

6: if i is 0 and S is {{}} then
7: return S
8: end if
9: Let DS be DS ∪ S.
10: for ∆ in S do
11: Let C = AB(∆) be the set {c1, . . . , ci}
12: Mf = Mf ∪ { :- ab(c1), . . ., ab(ci). }.
13: end for
14: end for
15: return DS

model Two_Lamp_Circuit
Phys ica lFaultModel ing .PFM_Bulb bulb1 ( r = 100 .0 ) ;
Phys ica lFaultModel ing .PFM_Bulb bulb2 ( r = 100 .0 ) ;
Phys ica lFaultModel ing . PFM_Switch sw ;
Phys ica lFaultModel ing .PFM_Ground gnd ;
Phys ica lFaultModel ing . PFM_Battery bat ( vn = 5 . 0 ) ;

equat ion
connect ( gnd . p , bat .m) ;
connect ( bat . p , sw . p) ;
connect ( sw .m, bulb1 . p) ;
connect ( sw .m, bulb2 . p) ;
connect ( bulb1 .m, gnd . p) ;
connect ( bulb2 .m, gnd . p) ;

end Two_Lamp_Circuit ;

model Two_Lamp_Circuit_Testbench
Phys ica lFaultModel ing . Two_Lamp_Circuit sut ;
input FaultType bat_state ( s t a r t=FaultType . ok ) ;
input OperationalMode switch_mode ( s t a r t=OperationalMode . c l o s e ) ;
input FaultType switch_state ( s t a r t=FaultType . ok ) ;
input FaultType bulb1_state ( s t a r t=FaultType . ok ) ;
input FaultType bulb2_state ( s t a r t=FaultType . ok ) ;

equat ion
sut . sw . mode = switch_mode ;
sut . bat . s t a t e = bat_state ;
sut . sw . s t a t e = switch_state ;
sut . bulb1 . s t a t e = bulb1_state ;
sut . bulb2 . s t a t e = bulb2_state ;

end Two_Lamp_Circuit_Testbench ;

Listing 1 OpenModelica model of a two-lamp electrical circuit with fault injection
capability to each used component. The component connections are specified to describe the
same electrical circuit as given in Figure 9.1.



9.4 Experiment 123

model PFM_Switch
extends Phys ica lFaultModel ing .PFM_Component ;
Phys ica lFaultModel ing . OperationalMode mode( s t a r t=OperationalMode . open ) ;
Modelica . Units . SI . Res i s tance r_int ;

equat ion
v = r_int * i ;
i f s t a t e == FaultType . ok then

i f mode == OperationalMode . open then
r_int = 1e9 ;

e l s e
r_int = 1e - 9 ;

end i f ;
e l s e i f s t a t e == FaultType . broken then

r_int = 1e9 ;
e l s e

r_int = 1e - 9 ;
end i f ;

end PFM_Switch ;

Listing 2 OpenModelica model of a switch component including a mode {open,
close} and fault state {ok, broken, short} implementation logic.

Table 9.1 CPS Model component state description for the light bulb, switch and battery. All
used states, including fault states of the components are shown.

Component State Description

light bulb (bulb),
switch (sw)

ok ordinary behaviour
broken open connection in eletrical circuit
short short in the electrical circuit

battery (bat)
ok ordinary behaviour

empty empty battery fault

In order to simulate the model behaviour in detail, the update time step is set
to 0.01 seconds. In addition, the fault injection during run-time is configured
to trigger a single light bulb fault at 0.2 seconds and a switch fault after 0.3
seconds, which is described in detail at the simulation part of Figure 9.4.

For the diagnose part, we make use of the described abstract model of the
electrical two-lamps circuit (see Section 9.2). The overall framework is built
up in a way, that a diagnose is computed after each simulated time step and is
based on the actual observations (simulation outputs, parameter and inputs).
The use of a co-simulation FMU, allows a step-by-step simulation, which
enables to pause the simulation during the diagnose process and continuing
afterwards. Therefore, the diagnose time effort has no impact on the overall
simulation results.

Figure 9.3 shows the observed signals for the current flow in the battery,
light bulb 1 and 2 as well as the actual switch mode. Further the injected faults
are highlighted at the correlated time point. In Figure 9.4 a table represents the
observations for the three interesting time sections, as the normal behaviour,
a broken light bulb and a broken switch. After reaching simulation time 0.05



124 A Framework for Integrating Automated Diagnosis into Simulation

Figure 9.3 Simulation showing the measured signal output of the two bulbs, switch and the
battery. For this example a fault injection (broken) in bulb 1 after 0.2 seconds (red indicator)
and a fault injection (broken) to the switch after 0.3 seconds (orange indicator) is initiated.

seconds, the switch mode is changed from open to closed and the model
shows the expected ordinary behaviour without any abnormal components.
Both light bulbs are operating at an expected current consumption of 0.05 A.
These observations are translated to a readable input format for the diagnose
tool, which is shown in the corresponding status row "Observation" (see
Figure 9.4). In regards to the abstract model and the observation input, the
diagnose tool computed a satisfied model at fault size zero, which concludes
an expected ordinary behaviour of all considered components.

The time section at 0.2 seconds shows the behaviour with a broken
light bulb. Thus the current consumption of bulb 1 immediately drops to
0.0 A and the diagnose observation changes from mode on to off. Since
the main power switch is still closed and bulb 2 is in active mode on, the
diagnose model concludes component bulb 1 as abnormal ab(l1). The
next investigated fault (broken) is injected to the closed switch. Since the
power supply for both light bulbs is not given, the current consumption
drops to 0.0 A. The diagnose model concludes as expected an abnormal
switch (ab(s)) or battery (ab(b)) based on the given observations for
single faults. Under consideration of double faults, the computed diagnose



9.5 Conclusion 125

Figure 9.4 Simulation and diagnose output results based on the electrical two-lamps circuit
with a broken bulb after 0.2 seconds and a broken switch at 0.3 seconds. The upper tables
illustrate the simulation input/output signals, which are used as observation for the diagnose
(lower tables) part. Based on the given observations for the three selected time steps, different
diagnose results are obtained.

shows a combination of an abnormal behaviour of light bulb 1 and bulb
2 ({ab(l1), ab(l2)}), which is also a possible solution for the given
observation.

9.5 Conclusion

In this paper, we have shown how to use an automated diagnosis method
within a simulation framework for a CPS (cyber-physical system). For this
purpose we introduced the foundations behind the model-based diagnosis
method based on a simple electric circuit model comprising two light bulbs,
a switch and battery. Next we describe a framework for simulating the
developed CPS model with the ability of fault injection during run-time. In
order to run the model in the given framework, it is essential to generate a
functional mock-up unit (FMU) based on the developed electrical two lamp
circuit model. By providing the FMU in co-simulation configuration, the
simulation can run in a step-by-step mode (time steps), which enables to call
other functions, as for example the diagnose method, while the simulation is
paused and continued with the next time step.



126 A Framework for Integrating Automated Diagnosis into Simulation

Besides the physical electrical circuit model, an abstract model for
diagnosis is developed in the declarative programming language Prolog. For
computing the diagnose based on observations of the model simulation,
we introduce a tool which uses the theorem solver Clingo and offers
additional productive options. The tool is developed to automate the process
of searching for abnormal components at each fault size (in ascending order).
To prevent multiple occurrence of abnormal components in higher fault sizes,
the derived results are continuously added as constraints to the model.

In order to demonstrate the concept of the simulation framework with the
automated diagnose tool, we executed an experiment based on the described
electrical two-lamps circuit model with the capability of fault injection to
the light bulbs and switch. After each time step of simulation, the received
observations are forwarded as input to the diagnose tool. The diagnose tool
enables to detect the injected faults in a fast and accurate way, as a single bulb
fault or even the more interesting case, when a switch erroneously indicates
a closed position although both light bulbs are powered off. In this case, we
obtain a single fault for an abnormal switch or battery behaviour, and a double
fault stating an abnormal behaviour for both light bulbs in combination.

For the purpose of deploying the diagnose tool on a system applied under
real environmental conditions, validation and verification is a fundamental
process. Thus we make use of a simulated environment framework, enabling
a high test case coverage of scenarios with abnormal component behaviour of
the system under test. In addition, the required time to conclude a diagnose,
may also lead to issues and need to be considered in the evaluation. Future
research includes investigating more complex CPSs by making use of the
discussed simulation framework in combination with the diagnose tool and
further development of both tools.

Acknowledgments

The research was supported by ECSEL JU under the project H2020 826060
AI4DI - Artificial Intelligence for Digitising Industry. AI4DI is funded by the
Austrian Federal Ministry of Transport, Innovation and Technology (BMVIT)
under the program "ICT of the Future" between May 2019 and April 2022.
More information can be retrieved from https://iktderzukunft.at/en/

.



References 127

References

[1] R. Davis, H. Shrobe, W. Hamscher, K. Wieckert, M. Shirley, and S. Polit.
Diagnosis based on structure and function. In Proceedings AAAI, pages
137–142, Pittsburgh, August 1982. AAAI Press.

[2] R. Davis. Diagnostic reasoning based on structure and behavior. Artificial
Intelligence, 24:347–410, 1984.

[3] D. Kaufmann, I. Nica, and F. Wotawa. Intelligent agents diagnostics -
enhancing cyber-physical systems with self-diagnostic capabilities. Adv.
Intell. Syst., 3(5):2000218, 2021.

[4] N. Muscettola, P. Pandurang Nayak, B. Pell, and B. C. Williams. Remote
agent: to boldly go where no ai system has gone before. Artificial
Intelligence, 103(1):5–47, 1998. Artificial Intelligence 40 years later.

[5] R. Reiter. A theory of diagnosis from first principles. Artificial Intelli-
gence, 32(1):57–95, 1987.

[6] F. Wotawa. Reasoning from first principles for self-adaptive and
autonomous systems. In E. Lughofer and M. Sayed-Mouchaweh, editors,
Predictive Maintenance in Dynamic Systems – Advanced Methods, Deci-
sion Support Tools and Real-World Applications. Springer, 2019.

[7] F. Wotawa. Using model-based reasoning for self-adaptive control of
smart battery systems. In Moamar Sayed-Mouchaweh, editor, Artificial
Intelligence Techniques for a Scalable Energy Transition – Advanced
Methods, Digital Technologies, Decision Support Tools, and Applica-
tions. Springer, 2020.

[8] F. Wotawa and D. Kaufmann. Model-based reasoning using answer set
programming. Applied Intelligence, 2022.

[9] F. Wotawa, O. A. Tazl, and D. Kaufmann. Automated diagnosis of
cyber-physical systems. In IEA/AIE (2), volume 12799 of Lecture Notes
in Computer Science, pages 441–452. Springer, 2021.




