
PART I

ADAS Development Platform

2
The DESERVE Platform: A Flexible

Development Framework to Seemlessly
Support the ADAS Development Levels

Frank Badstübner1, Ralf Ködel1, Wilhelm Maurer1, Martin Kunert2,
André Rolfsmeier3, Joshué Pérez4, Florian Giesemann5,

Guillermo Payá-Vayá5, Holger Blume5 and Gideon Reade6

1Infineon Technologies AG, Germany
2Robert Bosch GmbH, Germany
3dSpace GmbH, Germany
4INRIA, France
5IMS/Hannover University, Germany
6ASL, U.K.

2.1 Introduction to the DESERVE Platform Concept

As outlined by Figure 2.1, the DESERVE platform is the key enabler for speed-
ing up the development of next generation ADAS systems. The DESERVE
platform represents an open platform to be used by anyone. This chapter
therefore covers the entire spectrum of aspects to be considered for the use of
this generic DESERVE platform.

Please kindly note that the extensive work on the DESERVE platform can-
not be completely described here. Thus, reference to a manifold of DESERVE
deliverables are made.As most of these deliverables are not publicly available,
essential findings in these deliverable reports were included here to provide a
complete view on the DESERVE platform.

The DESERVE platform relies on model-based design and virtual testing
tools. Its openness is based on the compliance with AUTOSAR standards. All
AUTOSAR members have access to these standardized interfaces.

9

10 The DESERVE Platform: A Flexible Development Framework

F
ig

ur
e

2.
1

T
he

D
E

SE
R

V
E

Pl
at

fo
rm

–
th

e
en

ab
le

r
fo

r
ne

xt
ge

ne
ra

tio
n

A
D

A
S

sy
st

em
s.

2.1 Introduction to the DESERVE Platform Concept 11

The DESERVE platform is not related to any specific hardware or software.
In contrast, it is generic and represents a new methodology and concept
to develop future ADAS systems more efficient and more flexible with
maximum reuse of modules and components due to well-defined processes
and standardizations on architecture and encapsulated module levels.

Requirements engineering is applied for next generation ADAS systems.
By means of model-based design (e.g. Matlab/Simulink/ADTF/RTMaps)
fast implementation in ADAS rapid prototyping framework is achieved
(development level 2). Rapid prototyping results are evaluated by Hardware-
in-the-Loop (HIL), Model-in-the-Loop (MIL) or Processor-in-the-Loop (PIL)
test bench. In parallel, by making use of model based design space explo-
ration, specifications and requirements for System-on-Chip (SoC) can be
derived at a very early development phase, which supports cost predic-
tion on basis of silicon area, throughput etc. Both, validation by virtual
testing and cost prediction indicate important improvement potentials that
need to be implemented in the next cycle of the iterative development
process.

The situation before DESERVE can be characterized by the absence of
model-based access to perception and fusion algorithms, missing AUTOSAR
compatibility, there is no library with available algorithms (for composing and
evaluating new algorithms). Rather, testing the application on real vehicles in
real traffic scenarios is the approach followed, together with some recording
feature to allow the capturing of the critical situations, where the solution fails
for example, in order to reproduce them in some way later in laboratory.

The objectives of the DESERVE platform are driven by the market needs,
which are enabling a further growth of embedded systems and more specifi-
cally advanced driver assistance systems (ADAS), mastering the complexity
(both in system architecture and processing power) of ADAS, reducing costs
of components and development time ofADAS as well as the seamless integra-
tion of the growing amount of functions within ADAS and the corresponding
vehicle.

DESERVE strives to meet these markets needs by aiming at a novel
design and more efficient development process that is enabled by a platform.
A platform that provides a flexible development framework, reaching from
early PC-based pre-developments down to close-to-production hardware
implementations on final target systems on chip, to seamlessly support the
ADAS development levels; that constructs a tool chain to allow for modelling
and evaluation via virtual testing of new sensors, algorithms, applications
and actuators during the whole design and development process; a platform;
that forms a common in-vehicle platform for future ADAS functions based

12 The DESERVE Platform: A Flexible Development Framework

Figure 2.2 DESERVE platform enabled design and development process.

on a modular approach and an architecture and interface specifications that
are compatible with AUTOSAR (access and easy-to-use also for non-project-
partners); a platform that enables the integration of safety mechanisms for
pre-certification (generic safety requirements e.g. for testing on public roads)
and full requirements for ASIL D according to ISO 26262 (to prepare certifi-
cation of later target platform) and security mechanisms for pre-certification
of connected ADAS according to ISO 27001.

The novel design and efficient development process is based on the well-
known V-model and fully DESERVE platform supported during all phases in
the process. This is illustrated in Figure 2.2.

2.2 The DESERVE Platform – A Flexible Development
Framework to Seamlessly Support the ADAS
Development Levels

This section introduces into the development methods and guidelines asso-
ciated with the DESERVE platform and outlines the benefits in terms of
development cost and time savings from the OEM perspective. Basically, the

2.2 The DESERVE Platform – A Flexible Development Framework 13

platform concept is based on three pillars which reflect the different develop-
ment levels and the transition of ADAS algorithms from the prototyping to
production phase in the automotive industry (see Figure 2.3).

The DESERVE platform is a generic platform that supports all develop-
ment levels illustrated in Figure 2.3 as seamless as possible – from feasibility
study to product development.

Level 1: PC platform
In the research and pre-development phase users typically require highly
flexible tools with an intuitive user interface and the implementation of ADAS
algorithms may not satisfy hard real-time requirements. Here, PC-based tools
such asADTF and RTMaps for data fusion often constitute the basis forADAS
development.

Such tools provide a high user comfort and allow developers to implement
and verify algorithms directly on a standard MS Windows or Linux PC.
Different kinds of sensors/actuators and vehicle bus interfaces are available
so that the algorithms can directly be tested in a real environment. However,
real-time calculation is not guaranteed, especially with complex perception,
fusion and tracking algorithms. In addition, there is no direct support of
Matlab/Simulink,AUTOSAR and the model-based design approach for appli-
cation functions. Finally, PC platforms as described above are typically not
tailored for stand-alone, in-vehicle use cases.

Figure 2.3 ADAS development process.

14 The DESERVE Platform: A Flexible Development Framework

To avoid a time-consuming redesign of perception, fusion or tracking
algorithms when implementing them on the final ECU hardware (production
ECU), engineers are looking for ways to evaluate different target hardware
architectures according to given cost criteria already in early development
stages. This request is met by the design space exploration (DSE) methodology
and the SoC modelling approach.

Level 2: Rapid prototyping platform including software superstructure
(e.g. embedded PC/embedded controller with realtime
operating system and FPGA)
In the second development stage engineers go one step closer to a real-
time implementation. Complex and computationally intensive algorithms are
shifted to a powerful FPGA to improve the realtime capability. In parallel
to this, the FPGA platform allows different target hardware architectures
to be evaluated in combination with the selected algorithms. To ensure a
rapid implementation of the above mentioned perception, fusion, and tracking
algorithms in the FPGA, basic building blocks in terms of a library are provided
by the DSE framework. By means of this block-based modeling approach the
time and effort for implementing the associated algorithms can significantly
be reduced.

Using an embedded system platform in this stage featuring both an FPGA
and an embedded controller also allows ADAS application algorithms to be
designed by means of models so that the associated development time can
further be reduced. Compared to the purely PC based framework real-time
performance is almost guaranteed, though the user comfort with programming
the FPGA may be restricted.

Level 3: Fully embedded, AUTOSAR compatible architecture
(e.g. multicore controller with FPGA) for the evaluation of algorithms
in realtime and implementation of safety requirements according
to ISO 26262 (e.g. pre-certification for testing on public roads)
The goal of this stage is to go one step further to the final target hardware
and to provide a stand-alone, in-vehicle rapid prototyping platform which, for
example, can even be used during test drives. This stage reflects the users’
need to evaluate and experience the driver assistance system directly in the
vehicle itself.

The standard PC is replaced by an embedded PC that is qualified for in-
vehicle use in terms of shock, vibration and temperature, similar to the other
parts of the system. This platform also allows the integration of hardware
accelerators so that even highly computational intensive algorithms may be
tested in the vehicle. It is also possible to interface target microcontrollers of

2.2 The DESERVE Platform – A Flexible Development Framework 15

production ECUs and to run certain algorithms there. The complete platform
behaves like a prototype ECU which can be operated by test drivers which are
not specifically instructed. For example, the platform can be started and shut
down via the vehicle’s ignition key.

The development platforms of all stages can be used together with the
model-based design space exploration approach for system on chip and
libraries of basic building blocks for the FPGA. By means of this the
gap is closed when transferring perception, fusion and tracking algorithms
from prototyping to production, similar to the model-based design approach
with application functions using Simulink. Being able to use already tested
and validated building blocks and software modules greatly facilitates and
expedites the development process.

To support the model-based development of algorithms at all processing
layers (perception, decision making, warning and control strategies) and to
execute these algorithms in the vehicle, the DESERVE platform level 3 needs
to be fully compatible to theAUTOSAR standard (note: as of today, no certified
AUTOSAR 4.0 real-time operating system including memory protection is
available; its development is not subject of DESERVE).

In addition, at this development level, safety mechanisms need to be
developed: According to ISO 26262 the DAS system needs to be classified
concerning theAutomotive Safety Integrity Level (ASIL). Many DAS systems
require the highest classification ASIL D. Suitable measures are required to
fulfil the related strong requirements. As the certification process is very much
related to the hardware, just pre-certification (e.g. for testing of the new DAS
on public roads) is possible at this development level.

As a result, OEMs are able to define early and precise enough the distinct
requirements for the final ECU hard- and software (e.g. required interfaces –
which I/O and bus system; computational power; memory requirements),
including the safety mechanisms (e.g. memory protection, lockstep operation).

Level 4: Target production platform (e.g. multicore controller ECU
with integrated custom ASIC/FPGA/hardware accelerator)
On basis of the production hardware, the final certification of the ADAS takes
place. Within the DESERVE project, the generic DESERVE platform concept
was validated. Starting with purely PC-based development, algorithms can
be outsourced step by step to an FPGA or embedded controller prototyping
system. In addition to the hardware concept, a design space exploration
and an analytical modelling approach for system on chip is proposed. This
software framework allows different target hardware architectures for the
implementation of perception algorithms to be evaluated according to given

16 The DESERVE Platform: A Flexible Development Framework

cost criteria in early development phases. The software framework is coupled
to the FPGA of the DESERVE platform. The associated workflow will be
supported by a library of basic building blocks for the FPGA by means of
which perception algorithms can be composed and implemented quickly.

To validate the platform concept, three different realization instances of
the generic DESERVE platform are considered in the project:

• Level 1: Purely PC based solution
• Level 2: Mixed PC/embedded control based on dSpace Micro Autobox

with FPGA framework (this platform will be extensively used for the
ADAS vehicle demonstrators)

• Level 3: Fully embedded platform based on multicore controller plus
FPGA. This instance of the DESERVE platform provides realtime
operating system and basis software fully compatible to the AUTOSAR
standard. Thus it is open and easy to use for all AUTOSAR members. It
will also feature safety concepts required for ASIL D and consider new
radar/camera interfaces.

2.3 DESERVE Platform Requirements

The next step in the definition process for the DESERVE platform concerned
the translation of the previously defined platform needs into generic require-
ments for the DESERVE platform based on common software architecture
and suitable for the development and simulation of the 33 DAS functions
investigated in the beginning.

The generic requirements for the DESERVE platform were defined
utilizing the following approach (see deliverables D1.2.1 [1]).

The DESERVE development platform has been defined taking into account
that general requirements such as AUTOSAR compatibility [6], SPICE com-
pliance and functional safety (ISO 26262) [7, 8] are mandatory for industrial
use. These requirements apply for the “industrialized platform”. The generic
DESERVE platform addresses a functional software architecture based on
Perception, Application and IWI platforms.

2.3.1 DESERVE Platform Framework

The DESERVE platform has been defined taking into account general require-
ments such as AUTOSAR compatibility, SPICE compliance and functional
safety (ISO 26262), which are mandatory for the later industrial use. The
AUTOSAR standard comprises a set of specifications describing software

2.3 DESERVE Platform Requirements 17

architecture components and defining their interfaces. DESERVE aims at
using AUTOSAR to integrate applications from different suppliers inside a
single processing unit.

DESERVE addressed also to be compliant with the SPICE standard, which
represents a set of technical standards documents for the computer software
development process and related business management functions. The ISO
26262 standard was considered in the implementation of DESERVE platform
in order to improve the safety in the development of methods and tools.
The ISO 26262 standard defines the “Functional Safety Assessment” at the
completion of the item development with the scope to assess the functional
safety that is achieved by the element under safety analysis.

The baseline for DESERVE is represented by the results of past and on-
going research projects [9, 10], and in particular of interactIVe addressing
the development of a common perception framework for multiple safety
applications with unified output interface from the perception layer to the
application layer [11].

Figure 2.4 presents the DESERVE platform framework. In this generic
architecture the perception platform processes the data received from the
sensors that are available on the ego vehicle and sends them to the application
platform in order to develop control functions and to decide the actuation

Figure 2.4 DESERVE platform framework.

18 The DESERVE Platform: A Flexible Development Framework

strategies. Finally, the output is sent to the IWI platform informing the
driver in case of warning conditions and activating the systems related to
the longitudinal and/or lateral dynamics.

2.3.2 Generic DESERVE Platform Requirements
(Relevant to all Development Levels)

Different clusters of requirements were defined following the structure of
the DESERVE platform framework. Please note that each of the following
requirements was divided in sub-requirements, which are described in detail
in DESERVE deliverable D1.2.1.

General software requirements
General software requirements: Among others, these cover the previously
mentioned software requirements for modularity, reusability, AUTOSAR,
SPICE process assessment (ISO/IEC 15504), functional safety (ISO 26262),
platform independence (the application software needs to be independent
from the processing hardware), standardized interfaces (i.e. the software
needs to have interfaces to sensors and actuators that are standardized
and published), operating system independence (cross platform libraries are
recommended), programming language, communication technologies inde-
pendence, automatic start-up/shut-down, configuration of sensors position,
software versioning and licenses.

General hardware platform requirements
These cover the aspects power supply, list of supported sensors, processing
unit, unit size and number of included components etc.

Perception module requirements
These requirements include 3D reconstruction of the scene in front of the
vehicle, ADASIS horizon, assignment of objects to lanes, detection of the free
space, driver monitoring, enhanced vehicle positioning, environment, front
near range perception, frontal object perception, lane course, lane recogni-
tion, moving object classification, occupant monitoring, parking lot detector,
recognition of unavoidable crash situations, relative positioning of the ego
vehicle to the road, road data fusion, road edge detection, scene labelling, self-
calibration, side/rear object perception, traffic sign detector, vehicle filter/state,
vehicle light detector, vehicle trajectory calculation, vulnerable road users
detection and classification.

The functional architecture of the perception layer is illustrated in
Figure 2.5. Depending on the ADAS system to be realized, some of the

2.3 DESERVE Platform Requirements 19

Figure 2.5 Perception platform functional architecture.

components in the generic perception platform architecture may be omitted
(without losing generality). The modules developed in the project to build the
demonstrators are highlighted by thicker boxes.

The number and variety of the different perception sources is manifold
and requires special care and precaution to transport the available information
in the subsequent data processing modules. Two main aspects have to be
taken into consideration when connecting perception sources to the DESERVE
platform: The information content may differ from sensor to sensor even
when the same technique (e.g. radar, video camera or ultrasonic sensor) is
used. Based on the physical concept used the individual sensors may have an
intrinsic lack of information that can never be provided, independent of the

20 The DESERVE Platform: A Flexible Development Framework

effort spent to improve the sensor performance (e.g. radar sensors can never
“visually” read the road signs content while video sensors can never provide
direct speed measurements).

By using the general interface descriptor approach the data input structure
for the perception layer processing module becomes independent from the real
sensors connected to the DESERVE platform. This kind of concept is used
in PC architecture since several years under the term hardware abstraction
layer that completely decouples data information from the physical hardware
in use.

The flexibility and scalability of the overall system is much better
and reusability of SW components that are already developed is higher.
Improvements and changes within the subgroups (i.e. environmental sensors
or perception input processing module) can be conducted on a standalone basis
without modifying or adapting the whole data processing chain at all. General
adoption of the whole data processing chain is thus only needed in the case
that the interference descriptors between the modules have to be updated or
modified due to recently emerging needs.

As the diversity of the already existing environmental sensors is already
huge and many products are already in series production, the change of the
sensor output signals is often not possible at all. To connect already existing
sensing devices or sensors with an IP-protected signal output to the open
DESERVE platform, a work-around with converter or breakout boxes can
be applied. Using such interface converter/breakout boxes almost any kind
of sensor system can be attached to the standardized and abstracted input
channels of the generic DESERVE platform.

Application module requirements
The application module needs to consider the following requirements: ACC
control, activation control, advance warning generator, calculation of required
evasion trajectory, decision unit, driver intention detection, driving strategy,
intervention path determination, IWI manager, reference maneuver, situation
analysis, target selection, threat assessment, trajectory control, trajectory
planning, vehicle model and vehicle motion control.

The functional scheme of the application platform modules is depicted
in Figure 2.6. The modules are divided in clusters having the same scope.
Some of them have mainly the objective to select the driver intention and the
most dangerous target. Other modules execute control operations and make
an evaluation about the current situation of warning and eventually decide
specific actions. Then the type of information to provide to the driver and the

2.3 DESERVE Platform Requirements 21

Figure 2.6 Application platform functional architecture.

intervention strategy are decided. Finally, the kind of actuation to adopt is
provided to the IWI Platform modules.

IWI module requirements
The IWI module is dedicated to suit requirements regarding the HMI (acoustic,
displays, telltales, haptic steering wheel, haptic accelerator pedal, haptic safety
belt), actuation of external lights, lateral actuation (steering angle and steering
torque controller) and longitudinal actuation (engine acceleration controller).
The functional architecture of the IWI platform is depicted in Figure 2.7.

Different levels in the development process of ADAS require different
instances (i.e. realizations) of the generic DESERVE platform – from PC based
(development level 1) to production hardware (development level 4). With
increasing development levels, additional requirements need to be addressed.
This principle shall be explained in the next two subsections.

2.3.3 Rapid Prototyping Framework Requirements
(Development Level 2)

This section shortly outlines the main requirements for the DESERVE rapid
prototyping platform. The main intention here is to specify a flexible and

22 The DESERVE Platform: A Flexible Development Framework

Figure 2.7 DESERVE IWI platform.

modular rapid prototyping environment allowing ADAS related perception,
application and intervention algorithms to be developed in short iteration
cycles and to be prototyped directly in the vehicle. In order to do so, there is a
need to connect different kinds of sensors to the development framework, to
pre-process and fuse the sensor data, to calculate the actualADAS applications
and to finally drive the respective actuators.

The structure for the generic requirements in the previous section, the
rapid prototyping system requirements are structured in hardware, software
and FPGA code requirements. In addition, a distinction is made between
perception (i.e. sensor data processing) and application algorithms.

2.3.4 Additional Requirements for Embedded Multicore
Platform with FPGA (Development Level 3)

While the main focus of development level 2 is on evaluation of algorithms
in real-time on public roads, thus on ADAS functionalities and use in the
DESERVE DAS function demonstrators, levels 3 (and 4) go significantly
ahead in terms of fulfilling “critical” requirements like AUTOSAR com-
patibility, SPICE compliance and functional safety (ISO 26262) which are
mandatory for industrial use of the platform. Due to limited resources and

2.4 DESERVE Platform Specification and Architecture 23

limited project duration, these requirements cannot be fully implemented
in DESERVE. Nevertheless all the work done for the “non-industrialized”
DESERVE platform can be (partly) reused or carried over to the industrialized
version of the DESERVE platform (level 4).

2.4 DESERVE Platform Specification and Architecture

The generic platform requirements were translated into specifications, which
represent the starting point for the development of modules for the DESERVE
platform. The specifications were included into an Excel file which is acces-
sible to all project partners via the project server. By means of an iterative
process, both specifications and software design were refined and improved.
Asummary of the specification approach and of the specifications derived from
the DESERVE platform requirements is provided in deliverable D1.3.1 [2].

2.4.1 DESERVE Platform Architecture

The architecture of the DESERVE development platform shall follow both the
principle of standard DAS development cycles and the mappings of applica-
tion building blocks to final, often heterogeneous hardware implementations.
To date there is no tool or framework available that covers both requirements
at the same time on the same platform.

In the early concept and implementation phase the basic development,
specification and validation (e.g. with MIL, SIL or HIL) is often done with
another development framework (both for SW and HW) than the one applied
for the final target platform. Little is known or taken into account from the
final embedded system characteristics when first application algorithms are
programmed and very often the SW modules written in this first development
environment have to be reprogrammed from the scratch when porting it to
the embedded system on chip. If the software, mostly written in a high-level
programming language, finally fits the target system one has selected for series
production, is a game of pure chance and not rarely during the series product
development cycle a larger target system or some “add-ons” have to be chosen.
With the new design space exploration methodology the certainty to select the
suitable embedded target system at first time is significantly increased.

The DESERVE development platform architecture has to comply with the
following basic needs:

• Enough flexibility to encompass different development environments
in a common, seamless framework for both the high-level algorithm

24 The DESERVE Platform: A Flexible Development Framework

development and the easy porting of these SW modules to the embedded
target platform.

• Real time recording and playback capabilities for both the high-level and
embedded system implementations.

• A communication architecture that is capable to shift SW portions
from the high-level development side to the embedded target system
as required (i.e. bypassing with HW accelerators).

• A seamless interoperability and replacement between the high-level
(i.e. PC-based) and embedded target systems both for development and
validation purposes.

The basic idea and intention of this hardware architecture is to standardize the
interfaces between the three different development concept levels as good as
possible.

Inputs from proprietary ADAS sensor systems and information sources
are analyzed via a generic interface no. 1 to the PC based development
environment. Here the ADTF tool with its filter programming concept is
used to develop or improve SW modules on a high-level programming
language. The partitioning and optimization of parts of the SW modules is
consecutively done by shifting such portions over the generic interface no. 2
to the embedded controller framework that is already much nearer to the final
commercial product. Via this bidirectional interface bypassing techniques like
PIL(embedded Processor In the Loop) can be realized. In a final step, dedicated
HW accelerators can be linked in via the generic interface no. 3 by applying
the same bypassing concept. Especially computationally intensive tasks can
so be “outsourced”, so that even the PC-based platform is capable to keep the
stringent real-time constraints.

Depending on the performance of the PC either all or only specific parts of
the SW modules can be executed there. During the development process more
and more SW parts are transferred to the HW-Accelerator level, which, in
the final development stage, results in the next generation embedded ADAS
target system. At this last development step, the level 1 (PC) and level 2
(embedded controller) platform will only serve as a shell to keep up the overall
development framework.

Reuse of already existing components from former ADAS generations
may be used in the early development phase as HW accelerators for compu-
tational intensive calculations. Mainly standard algorithms that are fixed and
receive no further modifications are preferred candidates for such specific HW
accelerators.

2.4 DESERVE Platform Specification and Architecture 25

Figure 2.8 DESERVE platform (e.g. for development Level 2 – rapid prototyping system
based on mixed PC and embedded controller framework).

This section summarizes the DESERVE platform architecture aspects. It
considers hard- and software architecture aspects. The platform architecture
is described in detail in deliverable D25.2 [4].

2.4.1.1 Hardware architecture
DESERVE has to be flexible enough to be implemented in a distributed and
scalable architecture (several modules, each of them able to sense and/or
process and/or actuate) or a concentrated one (sensors and actuators all linked
with a single unit of processing and control). Task 2.5.1 identifies which
conditions have to be satisfied by the individual subsystem architectures in
order to be compliant with the DESERVE generic hardware platform.

For maximum reusability the DESERVE concept and hardware architec-
ture was designed in such a way that subsystems of different generations
(or respectively the kernels of it) can be used in parallel, thereby enabling
the rapid and effective creation of next-generation innovative ADAS systems
by using well tested and certified kernel functions of the “old” system which
partly could be already implemented as SoC (System on Chip). The DESERVE
development platform can be seen as a flexible rapid-prototyping environment
that enables fast and efficient development of next generationADAS functions
in a continuous iteration cycle between the current and next-generation
embedded subsystem components.

Furthermore, the DESERVE concept is flexible enough for different
DESERVE partners to make different implementations. These would be of
forms that might in future be interoperable, although DESERVE will not

26 The DESERVE Platform: A Flexible Development Framework

attempt to define detailed standards which would be necessary for actual
interoperability.

The main DESERVE idea concerns the use of one common platform
system (Figure 2.9) for all ADAS functional modules, instead of the current
approach to have one platform for each individual ADAS system. Basically,
three main hardware architecture challenges arise from this idea:

• Automotive quality: The platform needs to provide high reliability over
the complete automotive temperature range, power supply and environ-
mental conditions.AsADAS systems address safety aspects, the platform
should implement as far as possible the ISO 26262 requirements, i.e. at
least the hardware components that are near to the final product unit shall
support the required ASIL level.

• Possibility to extend hardware capabilities: The platform needs to be
designed up-front to support the possibility to include additional hard-
ware into the system. Standard sensor interfaces are needed, for instance,
but also standardized interfacing to external FPGA/DSP for performance
enhancement is required. For scalability purposes, such external devices
need to be cascadable. Similar considerations hold for the memory
interface capability.

• A special case of hardware extension capabilities is the reuse of serial
parts from earlier generations to speed up the development process or to
increase the sensor perception by placing more sensors on the car.

• Finally, a seamless environment tool chain is needed. One key require-
ment lies in the reuse of the existing tool ecosystem over several
platform generations. Further, we should target adaptability of the
tools to the broad industry use cases, e.g. next generation video
and radar sensors. Additionally, real-time monitoring and debugging
of interface and processing for development purposes represent key
challenges.

2.4.1.2 Software architecture
As for hardware architecture, the characteristics and constraints that the
software architecture has to fulfill to accept an application based on modules
developed inside the DESERVE platform (Figure 2.10) were identified.
AUTOSAR standards were considered1.

1Note: Being a research project, the development work conducted in DESERVE is dis-
charged from being fully compliant with the AUTOSAR standard. Where possible and easy
to implement, inputs from AUTOSAR were considered, of course. A mandatory request for
AUTOSAR compliance is, however, not up for discussion.

2.4 DESERVE Platform Specification and Architecture 27

F
ig

ur
e

2.
9

D
E

SE
R

V
E

ap
pr

oa
ch

–
us

e
of

co
m

m
on

pl
at

fo
rm

fo
r

al
lA

D
A

S
m

od
ul

es
.

28 The DESERVE Platform: A Flexible Development Framework

Figure 2.10 DESERVE platform architecture.

The key architecture challenges are: AUTOSAR Standards Architecture
for the full platform system including performance accelerators, request for
high SW re-usability/testability including re-use of older generation software
blocks, fast time to market, highly optimized library for optimal performance,
automatic code generation, standard compiler/tool chain and finally, hardware
tool software support for realtime debugging, high speed parallel sensor data
capture for validation and on-system debugging is required.

Application Software Modules
On the base of AUTOSAR standard, the general software architecture can
be represented in three main layers: low level (basic software: this level
abstracts from the hardware, provides basic and complex drivers and services
for high level, i.e. memory, I/O), middle level (virtual function bus and runtime
infrastructure) and high level (application software components).

The AUTOSAR standard introduces two architectural concepts (respects
to other embedded software architectures) that facilitate infrastructure inde-
pendent software development. Namely, these are the Virtual Function Bus
(VFB) and the Runtime Infrastructure (RTE) that are closely related to each
other.

2.4 DESERVE Platform Specification and Architecture 29

In order to realize this degree of flexibility against the underlying infras-
tructure, the AUTOSAR software architecture follows several abstraction
principles. In general, any piece of software within an AUTOSAR infras-
tructure can be seen as an independent component while each AUTOSAR
application is a set of inter-connected AUTOSAR components.

Further, the different layers of abstraction allow the application designer
to disregard several aspects of the physical system on which the appli-
cation will later be deployed on, like type of micro controller, type of
ECU hardware, physical location of interconnected components, networking
technology/buses or instantiation of components/number of instances.

The middle level, VFB (Figure 2.11), provides generic communication
services that can be consumed by any existing AUTOSAR software com-
ponent. Although any of these services are virtual. They will in a later
development phase be mapped to actual implemented methods that are specific
for the underlying hardware infrastructure. The RTE (runtime environment)
provides an actual representation of the virtual concepts of the VFB for one
specific ECU.

An AUTOSAR software component in general is the core of any
AUTOSAR application. It is built as a hierarchical composition of atomic
software components. The AUTOSAR software component can be divided in
Application Software Component and AUTOSAR Interface. It is important
for DESERVE to preserve (and build up during the prototyping phase of the
applications) the AUTOSAR modularity concept. Consequently, DESERVE
focuses on the development of modular Application Software Components.

Figure 2.11 Overview on the principles of virtual interaction using the AUTOSAR.

30 The DESERVE Platform: A Flexible Development Framework

Multi-task option to permit adding and removing of functionalities
The modularity is one the most important directive in the design of a global
architecture, their functions and modules for embedded systems. Different
multi-tasks (called processes) can be executed by sharing common processing
resources in the same CPU. In this line, multi-thread languages as C++ are
used by different developers around the world.

The software environments used in the DESERVE platforms (e.g. ADTF
and RTMaps) are able to transfer functions already programmed in C and
C++. These tools are multi-sensory software, designed for fast and robust
implementation in multitask systems. They use functional blocks (called
components) for data flowing between different types of modules: video,
audio, byte streams, CAN frames, among others.

This multi-threaded architecture allows the use of multiple asynchronous
sensors within the same application (see RTMaps andADTF sections in D1.3.2
[3]). Moreover, they take advantage of multi-processor architecture for more
computing power.

Based on the Development Platform Requirements [1], there are three main
stages in the control architecture: perception, application and IWI platform.
The goal of the DESERVE approach is to add different functions (Multi-task)
in the same platform.

2.4.2 DESERVE Platform Interface Definition

The definition of the DESERVE interface architecture is described together
with state of the art ADAS interfaces and next generation interfaces in
deliverable D2.5.4 [5]. Due to the high relevance of the interface architecture
for the DESERVE platform concept, a brief description is included in the next
paragraphs.

2.4.2.1 Definition of DESERVE interface architecture
The definitions of the interface architecture plays a central role for the
communication and data exchange between the different DESERVE platform
modules and sensor components. In the DESERVE deliverable D2.2.1 [12]
the abstracted interface descriptors are already defined on a content-based
hierarchical level. With standardized information data flow between the
numerous platform modules both the development time and the extension
in performance and scope of the encapsulated modules can be realized very
efficiently and in a well-structured way. The architecture of the interface has

2.4 DESERVE Platform Specification and Architecture 31

to be defined individually for each of the existing OSI layers, starting from
the physical layer up to the application layer.

For modules that only communicate within the same hardware unit the
physical data and communication layer are no longer needed. Instead, a
message box oriented data transfer link is proposed for usage in the DESERVE
project. The data to be transmitted is written in a predefined message box
descriptor field and message flags trigger the synchronization and data
updates in the concerned modules. The message box principle is sketched in
Figure 2.12.

The interfacing concept of the AUTOSAR standard is considered and
incorporated in the DESERVE platform where useful and appropriate. The
AUTOSAR mode of operation, as depicted in Figure 2.13, fits already quite
well with the general DESERVE approach proposed in this document.

In order to achieve a good reusability of embedded software functions, it
has proven to be efficient in the industry to separate the “function software”
from parameters defining the behavior of the software (= calibration data). This
allows generating embedded systems with generic software functionalities
by “embedded systems suppliers” (e.g. Continental, Bosch or others). Such
systems are bought by OEMs for building their ADAS systems. The OEM
can adapt the generic function to the individual behavior significant for his
customers “just by calibration”. In this process via an application system
(market leader is INCA for example), the calibration data can be changed
while the embedded system is running – regardless if simulated on a PC or

Figure 2.12 Message box principle for intra-unit communication.

32 The DESERVE Platform: A Flexible Development Framework

Figure 2.13 AUTOSAR application software concept.

running already on the target hardware. The separation of calibration date and
function software is also allowed according to the AUTOSAR concept.

2.4.2.2 Existing ADAS interfaces
All electronic embedded systems used to control vehicle functions (specifically
ADAS) need communications networks and protocols to manage all the
process information. The modules receive input information from a network
of sensors (e.g. for engine speed, lasers, cameras, etc.) and send commands
to the control stage (Application platform in DESERVE), and finally to the
actuators or warning systems that execute the commands (IWI platform) [1].

Due to the increasing complexity of modern ADAS applications, point-
to-point wiring has been replaced by multiple networks and communications
protocols. These protocols use different physical media to provide safe
connection among components on the vehicle. These include single wires,
twisted wire pairs, optical fiber cables, and communication over the vehicle’s
power lines.

Communication protocols
Some of the most known and used communication protocols and standards
used in nowadays vehicles are:

• CAN (controller area network)
• VAN (vehicle area network)

2.4 DESERVE Platform Specification and Architecture 33

• FlexRay
• LIN (local interconnect network)
• SAE-J1939 and ISO 11783
• MOST (Media-Oriented Systems Transport)
• Keyword Protocol 2000 (KWP2000)

Recent vehicles have installed multiple networks (with different protocols) to
communicate among electronic control units (ECU) onboard. The networks
are isolated from one another for several reasons, including bandwidth and
integration concerns.

Existing interface standards
Current ADAS systems are designed and built to provide a dedicated answer
to specific functionalities. Most ADAS are including in the same box the
sensor itself and the processing unit. So, the raw data provided by the sensor
(camera, radar) are directly loaded inside the ECU unit and processed. Only
high level (processed) information is available on the communication buses.
Raw data (e.g. pixel information of images) is not available.

The ADAS modules are dedicated products which communicate mainly
within the same hardware unit. Nevertheless, to adjust the algorithms in
function of the vehicle status, it’s necessary to provide theADAS modules with
some vehicle information as: speed, yaw rate, direction indicator status, etc.

To manage the vehicle information acquisition and sending of the outputs,
various communication interfaces are available, depending on the product,
e.g. CAN or FlexRay communication interfaces.

The communication bandwidth requirements increase more and more with
more and more complex applications, the existing network are not specified to
cover the increasing demands for bandwidth, and the Ethernet price. Ethernet
seems to be an alternative to the existing communication hardware.

2.4.2.3 Definition of next generation interfaces
The definition of next generation high speed sensor interfaces is the key
to enable the improvement for next generation driver assistant systems. An
optimized interface leads to optimized dataflow and system performance. For
each sensor family (Camera/RADAR) there is a dedicated interfacing needed.

Parallel camera interface (CIF)
The Camera Interface (CIF) represents a complete video and still picture input
interface transferring data from an image sensor into video memory. Further-
more, several hardware blocks – performing image processing operations on
the incoming data – are provided (Figure 2.14).

34 The DESERVE Platform: A Flexible Development Framework

Figure 2.14 Camera Interface (CIF) overview.

Apart from providing the physical interfacing to various types of camera
sensor modules, the CIF block implements image processing and encoding
functionalities. The integrated image processing unit supports image sensors
with integrated YCbCr processing. Additionally, the CIF also supports the
transfer of RAW (e.g. Bayer Pattern) images and non-frame synchronized
data packets. The CIF block features a 16 bit parallel interface. All output
data are transmitted via the memory interface to a BBB (Back Bone Bus)
system using the master interface. Programming of the CIF is done by register
read/write transactions using a BBB slave interface.

The CIF provides a sensor/camera interface for a wide variety of video
applications and it is optimized for high speed data transmission under terms of
low power consumption. This module is designed to be used for the following
use cases: video capturing/encoding, still image capturing in YCbCr with
on-the-fly JPEG encoding and RAW frame data capturing.

The CIF requires fast system memory for image storage in either planar,
semi-planar or interleaved YCbCr or RAW planar format or as JPEG com-
pressed data. The iJPEG encoding engine should be able to generate a full
JFIF 1.02 compliant JPEG file that can be displayed directly by any image
viewer. Important YCbCr formats – which are used for video compression
(e.g. MPEG4) for instance – are supported. For on-the-fly encoding macro
block line interrupts are generated to trigger video encoding.

Serial RADAR interface (RIF)
Analog-to-digital converter (ADC) sample rates have been increasing steadily
for years to accommodate newer bandwidth-hungry applications in commu-
nication, instrumentation, and consumer markets. Coupled with the need to

2.5 Safety Standards and Certification Concepts 35

digitize signals early in the signal chain to take advantage of digital signal
processing techniques, this has motivated the development of high-speedADC
cores that can digitize at clock rates higher than 100 MHz to 200 MHz with 8
to 12 bit resolution.

In standalone converters, theADC needs to be able to drive receiving logic
and accompanying PCB trace capacitance. Current switching transients due
to driving the load can couple back to the ADC analog front end, adversely
affecting performance. One approach to minimize this effect has been to
provide the output data at one-half the clock rate by multiplexing two output
ports, reducing required edge rates, and increasing available settling time
between switching instants.

Use of LVDS for ADC high speed data output
A new approach to providing high-speed data outputs while minimizing
performance limitations in ADC applications is the use of LVDS (low voltage
differential signaling). Infineon is incorporating LVDS output capability in
new RF devices ADCs—and will include LVDS input capability in its new
micro-controller designs.

Standards
Two standards have been written to define LVDS. One is the ANSI/TIA/EIA-
644 which is titled “Electrical Characteristics of Low Voltage Differential
Signaling (LVDS) Interface Circuits.” The other is IEEE Standard 1596.3
which is titled “IEEE Standard for Low-Voltage Differential Signals (LVDS)
for Scalable Coherent Interface” (SCI).

Generic interface to communicate between ADTF project
and FPGA based hardware platform
In order to allow an easy and standard communication between an ADTF-
Project and the FPGA-based hardware platform, a generic interface is used.
The generic interface realizes the communication with different processing
elements implemented in the FPGA-based hardware platform transparent to
the user.

2.5 Safety Standards and Certification Concepts

Some concepts related to modular certification have already been adopted by
current standards and thus have found their way into the state of the practice.
This is particularly true for the fields of automotive systems because the trend
towards modularized architectures has been particularly strong in this field.

36 The DESERVE Platform: A Flexible Development Framework

2.5.1 Safety Impact of DESERVE

Modularization of a common ADAS platform comes with a clear impact on
safety. Modules will interact, for example on Missed Trigger Interaction,
Shared Trigger Interaction, Sequential Action Interaction and/or Looping
Interaction.

Module interaction implies that any change in operation of one mod-
ule (feature) can be attributed in part or in whole to the presence of any
other module (feature) in the operational environment, as illustrated in the
Figure 2.15.

2.5.2 Functional Safety of Road Vehicles (ISO 26262)

The international standard ISO 26262 for the functional safety of street vehi-
cles contains the so-called concept of Safety Element out of Context (SEooC).

Figure 2.15 Module interaction implies changes in system behavior.

2.5 Safety Standards and Certification Concepts 37

A SEooC is defined as a component for which there is no single predestinated
application in a specific system. Therefore, the SEooC developer does not
know the concrete role the product has to play in the safety concept. Sub-
systems, hardware components, and software components may be developed
as SEooCs. Typical software SEooCs are reusable, application independent
components such as operating systems, libraries, or middleware in general.

For SEooC development, the standard suggests specifying assumed safety
requirements and developing the system according to these requirements.
When the SEooC is to be used in a specific system, the system developer has
to specify the demanded requirements, which can subsequently be checked
against the assumed requirements. If there is a match between the demanded
and the guaranteed (assumed) requirements, system and component are
compatible.

The standard does not provide any suggestions or methods on how to
identify safety requirements such as to increase the chance that assumed
and real requirements will actually match. The standard specifies a relatively
coarse-grained process for embedding a SEooC development into the stan-
dard’s safety lifecycle. This approach deals with hierarchical modularization
since it focuses on the SEooC’s role as a sub-component of a system.

In general, integration of the SEooC is expected to be done at development
time and thus there is no explicit support for open systems where components
are to be integrated dynamically.

2.5.3 Guidelines Related to ISO 26262

ISO 26262 is a derivative of IEC 61508, the generic functional safety standard
for electrical and electronic (E/E) systems. Ten volumes make up ISO 26262.
It is designed for series production cars, and contains sections specific for
management, concept and development phase, production, operation, service
and decommission.

The ISO 26262 requires the application of a “functional safety approach”,
starting from the preliminary vehicle development phases and continuing
throughout the whole product lifecycle.

The DESERVE project focuses on the concept and development (at system,
hardware and software level) phases of the lifecycle. During these phases, the
main steps defined by the Standard are:

Item definition: the Item has to be identified and described. To have a
satisfactory understanding of the item, it is necessary to know about its
functionality, interfaces, and any relevant environmental conditions.

38 The DESERVE Platform: A Flexible Development Framework

Hazard analysis and risk assessment: to evaluate the risk associated
with the item under safety analysis, a risk assessment is required. The risk
assessment considers the functionality of the item and a relevant set of
scenarios. This step produces the ASIL (Automotive Safety Integrity Level)
level and the top level safety requirements.

The ASIL is one of the key concepts in the ISO 26262. The intended
functions of the system are analyzed with respect to possible hazards. The
ASIL asks the question: “If a failure arises, what will happen to the driver and
to associated road users?”.

The risk of each hazardous event is evaluated on the basis of frequency of
the situation (or “exposure”), impact of possible damage (or “severity”) and
controllability.

The ASIL level is standardized in the scale: QM: quality management,
no-risk and A, B, C, D: increasing risk with D being the most demanding. The
ASIL shall be determined without taking into account the technologies used
in the system. It is purely based on the harm to the driver and to the other road
users.

Identification of technical safety requirements: the top level safety
requirements are detailed and allocated to system components.

Identification of Software and Hardware safety requirements: The tech-
nical safety requirements are divided into hardware and software safety
requirements. The specification of the software safety requirements consid-
ers constraints of the hardware and the impact of these constraints on the
software.

To take into account the functional safety approach, the DESERVE
applications should consider the application of the following main points:
analyze risk early in the development process; establish the appropriate
safety requirements and consider these requirements in software and hardware
development.

The impact of the standard is different for the development of warning
functions, control functions or automated driving functions.

2.5.4 Safety and AUTOSAR

In the automotive domain, Östberg and Bengtsson [14] propose an extension
to AUTomotive Open System Architecture (AUTOSAR) which consists of a
safety manager that actively enforces the safety rules described in dynamic
safety contracts. Their main contribution is a conceptual model of safety

2.5 Safety Standards and Certification Concepts 39

architecture suitable for runtime based safety assessment. Openness and
Adaptivity were both addressed.

Also in the automotive domain, Frtunikj et al. [15] present a runtime
qualitative safety assessment that considersAutomotive Safety Integrity Level
(ASIL) and its decompositions in open automotive systems. In their solution,
the authors consider the modularization of safety-assessment using Safety
Elements out of Context (SEooC) from ISO 26262. In their approach, the
SEooC was extended and the safety-assessment is done at runtime by a Safety
Manager component.

2.5.5 Safety Mechanisms for DESERVE Platform

As an example, this paragraph summarizes some features of the safety
mechanisms that are available by Infineon’s multi-core platform AURIX
which represents a potential instance of DESERVE platform (development
level 3). Its safety documentation includes:

• Safety case report providing the arguments with evidence that the objec-
tives of the ISO 26262 and the safety requirements for a component are
complete and satisfactory.

• FMEDA (customer and Infineon proprietary document)
• Safety manual including an overview of the assumed application use

cases and guidance for the application level, a summary of safety features
and mechanisms and their recommended use as well as the summary of
achieved safety metrics and resulting ASIL compliance [13].

The AURIX microcontroller platform is developed as a SEooC (Safety
Element out of Context) and provides the safety mechanisms summarized
in Figure 2.16. It provides a Safe Computation Backbone compliant with
ISO 26262 ASIL D (this includes Single Point Fault Metric fully supported
by HW mechanisms and Latent Fault Metric supported by SW (SafeTlib),
Logic MIST, MBIST). Support criteria for coexistence of elements are enabled
through a layered protection system (covering CPU tasks, Shared Memories,
Peripherals), CPU supervisor/user privileges, Safety Task Attribute and a rich
set of counters & watchdogs for program flow & temporal monitoring. SEooC
deliverables are the Safety Library (SafeTlib), Safety Manual to support
SEooC integration and FMEDA to support computation of the ISO 26262
Metrics.

Top Level Safety Requirements (TLSR) related to the Microcontroller
I/O sub-system are specified by the system integrator, as these vary for

40 The DESERVE Platform: A Flexible Development Framework

Figure 2.16 SEooC safety mechanisms.

each application. TLSR1 (ASIL D) requires to avoid false output of the
microcontroller for longer than the FTTI (Fault Tolerance Time Interval,
Figure 2.17), while TLSR2 (ASIL B) only require to avoid unavailability
of a safety mechanism for longer than one driving cycle.

The Fault Tolerant Time Interval is more precisely defined by Figure 2.18.
The application dependent fault detection time worst case is the diagnostic
time interval. The fault detection time depends on the safety mechanism. The
fault reaction time is the sum of failure signaling time and failure reaction
time. Failure signaling time depends on the microcontroller architecture, while
failure reaction time depends on the application. The failure signaling time is
composed by the alarm forwarding time plus the alarm processing time plus
the failure signaling time.

Safety requirements
With the AURIX as basis for DESERVE platform realization, it fulfils the
targets according to ISO 26262-5, 8.4.5, which defines requirements for ISO
26262 metrics. To achieve ASIL D, for instance, the single point failure metric
(SPFM) needs to reach minimum 99% and the latent fault metric (LFM)
needs to reach 90% or above. The minimum values of SPFM and LFM shall

2.5 Safety Standards and Certification Concepts 41

Figure 2.17 Top level safety requirements.

Figure 2.18 Fault tolerant time interval (FTTI) definition.

be reached by every vital part. The SPFM threshold levels shall be reached
both for permanent and for transient faults. For a given ADAS application
SPFM, LFM and PMHF (probabilistic metric related to hardware failures)
metrics are estimated based on the vital, critical and application-dependent
parts utilization.

42 The DESERVE Platform: A Flexible Development Framework

In terms of PMHF for ASIL D safety goal, ISO 26262-5 requires a metric
of less than 10 FIT (failure in time, referring to 10ˆ9 hours). ISO 26262-5
9.4.3.6 and 9.4.3.7 specify the relationship between ASIL and FCR and DC
(Residual Faults). To meet ASIL D requirements the diagnostic coverage for a
FCR5 part shall be > 99.99%. The safety mechanisms are designed to achieve
coverage of 99.99%.

Safety architecture
The safety architecture goal is to provide a safe computation platform for
up to ASIL D safety applications according to ISO 26262, as this ASIL
level is required for most next generation ADAS. To achieve this level, safe
computation hardware and software, safe operating system as well as safe
software architectures are required.

The generic elements (vital parts) of a safe computation hardware platform
are summarized in Figure 2.19. Safe CPU requires hardware redundancy,
realized by delayed lockstep CPU with enhanced timing and design diversity.
Safe SRAMs allows information redundancy (realized by standard SECDED
ECC, address signatures). Also safe Flash memory is needed for information
redundancy (realized by an enhanced ECC with more than 99% coverage
of arbitrary multiple-bit fault). Enhanced error detection codes for covering
data & addressing faults lead to safe interconnects and support informa-
tion redundancy. The clock system frequency range monitors using internal
high precision independent clock source, internal & external watchdogs.

Figure 2.19 Generic elements of safe computation hardware platform.

2.5 Safety Standards and Certification Concepts 43

Finally power supply range monitoring is implemented for the internal
regulators.

To achieve a safe computation software platform an ASIL D compliant
operating system needs to be used featuring memory protection and time
protection. Further it needs to provide services for program flow monitoring,
end-to-end communication safety protocols as well as safe interrupt vector
generation. ASIL D compliant software is required to be developed according
to ISO 26262 part 6.

The AURIX platform ensures freedom of interference at software level
by means of SW isolation, while freedom of interference at hardware level
is guaranteed by HW isolation. The CPU MPU (memory protection unit)
monitors the direct access to the local memories, applies to software tasks and
allows dynamic re-configuration. The bus MPU monitors the SRAM accesses
via interconnect. Finally register access protection monitors write access rights
to module registers.

References

[1] DESERVE deliverable D1.2.1 – Development platform requirements.
[2] DESERVE deliverable D1.3.1 – Development platform specification.
[3] DESERVE deliverable D1.3.2 – Method and tools specifications.
[4] DESERVE deliverable D2.5.2 – Platform system architecture.
[5] DESERVE deliverable D2.5.4 – Standard interfaces definition.
[6] AUTOSAR, http://www.autosar.org
[7] ISO 26262, Road vehicles – Functional safety (www.iso.org).
[8] A. Sandberg, D. J. Chen, H. Lönn, R. Johansson, L. Feng, M. Törn-

gren, S. Torchiaro, R. Tavakoli-Kolagari, A. Abele – Model-based
Safety Engineering of Interdependent Functions in Automotive Vehicles
Using EAST-ADL2, Lecture Notes in Computer Science, Volume 6351,
Series: Computer Safety, Reliability, and Security (SAFECOMP), Pages
332–346. Springer Berlin/Heidelberg, 2011. ISSN 0302-9743.

[9] www.interactive-ip.eu
[10] www.haveit-eu.org
[11] S. Durekovic (NAVTEQ), Perception Horizon: Approach to Accident

Avoidance by Active Intervention, Workshop “How can new sensor
technologies impact next generation safety systems?” IEEE IV 2011,
June 5 2011, Baden–Baden.

[12] DESERVE Deliverable D2.2.1 – Perception layer Preliminary Release.

44 The DESERVE Platform: A Flexible Development Framework

[13] AURIX Safety Manual, Infineon confidential document, no. AP32224,
v1.1, dated Sept. 2014.

[14] K. Östberg und M. Bengtsson, “Run time safety analysis for automotive
systems in an open and adaptive environment,” in SAFECOMP 2013 –
Workshop ASCoMS (Architecting Safety in Collaborative Mobile Sys-
tems), Toulouse, France, 2013.

[15] J. Frtunikj, M. Asmbruster und A. Knoll, “Data-Centric Middleware
support for ASIL assessment and decomposition in open automotive
systems”.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

