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10.1 Introduction

This paper deals with constitutive modeling of the viscoplastic response of
nanocomposite hydrogels under an arbitrary deformation with finite strains.

Hydrogels are three-dimensional networks of polymer chains connected
by physical and chemical cross-links. When a hydrogel is brought in con-
tact with water, it swells retaining its structural integrity and ability to
withstand large (up to 3000%) deformations. A shortcoming of conven-
tional (chemically cross-linked) gels that restrains their applicability is that
these materials become relatively weak and not sufficiently tough in the
swollen state. To enhance mechanical properties of hydrogels without sacrifice
of their swellability and extensibility, concentration of reversible physical
crosslinks is to be increased [1] either by changes of molecular architecture
(double-network hydrogels, gels with hydrophilic and hydrophobic chains [2])
or by reinforcement with nanoparticles that serve as effective multi-functional
cross-linkers [3, 4].

Mechanical properties of hydrogels have been a focus of attention in the
past decade as these materials demonstrate potential for a wide range of appli-
cations including biomedical devices, drug delivery carriers, superabsorbent
materials, filters and membranes for selective diffusion, sensors for on-line
process monitoring, smart optical systems, and soft actuators [5—8].
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As mechanical properties of nanocomposite hydrogels are close to those
of extracellular matrix (ECM), our interest to their analysis is driven by
potential use of these materials for manufacturing synthetic multi-functional
scaffolds for in vitro support of stem cell culture. The present study focuses
on the viscoplastic response of nanocomposite hydrogels in uniaxial tensile
cyclic tests. This choice of experimental program is explained by the fact that
to ensure survival, proliferation, and differentiation of stem cells imbedded
into a hydrogel-based matrix, the latter should be subjected to biophysical
cues [9], among which mechanical stimuli play the key role [10, 11]. The
standard protocol for mechanical stimulation of stem cells involves periodic
deformations with relatively large amplitudes (cyclic loading) followed by
periods of rest when thermodynamic equilibrium is established between the
hydrogel and its environment [12, 13].

In the past five years, advanced constitutive models for the elastic behavior
of hydrogels subjected to swelling have been developed in [14-22], to mention
a few. Experimental and theoretical studies of relaxation mechanisms in
hydrogels have been performed in [23-26]. Fracture, crack propagation, and
self-healing of hydrogels have been investigated in [27-31].

Substantially less attention has been paid to the analysis of irreversible
(associated with plastic flow and damage accumulation) phenomena in
hydrogels. Stress—strain relations in finite viscoplasticity of hydrogels were
developed in [32]. Constitutive equations for the elastic response and dam-
age accumulation in double-network hydrogels were derived in [33, 34].
Time-dependent recovery of residual strains was investigated experimentally
in [2, 35, 36].

The objective of this study is threefold: (i) to develop constitutive equations
in finite viscoplasticity of nanocomposite hydrogels, (ii) to find adjustable
parameters in the stress—strain relations by fitting observations in uniaxial
tensile tests with various strain rates and tensile cyclic tests, and (iii) to reveal
peculiarities of the mechanical behavior of hydrogels reinforced with various
types of nanofiller (silica particles versus clay platelets).

As this work concentrates on the mechanical response of nanocomposite
hydrogels swollen in salt-free water, and our aim is to derive relatively simple
constitutive equations for their viscoplastic behavior, it seems natural to treat
these composite materials as neutral gels and disregard the effects of co- and
counter-ions. The novelty of the present approach consists in the following:
(i) the initial configuration of a dry undeformed hydrogel is presumed to
differ from the reference configuration of an equivalent polymer network
(in which stresses in chains vanish), (ii) transformation of the initial
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configuration into the reference configuration involves solvent-induced
isotropic inflation of the polymer network and its traceless deformation driven
by sliding of junctions between chains with respect to their reference positions,
(iii) the specific free energy of the polymer network equals the sum of the
mechanical energy stored in polymer chains (which depends on the Cauchy—
Green tensor for elastic deformation) and the energy of interaction between
chains and nanoparticles (which is treated as a function of the Cauchy—Green
tensor for plastic deformation).

The exposition is organized as follows. Constitutive equations in
finite viscoplasticity of nanocomposite hydrogels under an arbitrary
three-dimensional deformation accompanied by swelling are developed in
Section 10.2. The governing equations are simplified for uniaxial tension in
Section 10.3. Adjustable parameters in the stress—strain relations are deter-
mined in Section 10.4 by fitting observations under cyclic deformation.
Concluding remarks are formulated in Section 10.5.

10.2 Constitutive Model

To develop constitutive equations for the viscoplastic behavior of a nanocom-
posite hydrogel that involve a relatively small number of adjustable parame-
ters, a homogenization concept is applied. The solid phase of a nanocomposite
hydrogel (formed by a permanent network of flexible chains and a secondary
network of clay platelets) is replaced with an equivalent viscoplastic medium
whose behavior captures characteristic features of its mechanical response.
The presence of nanoparticles within the polymer matrix is accounted for by
assuming adjustable parameters in the stress—strain relations to depend on
filler content.

10.2.1 Kinematic Relations

Macro-deformation of a nanocomposite hydrogel coincides with that of the
equivalent medium. For definiteness, the initial configuration of a hydrogel is
chosen to coincide with that of an undeformed dry specimen. Transformation
of the initial configuration into the actual configuration is determined by the
deformation gradient F. The Cauchy—Green tensors for transition from the
initial to actual configuration read

B=F-F', C=F'.F, (10.1)
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where the dot stands for inner product, and T denotes transpose. The principal
invariants of the Cauchy—Green tensors are denoted as Ji, Jo, J3.

The reference configuration of the equivalent network (the configuration
in which stresses in chain vanish) differs from the initial configuration. Denote
by F', and F'¢ deformation gradients for transition from the initial configuration
into the reference configuration and from the reference configuration into the
actual configuration, respectively (the subscript index “e” designates elastic
deformation). These tensors are connected with deformation gradient for
macro-deformation F' by the multiplicative decomposition formula

F=F, F.. (10.2)

Transition from the initial configuration into the reference configuration
reflects two processes: (i) changes in specific volume (swelling and shrinkage)
induced by solvent transport, and (ii) viscoplastic deformation (sliding of
junctions between strands in the equivalent polymer network and slippage of
nanoparticles with respect to their positions in the initial configuration).

Local transformation of the initial configuration into the reference config-
uration due to solvent diffusion is described by the deformation gradient f.
For an isotropic equivalent medium,

f = f3I, (10.3)

where f stands for the coefficient of inflation induced by solvent uptake,
and I is the unit tensor. Local transformation reflecting irreversible sliding is

e n

described by the deformation gradient ', where the subscriptindex “p" refers
to plastic flow. The plastic deformation is presumed to be volume-preserving,

detF, = 1. (10.4)
It follows from the multiplicative decomposition formula that [21]
F,=F,-f. (10.5)
Equations (10.2), (10.3), (10.5) imply that
F = fiF,-F,. (10.6)
The Cauchy—Green tensors for elastic deformation read

B.=F. - F/, C.=F! F.. (10.7)
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To develop differential equations for principal invariants Je1, Je2, Jeg of these
tensors, we differentiate Equation (10.6) with respect to time ¢, introduce
velocity gradients

L=F-F' L =F F/' 1,=F,F" (10.8)
and obtain )
f
L=L.+L,+ gI (10.9)
with
L,=F.-1, -F;" (10.10)

Equation (10.9) implies that that

D :De—l—Dp—i-iI, (10.11)
3f
where
1 T 1 T 1 T
D:§(L+L )s Dezi(Le—FLe), Dpzi(Lp—FLp) (10.12)
denote rate-of-strain tensors. Under the conventional hypothesis that the
plastic spin vanishes,
I, =1 =d,, (10.13)
where d, is the rate-of-strain tensor for plastic deformation in the reference
configuration, Equations (10.10)—(10.12) imply that

2D, =F.-d, -F,' +F, " -d, -F/. (10.14)

Derivatives of the principal invariants of the Cauchy—Green tensors for elastic
deformation with respect to time are given by

Je1 = 2Bc¢ : Do,  Joz = 2(Jeal = JesBS ') : Do, Jog = 2Je3l : D,

(10.15)
where the colon stands for convolution of tensors. Combination of
Equations (10.11) and (10.15) implies that

. 2f

Jel = 2Be : (D - Dp) - 3§Je17

. ) 4f

JeQ - 2(Je21 — JegBe ) : (D — Dp) — gjez,

Joz = 2Je3|1: (D — D) — ) (10.16)

f
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It follows from Equations (10.7) and (10.14) that
B.:D,=C.:d,, I:D,=0, B;':D,=C.':d,.

Insertion of these expressions into Equation (10.16) results in

. 2f
1 = 2B.:D —2C, : d, — =L ..,
Jor b= 55
. B B Qf'
_ 1. _ 1. . _
Jeo = —2(B71:D — C; .dp)Je3+2<I.D 3f>J62,
_— ' f
Jog = 2<I.D— f)Jeg. (10.17)
Denote by
T T
B,—F, F/, C,=F.F, (10.18)

the Cauchy—Green tensors for plastic deformation, and by J,1, J,2, and
Jpg = 1 their principal invariants. Keeping in mind that d,, is a traceless
tensors, we write, by analogy with Equation (10.17),

Jp1 =2By 1 dp,  Jpp=-2B," : d,. (10.19)

10.2.2 Free Energy Density of a Hydrogel

Denote by ¥ the specific free energy of a nanocomposite hydrogel (per unit
volume in the initial configuration). For a hydrogel with an isotropic polymer
network, W is treated as a function of seven arguments

U= \I/(Jel,Jeg,Jeg,Jpl,Jpg,n,t), (10.20)

where n stands for numbers of water molecules per unit volume of a hydrogel
in its initial state. An explicit dependence of ¥ on time ¢ is introduced to
account for evolution of the equivalent polymer network driven by swelling—
shrinkage of a nanocomposite hydrogel. The following equation is adopted
for the specific free energy

U = pon + Ysolid + Wmix, (10.21)

where pg is chemical potential per solvent molecule in the bath (which, in
general, differs from chemical potential p per solvent molecule in a gel),
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Wyoliq denotes strain energy density of the solid phase, ¥,y stands for the
energy of mixing of solvent molecules with chains and nanoparticles in the
equivalent network.

The strain energy density of an isotropic equivalent medium reads

Ueolid = Ysolid (Je1, Je2, Je3, Jp1, Jp2, t). (10.22)

Within the Flory—Huggins theory of mixing, the specific energy of mixing is
given by

kgT
GV mix = %(@ In s + xGsbr), (10.23)

where kp is Boltzmann’s constant, 1" stands for absolute temperature, v is
the characteristic volume of a solvent molecule, x denotes the Flory—Huggins
interaction parameter, and

o be = 1
1400’ T 14w

ofs (10.24)

are volume fractions of the fluid and solid phases, respectively. Insertion of
Equations (10.22) and (10.23) into Equation (10.21) implies that

(10.25)

kT nv nv
U = Wyoiq + pon + i (m; In >

1+nv+X1+m} '

10.2.3 Derivation of Constitutive Equations

To develop constitutive equations, we apply the method of [14]: the problem of
mechanical deformation of a hydrogel subjected to swelling is immersed in a
larger class of problems with volume and surface mass uptake (in terminology
of [14], pumps injecting solvent are ascribed to each elementary volume of a
specimen).

Under quasi-static deformation of a hydrogel, the first Piola—Kirchhoff
stress tensor P satisfies the equilibrium equations

Vo-P+b=0 (in Q) ng-P=t (at 092), (10.26)

where () is an arbitrary domain occupied by the hydrogel in the initial
configuration, 0f) is its boundary, Vy is the gradient operator in the initial
configuration, ng is unit outward normal vector at 92, b denotes volume
force, and t is surface traction.
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Changes in number of solvent molecules n with time are governed by the
equations

on . . .

5 +Vo-jo=R (in Q), ng-jo=—-r (at 0Q). (10.27)
Here R is the rate of injection of solvent molecules per unit volume, r is
the rate of injection of solvent molecules through unit boundary surface, and
Jjo stands for flux of solvent in the initial configuration (number of solvent
molecules moving through unit surface per unit time).

Transport of solvent through an isotropic network is described by the
diffusion equation
j=—""7>-Vq, 10.28
J kgl VM ( )
where D stands for diffusivity, N = n/ det F denotes concentration of solvent
molecules per unit volume in the actual configuration, and j, V are flux vector
and the gradient operator in the actual configuration. Keeping in mind that

jo=(detF)F~".j,  Vou=Vpu-F,
we present Equation (10.28) in the form

Dn
jo=——7F 1 Vou-F 1 10.29
Jo Kol e ( )
Deformation gradient F and number of solvent molecules n are connected
by the molecular incompressibility condition

1+ nv = detF, (10.30)

which means that volumetric macro-deformation is driven by changes in
concentration of solvent molecules.
The free energy imbalance equation is written in the form [14]

d
S wav - (/ b-vdV—i—/ t-vdA) . (/ uRdv+/ urdA) <o,
dt Jq Q 00 Q o9

(10.31)
where the term in the first parentheses denotes work of external forces (per
unit time), and that in the other parentheses stands for rate of changes in the
free energy driven by mass flux. Here v stands for the velocity vector, dV is
volume element, and d A is surface element (the volume and surface elements
are determined in the initial configuration).
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Standard transformations of the expression in the first parentheses in
Equation (10.31) (integration by parts with application of Equation (10.26))
result in the formula

/b-vdv+/ t-vdA:/(detF)T:DdV, (10.32)
Q o0 Q

where T is the Cauchy stress tensor connected with the Piola—Kirchhoff tensor
P by the equation
P=(detF)F!.T,
and D is given by Equation (10.11).
Calculation of the derivative of free energy density (10.20) with the help
of Equations (10.17) and (10.19) implies that

d o  9Uon 2f
Sl wav= [ {1 22 S (W + 200V + 3Je3
dt Jq /Q{at+8nat 3f(1’1Jr 2%e2 + 3’3)+
2[(WBe — Jes ¥ B, ) + (JeoWoez + JesWea)T| : D+
2[(W 1By — W B, ) = (W Co — JesW e CL )]+ dy fav,
(10.33)
where

ov ov
Vem = 57— Vom= 57
O D Tem P D T om

The second term in Equation (10.33) is transformed by integration by parts
with the help of Equation (10.27),

oV on ov oV ov
222V = - T —)|d —dA. (10.34

o On Ot v /Q[anR+‘]0 VO(@n)} V+/89T8n (10.34)
Combination of Equations (10.33) and (10.34) yields

4 pav
t Jq

:/ {@ +2 [(\I{elBe — JsW 9B + (Jeo U e + Jeg,\lf,eg)l] D+
Q

2 [(‘I’,ppr - ‘P,pQBgl) — (V1 Ce — Je3\I/,eQCe_1)} rdp +

[gi’R +j0.vo(g:>}}dv+ " rg;I;dA, (10.35)
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where
ov  2f
=5 3f
The molecular incompressibility condition (10.30) establishes a connection
between the deformation gradient F' and the rate of injection of solvent R. To

account for this dependence, we differentiate Equation (10.30) with respect
to time. Keeping in mind that

(JerWer + 20 W02 + BJs W 5 ). (10.36)

d
— det F = (det F)I: D,

dt
and replacing the derivative of n by means of Equation (10.27), we obtain
v(R—Vy-jo) — (det F)I: D = 0. (10.37)

Multiplying Equation (10.37) by an arbitrary function 11, integrating over {2,
and performing integration by parts with the help of Equation (10.28), we
arrive at

/[H(UR—(detF)I : D) +jo-V0(Hv)]dV+/ vrdA = 0. (10.38)
Q) o0

Inserting Equations (10.32), (10.35) into Equation (10.31) and adding
Equation (10.38), we find that

/ {2 [(\If,elBe — J3 T 2BIY) + (Jeo W e + Je3 ¥ e3)I —
Q
(det F)(T + I I)} . DAV +

2/ [(qf,ppr — U B! = (¥, Ce — Jegq/,@ce—l)} :dpdV +
Q

ov ov
/Q<an—l—Hv—u)RdV—l—/(m(%—i-Hv—u)rdA%-
/jo-Vo(a\I’JrHv)dVJr/@dVgO. (10.39)
Q on Q

Keeping in mind that D, R, r are now arbitrary functions (the only connection
between them (10.30) is accounted for by means of the function II), we
conclude that the thermodynamic inequality (10.39) is satisfied, provided that
(i) the Cauchy stress tensor is given by

2 -
T= I+ ——|(VaBe — Ja 2By ) + (Vo + Jea ).
(10.40)
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and (ii) chemical potential reads

= g—i + . (10.41)

It follows from Equations (10.25) and (10.41) that

o X
1+nv  (1+nv)2l

= po + v + kT {m (10.42)

Substitution of Equations (10.29), (10.40), and (10.41) into Equation (10.39)
implies that
/ edv + 2/ (W 1By — W By ) = (W Co — JgW2C )|
Q Q
dp,dV —

/ka?; (P Vou) - (F' - Vou)av <. (10.43)

Keeping in mind that the last term in Equation (10.43) is non-negative, and
using Equations (10.4) and (10.36), we conclude that in order to satisfy the free
energy imbalance condition, it suffices to require that (iii) the rate-of-strain
tensor for plastic deformation d, is governed by the equation

/
d, = p[(\y,elce — TV CY) — (W B, — U By Y|, (1044)

where P is an arbitrary non-negative function, and the prime stands for the
deviatoric component of a tensor, and (iv) the coefficient of inflation of the
network f obeys the inequality

ov  2f

T (JerWen + 22 0+ BJesW 3 ) < 0. (10.45)

It is convenient to present Equation (10.44) in the form
1 -1 1 -1
dp = P{[W.(Ce- §JleI) ~ JasWe2(CT - =(Cq 1) -

1 B 1.
[‘Rpl (Bp - §J1p1> -V <Bp1 - §(BP1 : I)I)} }
Taking into account that

Jes(Co1 i I) = Jeo, Byl :I=Jp,
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we arrive at the formula

d, = P{ |:\Ij,e1 (Ce — éJleI) — U (Je3Ce_1 _ %JeQI)} _

[‘If,pl (Bp - éleI) — U (Bg L é pgl)} } (10.46)
It follows from Equations (10.8), (10.13), (10.18) that
B,=d, B, +B,d,.
Substitution of Equation (10.46) into this equation yields

1 1 ) .
B, = 2P[§\I/7el(Ce By + B, - Co) — 5JaVa(C - By + By, - €. )
1

—g((Jel‘I’,el —Je2We2) = (Jp1 ¥ p1 — Jpz‘l’,p2)>
B, + U ol — \If,plBg] . (10.47)

Equations (10.8)—(10.10) and (10.13) imply that

Fe:(L?)J;I>-FeFe-dp.

Combination of this equation with Equation (10.37) results in

F, = (L- 3J;I) Fo— PP {|Wa(C. - éJdI>

0o (JesC — S Jat)] -

(001 (B, - %Jpll) ~ 0 (B - éJpgl)} b 04

Given a free energy density (10.20), Equations (10.40), (10.41), (10.47),
(10.48) provide stress—strain relations in finite viscoplasticity of hydrogels.

10.3 Simplification of the Constitutive Equations

Our aim now is to perform quantitative investigation of the viscoplastic
response of nanocomposite hydrogels in short-term tests whose duration is
noticeably lower than the characteristic time for diffusion of solvent. For
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this purpose, we simplify the constitutive equations in order (i) to make them
suitable for fitting experimental data and (ii) to reduce the number of adjustable
parameters.

First, we suppose that the strain energy density Wy);q depends on principal
invariants Je1, Je3, and Jp1 only, and present this function in the form

\Ijsolid = Wl(Jela Je37 t) + WQ(Jp17 t)7 (1049)

where W) denotes mechanical energy stored in individual chains of the
equivalent polymer network (this quantity depends on principal invariants
of the Cauchy—Green tensor for elastic deformation) and W5 stands for the
energy of interaction between chains and nanoparticles (treated as a function of
principal invariants of the Cauchy—Green tensor for plastic deformation). The
influence of second principal invariants of the corresponding Cauchy—Green
tensors on the mechanical response is disregarded in Equation (10.49).

Substitution of Equations (10.21), (10.24), (10.30), (10.49) into
Equation (10.40) implies that

T = 111 + 2¢s (w1 Be + JogwiI), (10.50)
where oW oW
1 / 1
— = . 10.51
w1 aJel ) wy 8J63 ( )

Combination of Equations (10.47-10.49) results in

. 1 1
Bp = 2P [§w1(Ce . Bp + Bp . Ce) — g(wljel — U)QJpl)Bp — ’LUQBIZJ],

P, — (L— ?;’; ) -F. — PF, - [wl(Ce—%Jell) -
ws(By — %Jpll)} (10.52)
" Ll 10.53
9 = FA (10.53)

Under an arbitrary deformation of a nanocomposite hydrogel subjected to
swelling, Equations (10.50)—(10.52) together with Equation (10.42) for chem-
ical potential should be accompanied by the equilibrium equations for the
Cauchy stress tensor T and diffusion Equation (10.27) with R = 0,
Dn
V= V- (—F*l.v -F’l).
n 0 a7 op
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In conventional mechanical tests, a hydrogel specimen is, first, swollen
in water (to reach a fixed degree of swelling), then annealed without contact
with water bath (to reach an homogeneous distribution of solvent across the
sample), and, afterwards, loaded with a relatively high strain rate (to avoid
evaporation of solvent from the surface). After annealing, concentration of
solvent molecules becomes independent of spatial coordinates, but its value
differs from that in a fully swollen sample (chemical potential i does not
coincide with pg). When the characteristic time for diffusion of solvent
exceeds substantially duration of a test, changes in n under deformation can
be neglected, and this quantity may be treated as an experimental parameter.
Keeping in mind that » remains constant, we disregard dependencies of W7,
Ws and f on time. Adjustable parameters in expressions for Wy, Wa, f adopt,
however, different values for different concentrations of solvent n.

Introducing the notation p = II — 2¢¢Jesw| and setting f = 0 in
Equation (10.52), we present Equations (10.50) and (10.52) in the form

T = —pI + 2¢sw1Be>
. 1 1
B, = 2P[5w1(Ce ‘B, +B, - Co) — 5(wiJer — w2Jpn) By - wQBg],
1

§Jell) ~wy (B, - %JplIﬂ. (10.54)

The deformation gradient F is split into the product of the deformation gradient
driven by swelling from the dry state into the undeformed swollen state

F. = L-F. - PF, - [w1<ce—

(1+ m})%I and the loading-induced deformation gradient F,
F = F(1 + nv)s. (10.55)
Combination of Equations (10.6) and (10.55) implies that

1 iz
Fe:< Env)BFF

Under uniaxial deformation of an incompressible medium, tensor F' reads

-1
oL (10.56)

F = kerer + k2 (eses + eses), (10.57)
where e,,, (m = 1, 2, 3) are base vectors of a Cartesian frame in the initial
state, and £ stands for elongation ratio. Assuming tensor F, to be determined
by Equation (10.57) with a coefficient kp,, we find from Equation (10.56) that

1+no\srk ko1
F. = —eje; + (-2)2(egey + e3e3)]. (10.58)
e ( 7 ) |:kp11 (k)<22 3€3)
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Insertion of Equations (10.57) and (10.58) into Equation (10.54) results in

) 2 k3 — k:g 5
iy = gP[le ey 1)} (10.59)
with ,
- 1+ nv\35
X = ( ; ) . (10.60)

Keeping in mind that under uniaxial tension, the stress tensor is given by
T=0c kelel,

where o stands for engineering tensile stress, we find from Equation (10.54)
that 5 5
k> — Kk,

g = 2¢5w1Xk27kI2)

(10.61)
Constitutive equations for uniaxial tension of hydrogels (10.59), (10.61)
involve two functions, w; and wo, that characterize the energy stored in
polymer chains and the energy of inter-chain interactions.

The following expression is adopted for the strain energy density of the
equivalent polymer network [37]

1 Je1 — 3 1
Wy = —§G[J1n(1 oy ) + 51nJe?,], (10.62)
where G stands for an elastic modulus, and J > 0 characterizes extensibility
of chains. When J — oo, Equation (10.62) is transformed into the specific

strain energy of a network of flexible chains [38]

1 1
\I/solid = §G|:(Je1 - 3) - 5 In Jeg] .

Differentiation of Equation (10.62) with respect to .J.; implies that

(10.63)

e

J

The energy of inter-chain interaction Ws is determined by integration of
Equation (10.53) with

we = 6[1 + K (Jp1 — 3)“}, (10.64)

N =
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where G stands for an analog of elastic modulus, and K > 0, « are material
constants. To reduce the number of adjustable parameters, we presume that

K=1, a=2

under tension, and

1
a=—=
2
under retraction.
Insertion of Equations (10.63) and (10.64) into Equations (10.59) and

(10.61) results in the stress—strain relation

o= GX ¢, [1 - ;(X(:; n 2%) . 3)} _lk;_kgg (10.65)

and the kinetic equation for plastic flow

o = s{x[i= L (x(E pabey gyt K

T\ 2 T ki
2 o k]
2 i 3 L5}
R[1+ K (K + . 3) |ki -1} (10.66)
with _
PG G
- -z 10.
S=55. ER=4 (10.67)

where D = |k|/k stands for strain-rate intensity.

Constitutive Equations (10.65) and (10.66) involve six adjustable param-
eters: (i) G stands for elastic modulus of an equivalent polymer network,
(i) X characterizes swelling-induced inflation of the network, (iii) J is
a measure of extensibility of chains, (iv) S denotes rate of plastic flow,
(v) R stands for strength of inter-chain interactions, (vi) K characterizes
energy of inter-chain interactions under retraction. These quantities may be
affected by composition of a hydrogel, strain rate k (due to the neglect of
viscoelastic properties associated with rearrangement of polymer network),
and deformation program (the energy of interaction W5 adopts different values
under tension and retraction).

Although the number of material constants in the constitutive equations
appears to be reasonable compared with conventional models in finite vis-
coplasticity of polymers, this number can be reduced further for special loading
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programs. In particular, when observations are analyzed on as-prepared
hydrogels, one can set
X =1, (10.68)

which means that the reference state of the equivalent polymer network
coincides with the as-prepared state.

In the analysis of active (without unloading) deformations of as-prepared
hydrogels, the dimensionless parameter K is not needed, which implies that
the total number of parameters to be found by matching observations is reduced
to four.

10.4 Fitting of Observations

We intend now to determine adjustable parameters in the stress—strain relations
by fitting experimental data on nanocomposite hydrogels under uniaxial ten-
sion with finite strains and to assess the effects of type and content of nanofiller
on the kinetics of plastic flow. Approximation of experimental stress—strain
diagrams is performed for hydrogels with poly(dimethylacrylamide) and
polyacrylamide matrices. Hydrogel specimens are characterized by polymer
content ¢, = Mpolymer/Mwater, Nanofiller content ¢r = Mgjier/Mwater,
concentration of solid phase ¢s = (Mpolymer + Mller)/ (Mpolymer + Miler +
Muwater ), Where Mpolymer, Mllers Mwater are masses of monomers, filler
particles, and water in the as-prepared state, and degree of swelling Q) =
Myater/ (Mpolymer + Miller ), Where Myater stands for mass of solvent in the
actual state.

10.4.1 Nanocomposite Hydrogels Subjected to Drying
and Swelling

To demonstrate the role of coefficient of inflation f in constitutive modeling,
we focus on the analysis of mechanical response of nanocomposite hydrogels
subjected to drying and subsequent swelling.

We begin with observations on poly (N,N-dimethylacrylamide) (DMAA)
physical gels reinforced with Laponite XLG nanoclay (NC). Samples are
prepared by free-radical polymerization of N,N-dimethylacrylamide (DMAA)
in an aqueous dispersion of nanoclay by using potassium peroxydisulfate
K2S20g (KPS) as an initiator and tetramethylethylenediamine (TEMED) as
a catalyst [39].

The experimental procedure involved: (i) drying of as-prepared samples
(with ¢, = 99 g/L, ¢r = 25.4 g/L, and () = 7.2) down to various degrees
of swelling @4,y (in the range between 0.06 and 3.0), (ii) re-swelling of
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dried samples to the initial degree of swelling (), (iii) uniaxial tensile tests on
dried-reswollen specimens. Mechanical tests were performed at room tem-
perature with strain rate ¢ = 0.02s~! (¢ = k— 1 stands for engineering tensile
strain) up to breakage of samples.

Experimental stress—strain diagrams are depicted in Figure 10.1 where
engineering stress o is plotted versus elongation ratio k. To reduce the number
of material constants to be found by matching observations, we presume the
response of the nanocomposite hydrogels to be merely elastic. By setting
S = 0 in Equation (10.66), we conclude that k, = 1 and each stress—strain
curve is determined by three parameters G, J, X.

We begin with fitting observations on the as-prepared specimen for which
Equation (10.68) is fulfilled. To find adjustable parameters G and J, we fix
some interval [0, J°], where .J is located, and divide this interval into = 10
sub-intervals by the points J(9) = iAJ with AJ = J°/I (i =0,1,...,1—1).
For each J (), Equations (10.65), (10.66) are integrated numerically by the
Runge—Kutta method with step At = 0.01. The modulus G is calculated by
the least-squares technique from the condition of minimum of the function

F=>" [Jexp(kn) - anum(kn)} 2,

200.0
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1.0 k 13.0
Figure 10.1 Stress o versus elongation ratio k. Symbols: experimental data in tensile tests
on DMAA-NC hydrogel subjected to drying down to various (QQq4ry and subsequent re-swelling
up to Q = 7.2 (o — as-prepared; ® — Qary = 3.0; * — Qary = 1.7, ¥ — Qary = 0.8; 0 —
Qadry = 0.06). Solid lines: results of simulation.
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where summation is performed over all elongation ratios k,, at which the
observations are reported, o stands for engineering stress measured in
the test, and o™"™ is given by Equation (10.65). The best-fit value of J is
found from the condition of minimum of F'. Afterwards, the initial interval
is replaced with new interval [J — AJ,J + AJ], and the calculations are
repeated.

After finding the best-fit value G = 48.2 kPa, we fix this quantity, and
match observations on samples subjected to drying-reswelling by means of the
above algorithm with adjustable parameters X and J. Given X, we calculate
f from Equation (10.60) and plot f and J versus Qq4ry in Figure 10.2. The
data are approximated by the linear equations

f=fo+ fiQary, J = Jo+ J1Qary (10.69)

with coefficients calculated by the least-squares technique. Following [39], the
strong (by twice) reduction in f induced by drying and re-swelling is attributed
to rearrangement of the secondary network (a house-of-cards structure formed
by clay platelets).

10.4.2 As-Prepared Poly(Dimethylacrylamide)-Silica Hydrogels

We proceed with the analysis of observations on polydimethylacrylamide—
silica (DMAA-Si) hydrogels manufactured by free-radical polymerization
of N,N-dimethylacrylamide in aqueous suspensions of silica nanoparticles

10.0

0.0
1000.0

500.0

0.0 Qary 8.0

Figure 10.2 Parameters f and J versus solvent content after drying Qq.y. Circles: treat-
ment of observations on DMAA-NC hydrogels. Solid lines: approximation of the data by
Equation (10.69).
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(Si) by using KPS and TEMED as initiator and catalyst, respectively
[40].

First, experimental data are matched in tensile tests with strain rate
¢ = 0.06 s~! at room temperature on as-prepared specimens with a fixed
concentration of polymer network ¢, = 142.2 g/L. and concentrations of
nanoparticles ¢r ranging from 71.4 to 710.5 g/L (Figure 10.3). According to
Equation (10.68), their viscoplastic response is determined by four adjustable
parameters G, J, R, S.

To find these quantities, we start with fitting observations on a specimen
with ¢f = 710.5 g/LL by using the above algorithm. After finding the
best-fit values J = 28.0 and S = 1.7, we fix these quantities and approximate
experimental data on samples with ¢ = 71.4, 142.7, and 284.4 g/L. with the
help of two parameters G, R. 3

The influence of concentration of solid phase on elastic moduli G and G
(given R, the latter is determined from Equation (10.67)) is illustrated in
Figure 10.4 where these quantities are plotted versus ¢s. The data are
approximated by the equations

G = Gy + G1¢s, G =Gy (10.70)

with coefficients calculated by the least-squares technique. Figure 10.4 shows
that G grows with concentration of silica particles, in agreement with

40.0
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Figure 10.3 Stress o versus elongation ratio k. Symbols: experimental data in tensile tests
on DMAA-Si hydrogels with ¢, = 142 g/L and various ¢¢ g/L (o — 710.5; e — 284.4;
* — 142.7; x —71.4). Solid lines: results of simulation.
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Figure 10.4 Parameters G and G versus concentration of solid phase ¢s. Circles: treatment
of observations in tensile tests on DMAA-Si hydrogels with ¢, = 142 g/L and various ¢¢ g/L.
Solid lines: approximation of the data by Equation (10.70).

observations on other nanocomposite hydrogels [35], whereas G remains
constant.

To assess plastic flow in nanocomposite hydrogels under tension, simula-
tion of the stress—strain relations is conducted. Results of numerical analysis
are reported in Figure 10.5. According to this figure, (i) nanocomposite hydro-
gels reveal pronounced plastic deformation (with plastic strains exceeding
100%), and (ii) elongation ratio for plastic deformation k;, decreases weakly
with concentration of nanoparticles.

To evaluate the effect of strain rate on the mechanical response of
nanocomposite hydrogels, observations are matched on specimens with

a fixed concentration of polymer network ¢, = 142.2 g/LL and con-
centrations of nanoparticles ¢ = 142.7 and ¢¢f = 710.5 g/L. under
tension with strain rates ¢ = 0.06 and 0.6 s~!'. Experimental data are

depicted in Figure 10.6. Adjustable parameters are found by approxima-
tion of the experimental data with the help of the above algorithm. Each
set of observations is fitted separately with the help of two parameters
G, R. The best-fit value of J and the values of S and R at strain
rate ¢ = 0.06 s~! are taken from Figure 10.4. The value of S at
¢ = 0.6 s7! is calculated from Equation (10.67), whereas the value of R
at this strain rate is determined by matching the stress—strain diagrams.
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Figure 10.5 Elongation ratio for plastic deformation &, versus elongation ratio k. Symbols:
results of simulation for tensile tests on DMAA-Si hydrogels with ¢, = 142 g/L and various
¢r g/L (0 —T710.5; @ —284.4; % — 1427, x — 71.4).
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Figure 10.6 Stress o versus elongation ratio k. Symbols: experimental data in tensile
tests with various strain rates ¢ s~! (o — 0.06;  — 0.6) on DMAA-Si hydrogels with
¢p = 142.2 g/l and ¢y = 142.7 g/L(A), ¢r = 710.5 g/L (B). Solid lines: results of simulation.

Evolution of elastic moduli with strain rate € is illustrated in Figure 10.7
where G and G are depicted versus duration of loading ¢’ = (kmax — 1)/€
with kpax = 11. For comparison, observations in tensile relaxation tests
with strain € = 0.5 are also presented (in semi-logarithmic coordinates with
log = log;). Following [40], relaxation curves are plotted in the form & (')
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Figure 10.7 Dimensionless stress & (*) versus relaxation time ¢ and moduli G (o), G (o)
versus loading time ¢’. Symbols: observations on DMAA-Si hydrogels with ¢, = 142.2 g/L,
¢r = 142.7 g/L (A), and ¢¢ = 710.5 g/L (B). Asterisks: experimental data in tensile relaxation
test with strain € = 0.5. Circles: treatment of experimental data in tensile tests with strain rates
¢ =0.06 and 0.6 s~ *. Solid lines: results of simulation.

with & = o/og and t' = ¢ — to, where t( and o stand for time and stress
at the beginning of relaxation. The aim of Figure 10.7 (where observations
in relaxation tests are approximated with a model proposed in [41]) is to
demonstrate that alteration of elastic modulus G with strain rate found by
fitting observations in tensile tests may be ascribed to the viscoelastic response
of nanocomposite hydrogels (treated as rearrangement of chains in a transient
network). The latter is disregarded in the constitutive model as its account
leads to a substantial increase in the number of adjustable parameters.

To examine the influence of nanofiller on the viscoplastic behavior of
DMAA-Si hydrogels under tensile cyclic deformation, we analyze observa-
tions reported in Figure 10.8. The experimental stress—strain diagrams are
obtained on as-prepared specimens (with a fixed concentration of polymer net-
work ¢, = 142.2 g/LL and various concentrations of nanoparticles ¢y = 142.7,
284.4,710.5 g/L) subjected to tension with a constant strain rate ¢ = 0.06 s~
up to maximum elongation ratio ky,x = 6 and retraction down to the zero
minimum Stress omin = 0.

As the stress—strain curves under tension reported in Figure 10.8 differ from
those depicted in Figure 10.3, we, first, apply the above algorithm (with R and
S taken from the analysis of observations presented in Figure 10.3) to deter-
mine G and J under stretching, and afterwards, employ the same technique
to find parameters K, R, S under retraction. The best-fit value K = 150.0
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Figure 10.8 Stress o versus elongation ratio k. Symbols: experimental data in cyclic tests on
DMAA-Si hydrogels with ¢, = 142 g/L and various ¢ g/L (0 —710.5; @ —284.4; % — 142.7).
Solid lines: results of simulation.

is found by matching observations on hydrogel with ¢¢ = 710.5 g/L and used
without changes to approximate observations on other specimens. Numerical
analysis shows that the best-fit values of J are slightly lower and the best-fit
values of G are slightly higher than those found by matching observations in
Figure 10.3.

The effect of concentration of solid phase ¢s on coefficients G and S found
by matching observations under retraction is illustrated in Figure 10.9. The
data are approximated by the equations

log G = Gy — G1s, log S = Sy + S1 b, (10.71)

with coefficients calculated by the least-squares method. Figure 10.9 shows
that the energy of inter-chain interactions GG decreases and rate of plastic
deformation S increases with concentration of solid phase.

To examine the kinetics of plastic flow under cyclic loading, integration
of the stress—strain relations is conducted with the adjustable parameters
found by matching observations in Figure 10.8. Results of simulation are
presented in Figure 10.10. The following conclusions are drawn: (i) under
tension, plastic elongation ratio k;, increases monotonically with £ and remains
practically independent of clay content (in agreement with the data reported
in Figure 10.5), (ii) under retraction, k;, grows pronouncedly at the initial
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Figure 10.9 Parameters G and S versus concentration of solid phase ¢s. Circles: treatment
of observations under retraction in cyclic tests on DMAA-Si hydrogels with ¢, = 142 g/LL
and various ¢¢ g/L. Solid lines: approximation of the data by Equation (10.71).
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Figure 10.10 Elongation ratio for plastic deformation kj, versus elongation ratio k. Symbols:
results of simulation for cyclic tests on DMAA-Si hydrogels with ¢, = 142 g/L and various

bt g/L (0 —T710.5; @ — 284.4; % — 142.7).

stage of unloading (when k£ remains in the vicinity of ky,.y), reaches its
maximum (plastic overshoot), and decreases afterwards, (iii) intensity of
plastic overshoot (kpmax) and residual strain (K, at the instant when o
vanishes) increase strongly (by twice) with nanoclay content.
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10.4.3 As-Prepared Polyacrylamide—Clay Hydrogels

To verify the above conclusions regarding the influence of strain rate and
nanofiller content on the viscoplastic response of nanocomposite hydrogels,
experimental data are approximated on polyacrylamide—nanoclay (PAM-NC)
hydrogels manufactured by free-radical polymerization of acrylamide (AM)
monomers in aqueous suspensions of hectorite nanoclay (NC) Laponite RD
by using KPS and TEMED as initiator and catalyst, respectively [42].

First, we approximate observations on as-prepared samples with various
concentrations of polymer network ¢, and filler ¢ in tensile tests with strain
rates ¢ = 0.083,0.83, and 1.67 s~ ! atroom temperature. Experimental data are
presented in Figures 11-13 for nanocomposite hydrogels with ¢, = 200 g/L,
o = 20 g/L, ¢, = 250 g/L, ¢ = 20 g/L, and ¢, = 100 g/L, ¢¢ = 40 g/L.

For each concentration of polymer and filler, we start with matching
observations under tension with the highest strain rate ¢ = 1.67 s~', and
determine parameters GG, J, R, S by means of the above algorithm. Afterwards,
we fix the best-fit value of .J and approximate the other stress—strain diagrams
with the help of three parameters G, S, R.

100.0
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0.0

1.0 k 21.0

Figure 10.11 Stress o versus elongation ratio k. Symbols: observations in tensile tests with
various strain rates ¢ s~ on PAM-NC hydrogels with ¢, = 200 g/L and ¢; = 20 g/L
(0—€=0.083;8—¢ =0.83; x— ¢ = 1.67). Solid lines: results of simulation.
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Figure 10.12 Stress o versus elongation ratio k. Symbols: observations in tensile tests with
various strain rates ¢ s~* on PAM-NC hydrogel with ¢, = 250 g/L and ¢y = 20 g/L
(0—€ =0.083; 8 —¢é =0.83; x—é = 1.67). Solid lines: results of simulation.
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Figure 10.13 Stress o versus elongation ratio k. Symbols: observations in tensile tests with

various strain rates ¢ s~* on PAM-NC hydrogel with ¢, = 100 g/L and ¢y = 40 g/L
(0—€=0.083; @ —¢ = 0.83; x— ¢ = 1.67). Solid lines: results of simulation.

The effect of strain rate é on elastic modulus G is illustrated in
Figure 10.14 where G is plotted versus duration of loading ' = (kmax —1)/é.
For comparison, experimental data in shear relaxation tests with small strain
€ = 0.005 are also presented (as observations in relaxation tests on specimens
with ¢, = 200 g/L, ¢ = 20 g/L were not reported in [42], we replace
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Figure 10.14 Dimensionless stress & (x) versus relaxation time ¢’ and modulus G ver-
sus loading time ¢'. Symbols: observations on PAM-NC hydrogels with ¢, = 200 g/L,
¢r = 20 g/L (A), ¢p = 250 g/L, ¢r = 20 g/L (B), ¢ = 100 g/L, ¢y = 40 g/L (C).
Stars: experimental data in tensile relaxation test with strain e = 0.005. Circles: treatment of
experimental data in tensile tests with various strain rates. Solid lines: results of simulation.

them with those on samples with ¢, = 250 g/L, ¢r = 20 g/L). According to
Figure 10.14, an increase in elastic modulus with strain rate revealed by fitting
observations in tensile tests may be attributed to the viscoelastic response of
hydrogels (in agreement with the conclusion drawn from Figure 10.7).

To assess the influence of strain rate on the viscoplastic flow, parameter .S
is plotted versus € in Figure 10.15. The data are approximated by the equation

log S = Sy + 51 logé, (10.72)

where the coefficients are calculated by the least-squares technique.
Equation (10.72) demonstrates that .S increases monotonically with €, but
the rate of growth is strongly sub-linear: S ~ é% with 3 ~ 0.2.

Given G and R, we calculate G from Equation (10.67) and plot this
quantity versus strain rate € in Figure 10.16. The data are approximated by the
equation

log G = Gy + G1logé (10.73)

with coefficients calculated by the least-squares technique. Figure 10.16
demonstrates a pronounced difference between PAM-NC hydrogels (for which
G increases strongly with strain rate) and DMAA-Si hydrogels (for which this
parameter is independent of ¢€).
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Figure 10.15 Parameter S versus strain rate ¢€. Circles: treatment of observations in tensile
tests on PAM-NC hydrogels with ¢, = 200 g/L, ¢ = 20 g/L (A), ¢p = 250 g/L,
¢r = 20 g/L (B), ¢ = 100 g/L, ¢ = 40 g/L (C). Solid lines: approximation of the data
by Equation (10.72).
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Figure 10.16 Parameter G versus strain rate é. Circles: treatment of observations in tensile
tests on PAM-NC hydrogels with ¢, = 200 g/L, ¢ = 20 g/L (A), ¢p = 250 g/L,
¢t = 20 g/L (B), ¢p = 100 g/L, ¢+ = 40 g/L (C). Solid lines: approximation of the data
by Equation (10.73).
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To examine the effect of concentration of solid phase ¢ on the mechanical

response of nanocomposite hydrogels under cyclic loading, we approximate
stress—strain curves under tension with constant strain rate ¢ = 0.083 s~!
up to maximum elongation ratio ky,x = 17 followed by retraction with the
same strain rate down to the zero minimum stress o, = 0. Observations
on specimens with ¢ = 20 g/L, ¢, = 200 and 250 g/L are reported in
Figure 10.17, and those on samples with ¢, = 100 g/L, ¢¢ = 30 and 40 g/L
are presented in Figure 10.18 together with results of simulation. Adjustable
parameters in the stress—strain relations are found by fitting each set of data
separately by means of the same algorithm that was employed to match
observations in Figure 10.8. As the stress—strain diagrams under tension in
Figures 10.17, 10.18 differ from those reported in Figures 10.11-10.13, they
are approximated by using four parameters G, J, S, R. Afterwards, unloading
paths of the stress—strain curves are fitted with the help of three coefficients
K,S, R.
Adjustable parameters determined by matching observations under tension
and retraction are reported in Figures 10.19, 10.20, where they are plotted
versus concentration of solid phase ¢s. The data are approximated by the
equations

log G = Go+Gios, log G = G+ G1ds, log S = So+ 516,
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Figure 10.17 Stress o versus elongation ratio k. Circles: experimental data in cyclic tensile
tests on PAM-NC hydrogels with ¢ = 20 g/L and ¢, = 200 g/L (A), ¢p = 250 g/L (B).
Solid lines: results of simulation.
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Figure 10.18 Stress o versus elongation ratio k. Circles: experimental data in cyclic tests on
PAM-NC hydrogels with ¢, = 100 g/L and ¢r = 30 g/L (A), ¢+ = 40 g/L (B). Solid lines:
results of simulation.

3.0
logG |
kPa __—W_—_________G/
1.0 | A L L
30
log G 2=
kPa
10 1 1 1 1
0.0
logS ko - - N
720 1 1 1 1
3.0
]
log J o ©
10 | 1 1 1
0.10 os 0.25

Figure 10.19 Parameters G, G , S, J versus concentration of solid phase ¢s. Circles: treatment
of observations under tension in cyclic tests on PAM-NC hydrogels. Solid lines: approximation
of the data by Equation (10.74).

log J = Jy + J1¢s (10.74)
under tension and

log G = Go + G1¢s, log S = So + S1¢s, log K = Ko + K165
(10.75)



166  Constitutive Equations in Finite Viscoplasticity of Nanocomposite Hydrogels

1.0
log G L
kPa

-1.0
-1.0

0.10 s 0.25

Figure10.20 Parameters G, S, K versus concentration of solid phase ¢s. Circles: treatment of
observations under retraction in cyclic tests on PAM-NC hydrogels. Solid lines: approximation
of the data by Equation (10.75).

under retraction. The coefficients in Equations (10.74), (10.75) are calculated
by the least-squares method.

To examine how concentrations of polymer and filler, ¢, and ¢, affect
plastic flow in PAM-NC hydrogels under cyclic deformations, numerical
integration of the stress—strain relations is performed for cyclic loading
with strain rate ¢ = 0.083 s~!, maximum elongation ratio under stretching
kmax = 17, and the zero minimum stress under retraction. Results of simula-
tion are reported in Figure 10.21. The following conclusions are drawn: (i) the
dependency k;, (k) for PAM-NC hydrogels is qualitatively similar to that for
DMAA-Si hydrogels (elongation ratio for plastic deformation increases under
tension and reveals a pronounced overshoot under retraction), (ii) given ¢x,
an increase in polymer concentration ¢, results in a modest increase in kj,
under tension and retraction, whereas (iii) given ¢, an increase in nanoclay
concentration ¢¢ induces a decay in plastic deformation.

10.4.4 Discussion

Figures 10.1, 10.3, 10.6, 10.11-10.13 demonstrate ability of the constitutive
model with four adjustable parameters G, J, R, S to describe stress—strain
diagrams under uniaxial tension with finite deformations (elongation ratios up
to 20).
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Figure 10.21 Elongation ratio for plastic deformation kj, versus elongation ratio k. Symbols:
results of simulation for cyclic tests on PAM-NC hydrogels (o — ¢, = 200 g/L, ¢r = 20 g/L;
o — ¢, = 250 g/L, ¢ = 20 g/L; * — ¢ = 100 g/L, ¢y = 30 g/L; x — ¢, = 100 g/L,
¢r = 40 g/L).

Figures 10.8, 10.17, 10.18 show good agreement between observations
in cyclic (loading—unloading) tests and results of simulation based on the
constitutive equations that involve three additional parameters for retraction
R, S, and K.

According to Figures 10.4, 10.9, 10.19, 10.20, phenomenological
Equations (10.70), (10.71), (10.74), (10.75) describe correctly evolution of
adjustable parameters with concentration of solid phase (which means that
¢s may serve as the only parameter characterizing mechanical properties of
nanocomposite hydrogels).

Figures 10.15, 10.16 reveal that Equations (10.72), (10.73) predict
adequately the effect of strain rate € on parameters G and S.

An advantage of the constitutive equations is that they involve a relatively
small number of material constants, on the one hand, and describe correctly
experimental data in cyclic tensile tests, on the other. A shortcoming of the
model is that it disregards viscoelastic properties of nanocomposite hydrogels.
As aresult, the elastic modulus is allowed to alter with strain rate in the fitting
procedure. Although these changes are confirmed by comparison with obser-
vations in relaxation tests (Figures 10.7 and 10.14), they restrict applicability
of the model to deformation processes with constant strain rates. To describe
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time-dependent phenomena in nanocomposite hydrogels, rearrangement of
the networks of flexible chains and nanoparticles should be modeled explicitly
(the latter leads, however, to a noticeable increase in the number of material
constants).

Comparison of experimental data under cyclic deformation with results
of numerical simulation demonstrates that elongation ratio for plastic defor-
mation k;, grows monotonically under tension and reveals a non-monotonic
behavior under retraction: £, increases, reaches its maximum value (plastic
overshoot), and decreases afterwards (Figures 10.10 and 10.21). Intensity of
the overshoot increases with concentration of solid phase, but the rate of its
growth depends strongly on type of nanofiller.

10.5 Concluding Remarks

A constitutive model is developed in finite viscoplasticity of nanocomposite
hydrogels under an arbitrary deformation with finite strains. A hydrogel is
treated as a two-phase medium composed of a solid phase (polymer network
reinforced with nanoparticles) and a fluid phase (solvent). Transport of solvent
through a hydrogel is treated as its diffusion governed by the gradient of
chemical potential.

Constitutive equations are derived by means of the free-energy imbalance
equation. The free energy of a nanocomposite hydrogel equals the sum of
strain energy density of the solid phase and the energy of mixing of the solid
phase with solvent.

The solid phase is modeled as an isotropic compressible viscoplastic
medium, whose deformation gradient is split into the product of deforma-
tion gradients for elastic deformation, plastic deformation, and deformation
induced by swelling (characterized by the coefficient of inflation of the
polymer network). Strain energy density of the solid phase equals the sum of
the stored mechanical energy and the energy of interaction between chains and
nanoparticles.

The constitutive equations involve (i) stress—strain relation, (ii) flow rule
for plastic deformation, and (iii) diffusion equation for solvent. These relations
are accompanied by equations for mechanical equilibrium and appropriate
boundary conditions.

The model is applied to the analysis of rapid deformation (the rate of
loading exceeds strongly the rate of solvent diffusion) of (i) nanocomposite
hydrogels subjected to drying and subsequent re-swelling, and (ii) as-prepared
nanocomposite hydrogels.
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Analysis of observations in uniaxial tensile tests on nanocomposite hydro-
gels subjected to drying and reswelling demonstrates that the constitutive
equations describe adequately the effect of rearrangement of the secondary
network of clay platelets under drying on the mechanical response of reswollen
gels (Figure 10.1). The effect of drying-reswelling can be accounted for with
the help of the only parameter that changes consistently with solvent content
(Figure 10.2).

Approximation of observations in uniaxial tensile tests and tensile cyclic
tests on as-prepared nanocomposite hydrogels reinforced with Si particles
and clay platelets shows that the constitutive equations with four adjustable
parameters under stretching and three more parameters under retraction
describe correctly the experimental stress—strain diagrams and predict char-
acteristic features of plastic flow (in particular, plastic overshoot under
retraction).
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