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2.1 Introduction

Over the last years, the Internet of Things (IoT) has moved from being a
futuristic vision to market reality. It is not a question any more whether IoT will
be surpassing the hype, it is already there and the race between IoT industry
stakeholders has already begun. The IoT revolution comes with trillions of
connected devices; however the real value of IoT is in the advanced processing
of the collected data. By nature, IoT data is more dynamic, heterogeneous and
unstructured than typical business data. It demands more sophisticated, IoT-
specific analytics to make it meaningful. The exploitation in the Cloud of data
obtained in real time from sensors is therefore very much a necessity. This
data processing leads to advanced proactive and intelligent applications and
services. The connection of IoT and BigData can offer: i) deep understanding
of the context and situation; ii) real-time actionable insight; iii) performance
optimization; and iv) proactive and predictive knowledge. Cloud technologies
offer decentralized and scalable information processing and analytics, and
data management capabilities. This chapter describes a Cloud based IoT and
BigData platform, together with their requirements. This includes multiple
sensors and devices, BigData analytics, cloud data management, edge-heavy
computing, machine learning and virtualization.

In this chapter, Section 2.2 introduces the characteristics of an online Cloud
IoT platform. Section 2.3 shows the challenge posed by the huge amount of
data to be processed, from the point of view of the quality and quantity of
data. It gives an overview of the technologies able to address those challenges.
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Section 2.4 presents LoRa, a key enabler for the collection of the data. The
chapter includes also initial results of two EU-funded projects on IoT BigData:
WAZIUP in Section 2.5; and iKaaS in Section 2.6.

2.2 Cloud-based IoT Platform

According to the NIST definition, Cloud computing is a model for enabling
convenient, on-demand network access to a shared pool of configurable
computing resources that can be rapidly provisioned and released with mini-
mal management effort or service provider interaction. The Cloud paradigm
can be delivered using essentially three different service models. These are
Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software
as a Service (SaaS).

ACloud-based IoTplatform is then a dynamic and flexible resource sharing
platform delivering IoT services. It offers scalable resources and services
management. The exploitation of IoT data depends on massive resources,
which should be available when needed and scaled back when not needed.

2.2.1 IaaS, PaaS and SaaS Paradigms

A Cloud based IoT platform needs usually to select one from the three
different service models: IaaS, PaaS or SaaS. IaaS allows delivering computer
infrastructure on an outsourced basis in order to support enterprise operations.
This service model is based on the paradigm of virtualization of resources.
The initial success of the Cloud is due to the possibility to embed practically
any legacy applications within Virtual Machines (VMs), which are managed
by an external stakeholder. This permits to relieve the application owner
from managing physical infrastructures. PaaS, on the other hand, provides
a platform allowing customers to develop, run, and manage applications.
It removes the complexity of building and maintaining the infrastructure
typically associated with developing and deploying an application. Typically,
a PaaS framework will compile an application from its source code, and
then deploy it inside lightweight VMs, or containers. Furthermore, PaaS
environments offer an interface to scale up or down applications, or to
schedule various tasks within the applications. Finally, SaaS is a software
licensing and delivery model in which software is licensed on a subscription
basis and is centrally hosted. It is sometimes referred to as “on-demand
software”. SaaS is typically accessed by users using a thin client via a web
browser.
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Cloud-based IoT platforms are usually based on the SaaS paradigm. They
provide IoT-related services using a web interface on a pay-per-use basis. For
example, a service such as Xively1 provides a web service with a database
able to store sensors data points. This data is then processed and displayed in
various graphics.

However, SaaS IoT platforms are limited to the possibility of their web
interface. They will not permit the developers to create complex and cus-
tom applications. Extensibility mechanisms are sometime offered, allowing
extending the web services offered with user-provided callbacks. However the
resulting application will not be homogeneous and will be difficult to maintain.
Instead, we present in Section 2.5 a concept of IoT Cloud platform based on the
PaaS paradigm. Developing an IoT BigData application is a complex task. A
lot of services need to be installed and configured, such as databases, message
broker and big data processing engines. With the PaaS paradigm, we abstract
some of this work. The idea is to let the developer specify the requirements of
his application in a specification file called the “manifest”. This specification
will be read by the PaaS framework and the application will be compiled and
instantiated in the Cloud environment, together with its required services.

2.2.2 Requirements of IoT BigData Analytics Platform

An IoT BigData analytic platform should be able to dynamically manage IoT
data and provide connectivity with the diverse heterogeneous objects, con-
sidering the interoperability issues. It is able to derive useful information and
knowledge from large volume of IoT data. The platform shall offer ubiquitous
accessibility and connectivity of the diverse objects, services and users, in
a mobile context. It shall allow dynamic management and orchestration of
users, a huge amount of connected devices as well as massive amount of
data produced by those devices. Finally it shall allow personalization of users
and services, providing services based on users preference and requirements
including real-world context.

Intelligent and Dynamic
The platform should include intelligent and autonomic features in order to
dynamically manage the platform functions, components and applications.
The platform should also be capable to make proactive decisions, dynamic
deployment, and intelligent decisions based on the understanding of the

1https://xively.com
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context of the environments, users and applications requirements. The
platform provides dynamic resources management for IoT, considering per-
formance targets and constraints. This includes offloading workload from
clients/hosts to the Cloud and dynamic resources and service migration, as
presented in Section 2.6.

Distributed
The platform includes distributed information processing and computing
capabilities, distributed storage, distributed intelligence, and distributed data
management capabilities. These capabilities should be distributed across smart
devices, gateway/server and multiple cloud environments. The processing
capability needs to be migrated closer to users, to save bandwidth.

Scalable
The platform needs to be scalable in order to address the needs of a variable
number of the devices, services and users. The data management, storage and
processing services need to be dimensioned dynamically.

Real-Time
The platform need to be able to process data in real-time, i.e. providing a
fast analysis and responses for situations of urgency. A real-time data analysis
platform needs to be able to prioritize urgent traffic and processing from non-
urgent ones.

Programmable
The platform shall support programmable capabilities of IoT business and
service logics, data warehouse scheme, template of data and service model.

Interoperable
The platform provides interoperability between the different IoT services and
infrastructure. TheAPIs need to follow the existing standards. The components
are published and maintained as Open Source software. The target is to deliver
a common data model able to exploit both structured and unstructured data. In
order to create multimodal and cross-domain smart applications, it is necessary
to move from raw data to linked data and adopt unambiguous description of
relevant information.

Secure
The platform shall include security and privacy by design. This includes
different features like data integrity, localization, confidentiality, SLA. Holistic
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approaches are required to address privacy & security issues across value
chains.

2.2.3 Functional Architecture

Our IoT platform solves key problems in IoT analytics, data management and
visualization that have traditionally been developed within each application.
Developers can easily embed the platform components into their applications
saving the time, expertise and expense of building the components themselves.
This enables application that would have been too costly and time-consuming
to develop. The platform integrates easily with existing sensors, network
infrastructure and end-user applications.

Figure 2.1 displays the functional overview of the BigData IoT platform.
The topmost block represents the Cloud platform, the middle one is the
network connectivity while the bottom one is the local deployment, including
gateway and sensors. The following functional domains have been identified:

• The “Smart Applications” domain is the IoT application itself.
• The “Users Management” allows the management of the identification,

roles and connections of users.
• The “Interoperable Service and Dynamic Workflow” domain allows

application writing, deploying, hosting and execution.
• The “Processing and Analytic Engine”, provides services of stream

processing and data analytics.
• The “Network communication” domain provides the IoT connectivity.
• The “Embedded software” and Hardware domains represent the IoT

gateway and sensors themselves.

2.3 Data Analytics for the IoT

The amount of IoT data coming from real-world smart objects with sensing,
actuating, computing and communication capabilities is exploding. The sen-
sors and devices are more and more deployed, within more applications and
across industries. This section first explores the characteristics of this data. It
then presents several data analytics techniques able process this data.

2.3.1 Characteristics of IoT Generated Data

The volume and quality of the data generated by IoT devices is very dif-
ferent from the traditional transaction-oriented business data. Coming from
millions of sensors and sensor-enabled devices, IoT data is more dynamic,
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Figure 2.1 Functional Architecture of IoT and Bigdata platform.

heterogeneous, imperfect, unprocessed, unstructured and real-time than typ-
ical business data. It demands more sophisticated, IoT-specific analytics to
make it meaningful.

As illustrated in Figure 2.2, the BigData is defined by 4 “Vs”, which
are Volume, Velocity, Variety and Veracity. The first V is for a large volume
of data, not gigabytes but rather thousands of terabytes. The second V is
referencing data streams and real-time processing. The third V is referencing
the heterogeneity of the data: structure and unstructured, diverse data models,
query language, and data sources. The fourth V is defining the data uncertainty,
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Figure 2.2 BigData properties [4].

which can be due to data inconsistency, incompleteness, ambiguities, latency
and lack of precise model.

The IoT faces all 4 Vs of the BigData challenges. However the velocity
is the main challenge: we need to process in real-time the data coming from
IoT devices. For example, medical wearable such as Electro Cardio Graphic
sensors produce up to 1000 events per second, which is a challenge for
real-time processing. The volume of data is another important challenge.
For example General Electric gathers each day 50 million pieces of data
from 10 million sensors. A wearable sensor produces about 55 million data
points per day. In addition, IoT also faces verity and veracity BigData
challenges.

2.3.2 Data Analytic Techniques and Technologies

A cloud-based IoT analytics platform provides IoT-specific analytics that
reduce the time, cost and required expertise to develop analytics-rich, vertical
IoT applications. Platform’s IoT-specific analytics uncover insights, create
new information, monitor complex environments, make accurate predic-
tions, and optimize business processes and operations. The applications
of the IoT BigData Platform can be classified into four main categories
i) deep understanding and insight knowledge ii) Real time actionable insight
iii) Performance optimization and iv) proactive and predictive applications.
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Figure 2.3 IoT BigData applications.

In the following we provide various technologies allowing building such
an IoT analytics platform.

Batch Processing
Batch processing supposes that the data to be treated is present in a database.
The most widely used tool for the case is Hadoop MapReduce. MapReduce
is a programming model and Hadoop an implementation, allowing processing
large data sets with a parallel, distributed algorithm on a cluster. It can run
on inexpensive hardware, lowering the cost of a computing cluster. The latest
version of MapReduce is YARN, called also MapReduce 2.0. Pig provides a
higher level of programming, on top of MapReduce. It has its own language,
PigLatin, similar to SQL. Pig Engine parses, optimizes and automatically
executes PigLatin scripts as a series of MapReduce jobs on a Hadoop cluster.
Apache Spark is a fast and general-purpose cluster computing system. It
provides high-levelAPIs in Java, Scala, Python and R, and an optimized engine
that supports general execution graphs. It can be up to a hundred times faster
than MapReduce with its capacity to work in-memory, allowing keeping large
working datasets in memory between jobs, reducing considerably the latency.
It supports batch and stream processing.

Stream Processing
Stream processing is a computer programming paradigm, equivalent to
dataflow programming and reactive programming, which allows some appli-
cations to more easily exploit a limited form of parallel processing. Flink is a
streaming dataflow engine that provides data distribution, communication and
fault tolerance. It has almost no latency as the data are streamed in real-time
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(row by row). It runs on YARN and works with its own extended version of
MapReduce.

Machine Learning
Machine learning is the field of study that gives computers the ability to learn
without being explicitly programmed. It is especially useful in the context
of IoT when some properties of the data collected need to be discovered
automatically. Apache Spark comes with its own machine learning library,
called MLib. It consists of common learning algorithms and utilities, including
classification, regression, clustering, collaborative filtering, dimensionality
reduction. Algorithms can be grouped in 3 domains of actions: Classification,
association and clustering. To choose an algorithm, different parameters
must be considered: scalability, robustness, transparency and proportionality.
KNIME is an analytic platform that allows the user to process the data in a
user-friendly graphical interface. It allows training of models and evaluation
of different machine learning algorithms rapidly. If the workflow is already
deployed on Hadoop, Mahout, a machine learning library can be used. Spark
also has his own machine learning library called MLib.

H20 is a software dedicated to machine-learning, which can be deployed
on Hadoop and Spark. It has an easy to use Web interface, which makes
possible to combine BigData analytics easily with machine learning algorithm
to train models.

Data Visualisation
Freeboard offers simple dashboards, which are readily useable sets of widgets
able to display data. There is a direct Orion Fiware connector. Freeboard
offers a REST API allowing controlling of the displays. Tableau Public is
a free service that lets anyone publish interactive data to the web. Once on
the web, anyone can interact with the data, download it, or create their own
visualizations of it. No programming skills are required. Tableau allows the
upload of analysed data from .csv format, for instance. The visualisation
tool is very powerful and allows a deep exploration the data. Kibana is
an open source analytics and visualization platform designed to work with
Elasticsearch. Kibana allows searching, viewing, and interacting with data
stored in Elasticsearch indices. It can perform advanced data analysis and
visualize data in a variety of charts, tables, and maps. Elasticsearch is a
highly scalable open-source full-text search and analytics engine. It allows to
store, search, and analyze big volumes of data quickly and in near real time.
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It is generally used as the underlying engine/technology that powers appli-
cations that have complex search features and requirements. It provides a
distributed, multitenant-capable full-text search engine with an HTTP web
interface and schema-free JSON documents. It is really designed for real-time
analytics, most commonly used with Flink or Spark streaming.

2.4 Data Collection Using Low-power, Long-range Radios

Regarding the deployment of IoT devices in a large scale, it is still held back
by technical challenges such as short communication distances. Using the
traditional mobile telecommunications infrastructure is still very expensive
(e.g., GSM/GPRS, 3G/4G) and not energy efficient for autonomous devices
that must run on battery for months. During the last decade, low-power but
short-range radio such as IEEE 802.15.4 radio have been considered by the
WSN community with multi-hop routing to overcome the limited transmission
range. While such short-range communications can eventually be realized on
smart cities infrastructures where high node density with powering facility can
be achieved, it can hardly be generalized for the large majority of surveillance
applications that need to be deployed in isolated or rural environments. Future
5G/LTE standards do have the IoT orientation but these technologies and
standards are not ready yet while the demand is already high.

Recent so-called Low-PowerWideArea Networks (LPWAN) such as those
based on SigfoxTM or Semtech’s LoRaTM [1] technology definitely provide
a better connectivity answer for IoT as several kilometers can be achieved
without relay nodes to reach a central gateway or base station. Most of long-
range technologies can achieve 20 km or higher range in LOS condition
and about 2 km in urban NLOS [2]. With cost and network availability
constraints, LoRa technology, which can be privately deployed in a given
area without any operator, has a clear advantage over Sigfox which coverage
is entirely operator-managed. These low-power, long-range radio technologies
will definitely allow a huge amount of sensors to be installed in remote area,
thus augmenting the amount of data to be treated in the IoT Cloud platform.

2.4.1 Architecture and Deployment

The deployment of LPWAN (both operator-based and privately-owned sce-
narios) is centred on gateways that usually have Internet connectivity as shown
in Figure 2.4. Although direct communications between devices are possible,
most of IoT applications follow the gateway-centric approach with mainly
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Figure 2.4 Gateway-centric deployment.

uplink traffic patterns. In this typical architecture data captured by end-devices
are sent to a gateway which will push data to well identified network servers.
Then application servers managed by end-users could retrieve data from the
network server. If encryption is used for confidentiality, the application server
can be the place where data could be decrypted and presented to end-users.

The LoRa Alliance has issued the LoRaWAN specification [3] in a tenta-
tive for standardization of public, large-scale LoRa LPWAN infrastructures
featuring multi-gateways and full network/application servers’ architecture as
previously depicted in Figure 2.4. This specification also defines the set of
common channels for communications, the packet format, Medium Access
Control (MAC) commands that must be provided and 3 end-devices classes
depending on communication requirements. This architecture can however be
greatly simplified for small, ad-hoc deployment scenarios where the gateway
can directly push data to some servers or IoT-specific cloud platforms if
properly configured.

2.4.2 Low-cost LoRa Implementation

The implementation of the full LoRaWAN specification requires gateways
to be able to listen on several channels and LoRa settings simultaneously.
Commercial gateways therefore use advanced concentrators chips capable of
scanning up to 8 different channels: the SX1301 concentrator is typically used
instead of the SX127x chip which is designed for end-devices. Commercial
gateways cost several hundredth euros with the cost of the SX1301-capable
board alone to be more than a hundred euro.



22 IoT, Cloud and BigData Integration for IoT Analytics

Figure 2.5 Low cost gateway from off-the-sheves components.

For many adhoc applications, it is however more important to keep the cost
of the gateway low and to target small to medium size deployment scenario for
various specific use cases instead of the large-scale, multi-purpose deployment
scenarios defined by LoRaWAN. Note that even though several gateways
can be deployed to serve several channel settings if needed. In many cases,
this solution presents the advantage of being more optimal in terms of cost
as incremental deployment can be realized and also offer a higher level of
redundancy that can be an important requirement in developing countries for
instance.

Our LoRa gateway could be qualified as “single connection” as it is built
around an SX1272/76, much like an end-device would be. The cost argument,
along with the statement that too integrated components are difficult to repair
and/or replace in the context of developing countries, also made the ”off-the-
shelves” design orientation an obvious choice. Our low-cost gateway is based
on a Raspberry PI (1B/1B+/2B/3B) which is both a low-cost (less than 30 euro)
and a reliable embedded Linux platform. Our long-range communication
library supports a large number of LoRa radio modules (most of SPI-based
radio modules). The total cost of the gateway can be as low as 45 euro.

Together with the “off-the-shelves” component approach, the software
stack is completely open-source: (a) the Raspberry runs a regular Raspian
distribution; (b) our long range communication library is based on the SX1272
library written initially by Libelium and (c) the lora gateway program is kept as
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simple as possible. We improved the original SX1272 library in various ways
to provide enhanced radio channel access (CSMA-like with SIFS/DIFS) and
support for both SX1272 and SX1276 chips. We believe the whole architecture
and software stack are both robust and simple for either “out-of-the-box”
utilization or quick customization by third parties.

We tested the gateway in various conditions for several months with
a DHT22 sensor to monitor the temperature and humidity level inside the
case. Our tests show that the low-cost gateway can be deployed in outdoor
conditions with the appropriate casing. Although the gateway should be
powered, its consumption is about 350 mA for an RPIv3B with both WiFi
and Bluetooth activated.

2.5 WAZIUP Software Platform

The WAZIUP project, namely the Open Innovation Platform for IoT-BigData
in Sub-Saharan Africa is a collaborative research project using cutting edge
technology applying IoT and BigData to improve the working conditions
in the rural ecosystem of Sub-Saharan Africa. First, WAZIUP operates
by involving farmers and breeders in order to define the platform specifications
in focused validation cases. Second, while tackling challenges which are
specific to the rural ecosystem, it also engages the flourishing ICT ecosystem
in those countries by fostering new tools and good practices, entrepreneurship
and start-ups. Aimed at boosting the ICT sector, WAZIUP proposes solutions
aiming at long term sustainability.

The consortium of WAZIUP involves 7 partners from 4 African countries
and partners from 5 EU countries combining business developers, technology
experts and local Africa companies operating in agriculture and ICT. The
project involves also regional hubs with the aim to promote the results to the
widest base in the region.

2.5.1 Main Challenges

The WAZIUP Cloud platform needs to face a number of challenges. Those
challenges are related to the specific environment in which the platform
will be deployed, and the need of its end users. First of all, we identified
that farmers in Sub-Saharan Africa are lacking data on culture status. For
instance, parameters such as potassium and nitrogen levels are very useful
for precision farming. Secondly, farmers are lacking actionable information
on the condition of the farm. This actionable information can be displayed
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in the form of alerts, forecasts and recommendations. An example of such
a service is a recommendation on the water levels needed for irrigation,
taking into accounts the weather forecasts. On a larger scale, governments
and institutions are lacking information and statistics on their territory.
An example is geographical statistics on the spreading of a disease in a
country.

On a more technical level, we noticed that most rural African users have
mobile phones, but not always smart phones. Furthermore, 3G is not always
present in rural areas. Internet and grid connection can also be intermittent.
Lastly, a huge challenge that the WAZIUP platform should address is the cost
of IoT devices, application development and application hosting.

2.5.2 PaaS for IoT

As introduced before, PaaS framework will compile an application from
its source code, and then deploy it inside lightweight virtual machines, or
containers. This compilation and deployment is done with the help of a file
called the manifest, which allows the developer to describe the configuration
and resource needs for his application. The manifest file will also describe
the services that the application requires and that the platform will need to
provision.

The idea of WAZIUP is to extend the paradigm of the PaaS to IoT. Indeed,
developing an IoT BigData application is a complex task. A lot of services
need to be installed and configured, such as databases and complex event
processing engines. Furthermore, it requires an advanced knowledge and skills
in programing of embedded devices, of data stream processors, of advanced
data analytics, and finally of GUIs and user interactions. We propose to abstract
those skills using the PaaS paradigm.

Figure 2.6 shows the PaaS deployment in WAZIUP. Traditional PaaS
environment are usually installed on top of IaaS (in blue in the picture). The
blue boxes are physical servers, respectively the Cloud Controller and one
Compute node. The PaaS environment is then installed inside the IaaS V Ms,
in green in the picture. We use Cloud Foundry as a PaaS framework. It comes
with a certain number of build packs, which and programming languages
compilers and run time environments. It also provides a certain number of
preinstalled services such as MongoBD or Apache Tomcat. The manifest file,
showed on the right hand side, provide a high-level language that allows
describing which services to instantiate. We propose to extend this language
to IoT and BigData services:
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Figure 2.6 PaaS deployment extended for IoT in WAZIUP.

• Data stream and message broker
• CEP engines
• Batch processing engines
• Data visualization engines

Furthermore, we propose to include in the manifest a description of the IoT
sensors that are required by the application.This query includes data such as the
sensor type, location and owner. The manifest also includes the configuration
of the sensors. The application will then be deployed both in the global Cloud
and in the local Cloud.

2.5.3 Architecture

Figure 2.7 presents the full WAZIUParchitecture. There are 4 silos (from left to
right):Application development, BigData platform, IoT platform, Sensors and
data sources. The first silo involves the development of the application itself.
A rapid application development (RAD) tool can be used, such as Node-
Red. The user provides the code source of the application, together with
the manifest. As a reminder, the manifest describes the requirements of the
application in terms of:

• Computation needs (i.e. RAM, CPU, disk).
• Reference to data sources (i.e. sensors, internet – sources . . .).
• BigData engines needed (i.e. Flink, Hadoop . . .).
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Figure 2.7 WAZIUP architecture.

• Configuration of sensors (i.e. sampling rate).
• Local and global application deployment.

The application source code, together with the manifest, is pushed to the
WAZIUP Cloud platform by the user. The orchestrator component will read
the manifest and trigger the compilation of the application. It will then deploy
the application in the Cloud execution environment. It will also instantiate the
services needed by the application, as described in the manifest. The last task
of the orchestrator is to request the sensor and data sources connections from
the IoT components of the architecture. The sensor discovery module will be
in charge of retrieving a list of sensors that matches the manifest description.

On the left side of the diagram, the sensor owners can register their
sensors with the platform. External data sources such as Internet APIs can
also be connected directly to the data broker. The sensors selected for each
application will deliver their data to the data broker, through the IoT bridge and
preprocessor. This last component is in charge of managing the connection and
configuration of the sensors. Furthermore, it will contain the routines for pre-
processing the data transmitted, such as cleaning, extrapolating, aggregating
and averaging data points.

2.5.4 Deployment

WAZIUP will be deployed and accessed in an African context, where internet
access is sometime scarce. WAZIUP therefore has a very strong constraint
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regarding low internet connectivity. To fulfil this requirement, we propose
a Cloud structure in two parts: the global Cloud and the local Cloud. The
global Cloud corresponds to the Cloud in the traditional sense. The local
Cloud corresponds to the gateway and an optional connected computer. The
idea of WAZIUP is to extend the PaaS concept to the local Cloud.

Atypical WAZIUP deployment is illustrated in Figure 2.8. On the left hand
side of the picture, the application is designed by the developer, together with
the manifest file. It is pushed on the WAZIUP Cloud platform. The orchestrator
then takes care of compiling and deploying the application in the various Cloud
execution environments. Furthermore, the orchestrator drives the instantiation
of the services in the Cloud, according to the manifest. The manifest is also
describing which part of the application need to be installed locally, together
with corresponding services. The local application can then connect to the
gateway and collect data from the sensors.

2.6 iKaaS Software Platform

The iKaaS platform combines ubiquitous and heterogeneous sensing, BigData
and cloud computing technologies in a platform enabling the Internet of Things
process consisting of continuous iterations on data ingestion, data storage,
analytics, knowledge generation and knowledge sharing phases, as foundation
service provision.

Figure 2.8 WAZIUP local and global deployment.
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The iKaaS platform consists of two distinct Cloud ecosystems: the Local
Cloud and the Global Cloud. More specifically:

• A Local Cloud provides requested services to users in a limited geo-
graphical area. It offers additional processing and storage capability to
services. It is created on-demand, and comprises appropriate computing,
storage and networking capabilities.

• The Global Cloud is seen in the “traditional” sense, as a construct with
on-demand and elastic processing power and storage capability. It is a
“backbone infrastructure”, which increases the business opportunities
for service providers, the ubiquity, reliability and scalability of service
provision.

Local Clouds can involve an arbitrarily large number of nodes (sensors, actu-
ators, smartphones, etc.). The aggregation of resources comprises sufficient
processing power and storage space. The goal is to serve users of a certain
area. In this respect, a Local Cloud is a virtualised processing, storage and
networking environment, which comprises IoT devices in the vicinity of the
users. Users will exploit the various services composed of the Local Cloud’s
devices’ capabilities. For example, a sensor and its gateway equipped with the
iKaaS platform.

The Global Cloud allows IoT service providers to exploit larger scale
services without owning actual IoT infrastructure.

The iKaaS Cloud ecosystem will encompass the following essential
functionality:

• Consolidated service-logic, resource descriptions and registries will be
parts of the Global Cloud. These will enable the reuse of services.
Practically, a set of registries will be developed and pooling of service
logic and resources will be enabled.

• Autonomic service management will be part, firstly, of the Global
Cloud, and, then, in the Local Clouds. This functionality will be in
charge of (i) dynamically understanding the requirements, decomposing
the service (finding the components that are needed); (ii) finding the
best service configuration and migration (service component deploy-
ment) pattern; (iii) during the service execution, reconfiguring the
service, i.e., conducting dynamic additions, cessations, substitutions of
components.

• Distributed data storage and processing is anticipated for the struc-
ture of global and local clouds. This means capabilities for efficiently
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communicating, processing and storing massive amounts of, quickly-
emerging, versatile data (i.e., “BigData”), produced by a huge number of
diverse IoT devices.Another important capability will be the derivation of
information and knowledge (e.g., on device behaviour, service provision,
user aspects, etc.), while ensuring security and privacy, which are top
concerns.

• Knowledge as a service (KaaS) will be primarily part of the Global Cloud.
This area will cover: (i) device behaviour aspects; (ii) the way services
have been provided (e.g., through which IoT resources) and the respective
quality levels; (iii) user preferences.

As can be seen the iKaaS functionality will determine the optimal way to offer
a service. For instance service components may need to be migrated as close
as possible to the required (IoT) data sources. IoT services may need generic
service support functionality that is offered within the Cloud, and, at the same
time, they do rely on local information (e.g., streams of data collected by
sensors in a given geographic area), therefore, the migration of components
close to the data sources will help in the reduction of the data traffic.

Figure 2.9 iKaaS platform.
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2.6.1 Service Orchestration and Resources Provisioning

The platform offers mechanisms that autonomously analyse application
requirements, user preferences and Cloud resources and accordingly decide
upon the most appropriate deployment of services. The most appropriate
deployment must achieve the best balance between system performance,
quality of service and cost. In this context, services may be decomposed
into smaller components, based on the current situation and information on
data sources, in order to be migrated and executed in a “Local Cloud”, near
the data sources, following the Hadoop maxim that “Moving Computation
is Cheaper than Moving Data”. Alternatively, services may be deployed and
executed in the Global Cloud. Furthermore, this mechanism will facilitate the
notion of “Everything as a Service”, and attached gateway to host and process
services on-demand, by means of service migration instead of being limited to
predefined services. The local IoT Gateway may act as part of a “Local Cloud”
on an on-demand basis in coordination with the Global Cloud, provided that
the Local Cloud has sufficient resources to process and execute the service.

The platform uses a model that allows the service to be analysed and
decomposed into a certain number of sub-components according to application
requirements, user preferences including privacy constraints, policies, system
state and data sources location. The service sub-components are then migrated
to either Local Clouds, to be computed near the data sources (e.g., sensors) or
into the Global Cloud, to take advantage of the extensive computing power
and storage available. The optimal distribution is decided with the aim of
achieving the best balance between overall system performance (network
traffic, computing load), quality of services (prompt and accurate delivery
of service result) and service costs.

2.6.2 Advanced Data Processing and Analytics

Information stream processing algorithms and mechanisms offer on-the-fly
analysis of volatile data coming from the distributed sensing infrastructure.
In addition, the platform includes off-line BigData analytics over persistent
data capable of uncovering hidden patterns and unknown correlations. This
will allow feeding with contents the envisaged knowledge service platform.

The iKaaS platform includes the analysis of the requirements and
challenges posed by those information stream processing and knowledge
acquisition scenarios to the provision of a set of IoT and BigData services
over cloud and network infrastructures.
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The provision of those services comprises processing capabilities, cov-
ering the knowledge acquisition lifecycle. This lifecycle goes from the
aggregation of heterogeneous data, through information stream processing
services and visualization services, to the derivation of knowledge and
experience. Special attention will be paid to the consolidation of existing
approaches and to the design of complementary solutions able to address the
technological challenges:

• Information Stream Processing, information extraction and visualization,
mechanisms enabling the usage of smart virtual objects as a multi-cloud
cloud based resource.

• Distributed and scalable storage mechanisms for smart virtual objects that
supports service decomposition, migration and corresponding resource
allocation aspects within the iKaaS local and Global Cloud environments.

• Analytics engines and mechanism for assessment and processing of data
over a large number of smart objects. The objective is to derive reliable
information and to provide knowledge that can be provided as a service
to facilitate situation aware applications.

Given that processing and storage may take place in either the Global or the
Local Cloud or both, in support of real-time autonomic and flexible service
execution, the mechanisms defined in this task shall support flexible and fast
discovery of smart virtual objects and allocation of data sources so that efficient
and cost-effective service and resource migration can be realized.

Hence, the platform offers the mechanisms and techniques for handling
smart objects and processing of their data to satisfy real-time service execution
requirements in Cloud environments and also to derive useful “contextual”
information and knowledge to serve cost-effective, low latency resources
migration and allocation needs.

The scalable and distributed storage mechanism for smart virtual objects
and aggregated and anonymised data will also need to be managed dynamically
in order to deal with the large number of data sources.

2.6.3 Service Composition and Decomposition

Principle of Service Composition and Decomposition
IoT and BigData applications are complex large-scale applications, including
a combination of multiple sources, functionalities and composed by many
small functional services across multiple sectors/domains. For example, an
active and healthy living of ageing people application includes many small
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services like monitoring the blood pressure, monitoring the heart rate, weight
monitoring, location awareness, smart lighting, utility metering, notification
and reminders, etc., across health, well-being, security and home automation
domains. Additionally, for IoT and BigData in a given application as the
service is evolving, more and more services added to the applications/systems.
Therefore, it is important to design the iKaaS services as small and autonomous
as possible, with well-defined APIs to operate them individually.

iKaaS functional decomposition of an application/complex service (as
defined in the previous sub-section) allows to achieve loose coupling and
high cohesion of multiple services. Alternatively multiple simple services can
be composed into complex services for the purposes of various applications.
In Figure 2.10, the basic logic of service decomposition and composition are
shown.

Functional decomposition of services gives the agility, flexibility, scal-
ability of individual services to operate autonomously. Each of the simple
services is running in its own process and communicating with lightweight
mechanisms. The overall high-level service logics (e.g. software module) are
decomposed to multiple service logics or software modules which can be
delivered as independent runtime services. These services are built around
business capabilities and are independently deployable by fully automated
deployment machinery. There is a bare minimum of centralized management

Figure 2.10 Service composition and decomposition.
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of these services, which may be written in different programming languages
and use different data storage technologies.

Pattern of Service Composition
The iKaaS service design pattern significantly impacts how the services will be
composed and decomposed. One of the main concepts is to design the services
as independent as possible. In the design pattern the service replication and
reliability should also be considered. One individual complex service can
be composed by multiple isolated end-users or system level services. The
relationship between the services and datasets, whether each of the services is
using its own dataset or sharing a single dataset with other services can vary.
However each iKaaS simple service is associated with a relevant dataset in
order to make the service fully independently designed and deployable.

At runtime, one iKaaS service may consist of multiple service instances.
Each service instance is a runtime (e.g., Docker container). In order to be
highly available, the containers are running on multiple Cloud VMs. In this
case, the Service Manager acts as a load balancer that distributes requests
across the service instances.

2.6.4 Migration and Portability in Multi-cloud Environment

Service migration is a concept used in cloud computing implementation
models that ensures that an individual or organization can easily shift services

Figure 2.11 Patten for composition and decomposition.
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Figure 2.12 iKaaS distributed local and global cloud with service migration.

between different cloud vendors without encountering implementation, inte-
gration, and compatibility and interoperability issues. The concept is defined
the process and framework by which these applications can be deployed on
another cloud vendor or supported private cloud architecture.

iKaaS runtime puts services and all of its dependencies into a container
which is portable among different platforms, desktop distributions and clouds.
One can build, move and run distributed services with containers. By automat-
ing deployment inside containers, developers and system administrators can
run the same application on laptops, virtual machines, bare-metal servers, and
the cloud.

The concept of service migration is applicable in multi-cloud and dis-
tributed computing environment, where the processing capabilities are moved
to near the data sources or a simple service is run near data sources. iKaaS is
a fully distributed architecture, in which the overall platform functionalities
and capabilities are distributed between local and global could. The concept
of local could can be seen as an edge or fog computing, where pre-processing
are done at the origin level.

Fog computing and computing near the data source provide a promising
new approach to significantly reduce network operation cost by moving the
computation or early pre-processing close to the data sources. A key challenge
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in such systems is to decide where and when services should be migrated with
respect to users mobility, overall situation and environment context.

Edge/local computing can provide elastic resources to large scale data
process system without suffering from the drawback of cloud, high latency.
In cloud computing paradigm, event or data will be transmitted to the data
centre inside core network and result will be sent back to end user after a
series of processing. A federation of fog and cloud can handle the BigData
acquisition, aggregation and pre-processing, reducing the data transportation
and storage, balancing computation power on data processing. For example,
in a large-scale environment monitoring system, local and regional data can be
aggregated and mined at fog nodes providing timely feedback especially for
emergency case such as toxic pollution alert. Detailed and thorough analysis
as computational-intensive tasks can be scheduled in the cloud side.

2.6.5 Cost Function of Service Migration

One of the main challenges for the services migration is to define the strategy
for the service migration. There is a tradeoff between the service migration
cost and the transmission cost (such as communication delay and network
overhead) between the user and the cloud. It is challenging to find the
optimal decision also because of the uncertainty in user mobility as well as
possible non-linearity of the migration and transmission costs. The service
migration offers the benefits of reduction in networks overhead and latency
over changing the location of the users. It is often challenging to make the
optimal decision in an optimal manager, which can optimize the cost functions
based on the situation and user’s preferences.

iKaaS will propose a framework for dynamic, cost-minimizing migration
of distribution services into a hybrid cloud infrastructure that spans geograph-
ically distributed data centers. We will propose an algorithm which optimally
places services in different clouds to minimize overall operational cost over
time, subject to service response time constraints. The framework will be
designed based on the Markov-Decision-Process (MDP), to study service
migration in iKaaS Cloud environment.

2.6.6 Dynamic Selection of Devices in Multi-cloud Environment

The end-devices are expected to play a key role in iKaaS not only for they
data they can provide for the optimization of the iKaaS provided services, but
also for the data they can provide with respect to end-device suitability and
social relationships.
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That is because in the case of end-device suitability, end-devices can be
viewed as the end-points of an end-to-end service chain over a multi-cloud
infrastructure. As such, this device suitability identification can be seen as
“fixing” the end-points of the service provisioning chains, allowing as such
(once the end-points are fixed) to then “fix” the location/placement of service
provisioning functions in a way that optimizes both the service and the overall
cloud performance. For example, if a device is identified as suitable, which is
attached at a certain local cloud, then it would make sense for the other service
functionalities needed to be instantiated at that local cloud so as to be close to
the data source.

Some of the key factors that can be taken under consideration when
defining device suitability are:

• Location/mobility pattern of a device; so as to define where the owner of
the device is or is predicted to be so as to appropriately instantiate service
functions close to the corresponding locations.

• Battery levels and evolution of battery levels; so as to be able to
deduce whether a device can be relied upon for providing/receiving data,
therefore corresponding service functions will need to be appropriately
instantiated.

• Availability of sensors; how often a user has its device sensors exposed
and is ready to be a potential match for inclusion in a service delivery
chain.

• User away and reaction times; to make sure the user carries the device
with them and is able to see an alert on time and react to it.

• Data quality: The quality of users inputs, without false-positives or
misleading measurements.

All these factors will be further and better thought of and appropriate knowl-
edge building mechanisms based on the nature and granularity of data will be
considered. The scope is to eventually produce and store the knowledge about
device suitability so that functionalities that decide on the placement of service
functionalities in an end-to-end delivery chain, can take this into account when
performing their joint service and cloud platform optimization processes.
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