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This chapter describes success stories. The MANTIS architecture (Chapter 3)
was implemented for a number of use cases on real pilots, and the techniques
described in Chapters 4, 5, and 6 were experimented with in real settings.
Results on the techniques were already presented in previous chapters. This
chapter, on the other hand, describes the pilots, from their objectives and
context to the system integration efforts to the attained results. One of the
results of the application of the techniques was the enhanced Technology
Readiness Level of the techniques, which is summarized in Figure 7.1.

Each section takes care of providing details for a different use case, and
as a whole the chapter proves the large breadth of the applicability of the
MANTIS approach.

7.1 Shaver Production Plant
Contributors: Bas Tijsma, Paulien Dam and Daan Terwee

The goal of the shaver production plant use case is to increase the
predictability of the maintenance actions through smart use of data. By
actively utilizing various data sources in an automated manner, it is expected
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Figure 7.1 Maturity Level before and after the MANTIS project for the techniques in the
use cases.

to reduce the cost of the tooling, and reduce the amount of unexpected
downtime, thereby reducing the total cost of production. This section
provides an overview of the practical application of the several elements
developed and applied to this use case. The rationale of the approach is
represented in Figure 7.2.

7.1.1 Introduction to the Shaver Manufacturing Plant

The shaver manufacturing plant is one of the largest manufacturing plants
of Philips. For mass production of certain parts of the shaver an advanced
machining technique is used as manufacturing technology. The tools used in
this manufacturing process are the focus area for this use case.

Large amounts of data are gathered in the manufacturing plant about the
products and processes. These data is mostly used for manual, after-the-fact
analysis of process disruptions, machine failures and quality issues.

It is expected that these data (and where necessary additional data)
can be used to make predictions about product quality, process disruptions
and impending maintenance actions. By actively utilizing the data in an
automated manner, it is expected to reduce the cost of our tooling and
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Figure 7.2 Goals and vision for the shaver manufacturing site.

maintenance. The objective is to demonstrate that impending failures can be
accurately predicted by mining large amounts of data from heterogeneous
databases, such that tooling maintenance can be timely scheduled to prevent
unexpected downtime of the production lines and maximize tooling lifetime.

7.1.2 Scope and Logic

For the complete project, a full project scope was made. This chapter focusses
on a subset shown in Figure 7.3, and is largely based on practical experience
and domain expertise. The main focus, the prediction of tool failure, is put in
the center of the picture.

There are three main influencing factors regarding the life-time of a tool:

• Process behavior
The combined behavior of the process (measured by many sensors, see
Section 7.1.3) during the discrete manufacturing processes, as well as
process error behavior over time. Both the process sensor measures
behaviors, as well as process errors which may cause damage to the
tool and influence the state of the tool;
• Quality Status

It entails the geometrical measurements of the products made by
the aforementioned process, which need to comply with product
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Figure 7.3 Basic interactions.

specifications. Many quality deviations on the products can be related to
a change (damage, wear) in the tooling geometry, which might indicate
an (upcoming) failure;
• Tooling status

The current status of the tools with respect to wear, small damage, etc.,
over time. These cannot be measured by the process sensors and the
quality status, and usually imply measurements performed over longer
time periods.

The main goal is to use these three data sources in a combined model to
predict tool failures.

With the ability to model tool failure behavior, the output can be used
as an input to optimize Philips’ current maintenance policy and strategy. For
example, the amount of spare stock can be regulated much better, if the future
failures of tools can be predicted.

7.1.3 Data Platform and Sensors

In this use case, the existing proprietary platform of the manufacturing site
is used as much as possible, to be able to focus more on the analysis
and application part of the project. Most of the manufacturing machines
are connected to a legacy data platform, known as the Factory Information
System (FIS). It consists of various relational databases, to which the
machines are connected by custom developed drivers. This was custom built
over the course of several decades by the internal IT department.

Despite to recent developments in the so-called industry 4.0 revolution,
where much progress has been made into generic data exchange protocols
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(e.g., OPC-UA) and storage architectures (e.g., Mimosa), the equipment in
scope is legacy and cannot be changed easily. During the course of the project,
it became clear that performance of the existing platform was sufficient.
However, in the future, increasing amounts of data requests might hamper
overall performance.

The main data source in the platform is the process data. The machines in
scope are equipped with a wide variety of sensors. The output of the sensors
is collected by a machine controller to perform several pre-processing steps,
like filtering and aggregation, before the data is sent to the FIS platform. In
general, a set of data is collected and sent once per production cycle (in one
cycle one product is made). Each cycle contains over 100 parameters. The
data is externally accessible via the FIS platform.

Tooling information is also automatically stored in a separate database.
A digital log is kept on the lifecycle of each individual tool, for example on
which machines it was placed, the amount of products the tool has made and
maintenance actions taken by the tooling maintenance department.

The last data source is the product quality metrics. Quality data is
gathered by taking offline product samples on dedicated measuring devices.
These measurements are inputs for the quality system, which is also part
of the FIS platform, meaning they can also be accessed externally. All
measurements are geometrical, like form accuracy and thickness. Usually
these data are aggregated values of a larger set of measurement points, like
average, standard deviations, etc.

7.1.4 Data Analytics and Maintenance Optimization

The manufacturing process consists of several physical elements. Electrical,
chemical and mechanical elements are working together in order to manu-
facture the products, making it a highly complex process where interactions
between different signals can be easily overlooked when just monitoring
every signal individually. A prediction model (soft sensor) that combines all
different signals and processing them together gives better insight in these
interaction effects via computational intelligence. This sensor fusion deals
with disparate sources that do not have to originate from identical sensors.

7.1.4.1 Physical models and background
Before being able to successfully analyze process and manufacturing data,
domain knowledge is required, which can be provided by process engineers.
Without domain knowledge, it is very hard to understand the data, do the
analysis and validate the results.
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The machining process in scope is electrochemical machining (ECM).
This is an unconventional electrochemical manufacturing process, but it
is well established in niche applications like turbine blades and medical
implants [McGeough, 1988; De Barr and Oliver, 1975]. This process removes
material at the anode (work piece) using current controlled electrochemical
process. By feeding a shaped cathode (tool or electrode) towards the work
piece, the reverse shape of the tool is copied to the work piece.

It is a complicated process incorporating a number of physical phenomena
interacting with each other. Common problems with this process are related to
the variations of the material composition, variations in chemical conditions,
as well as the influence of the geometry of the tools. All these effects may,
in some form or another, change or damage tooling geometry, which in effect
will lead to quality issues.

7.1.4.2 Process monitoring with Principal Component Analysis
& Hotelling’s T2

The Principal Component Analysis algorithm in combination with the
Hotelling’s T2 score is used to get insight in the interaction effect of all
different process parameters. To train the model, the data is extracted from
the FIS platform and analyzed to make sure that the historic dataset consists
of data that indicates only normal process behavior, with no deviations or
outliers. This is an important step, since this data will serve as a reference for
future predictions.

The PCA algorithm is trained on the historical data where the
dimensionality of the entire dataset is reduced, while retaining as much as
possible of the variation present in the data set. This is done by transforming
the data to a new set of variables called the Principle Components (PCs),
which are, by definition, uncorrelated. By definition the PCs are ordered in
such a way that the first few PCs contain most of the variation present in
the original variables (see Figure 7.4). In this example, the red line indicates
that 5 PCs explain more than 90% of the original variance thus reducing the
dimensionality from 15 to 5 parameters. The PCA model transforms every
observation of the dataset into a set of scores of the same size as the number
of PCs.

For real-time calculations the trained PCA model is deployed on a server
and data from the PLC-PMAC system is fed into this model in order to obtain
the new weighted scores that indicate how close new observations are related
to the historic dataset. Because the PCA algorithm is a ‘white box’ algorithm,
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Figure 7.4 Cumulative explained variance of the principal components.

it has self-diagnostics abilities. The model can be used to determine the root
causes for fluctuations, trends and outliers.

The resulting PCA model allows for real time streaming data to be
transformed onto the principal component space defined during the training
phase. Assuming the training dataset is a good representative of normal
machine behavior, any significant deviations seen with the live streaming data
can be interpreted as signs of a defective machine behavior.

The Hotelling’s T2 value can be used as a measure for how close the
transformed live streaming data are to the training set. It is reasonable to start
from the simpler univariate case t-test that is defined as follows:

t=
x− µo
s/
√
n

(7.1)

where the null hypothesis H0 (the historic dataset) provides a mean µ = µ0
and a sample of n can be acquired from the population with mean x and
standard deviation s. The statistical interpretation is as follows: on average
the difference between the sample and null hypothesis will fall within s if
normal statistical variation can explain these differences. The overall t-score
is weighted by

√
n since any differences in the numerator become more

significant the larger the sample size becomes.
To generalize this result, it is possible to square the expression for the

t-test to obtain:

t2=
(x− µo)2

s2/n
(7.2)
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t2= n (x− µo)
(

1

s2

)
(x− µo) (7.3)

This is the same as an F-distributed random variable with 1 and n-1 degrees
of freedom. We can replace the difference between the sample mean x and µ0
with the difference between the sample mean vector

⇀
X and the hypothesized

mean vector
⇀
µo. The inverse of the sample variance is replaced be the inverse

of the sample variance-covariance matrix S:

T 2=n
(⇀
X −

⇀
µo

)
′S−1

(⇀
X −

⇀
µo

)
(7.4)

Using the above expression for T2 it is possible to compress a multivariate
dataset into one scalar metric that can quantify the status of a given
manufacturing machine. The use of a single parameter also facilitates
machine status visualizations with the monitoring of a single quantity, and the
calculated T2 value can be compared with predetermined confidence limits to
trigger warnings or alarms, should human interaction be needed to return the
given machine to a nominal status (see Figure 7.5).

7.1.4.3 Product quality prediction with partial least squares
regression

As described in Section 7.1.4.1, the product geometry is a negative copy of
the tool. Therefore, the product geometry is a suitable metric for detecting
deviations in the tool geometry such as damages or wear. In production, the
product geometry is measured on a sample basis, once every 4 hours. This

Figure 7.5 Control chart showing the Hotelling’s T2 score and tolerances to identify trends
and outliers in the multivariate data.
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is not frequent enough for monitoring potential tooling issues. However, by
relating the process data as described in the previous section with the product
quality data, a predictive model can be trained to estimate the quality of every
product made.

For this predictive model, the process data, enriched with a few extra
variables of the tooling is used as predictors (X). This process data has already
been pre-processed, and consists of an observation for every product made.
Each observation, in turn, consists of a collection of data points coming from
a variety of different sensors in the production machine. After careful research
and bootstrap modelling, 12 predictor variables were selected as input for the
modelling algorithm.

As response data (Y), product geometry data is used, which consists of
four Y-variables, which are sub selection of all the quality indicators for
products made by the manufacturing process. Both data sets have a common
product identifier which makes a good join between the two possible data
sets. Since product quality data is only measured on a sample basis, the time
interval between observations differs greatly from the process data. For this
reason, the data set is filtered, where only those observations that consist of
both process and quality data are kept.

The last step in the data preparation is outlier removal. The outliers (see
Figure 7.5) due to short term sensor failures or miscalculations during ETL
are removed from the dataset. Outliers due to physical events in the process
itself remain in the dataset, since they can hold valuable information for
modelling the relationships between parameters. Finally, the data is ready
to serve as an input for model training.

When the number of predictors (X) is too large (10) the more traditional
regression methods, such as linear regression, are not adequately effective.
Furthermore, in many cases manufacturing and/or sensory data have a
correlated nature. This causes the sample covariance matrix to be ill-
conditioned, because it becomes almost singular, which is a problem for
the more traditional regression methods. This can be solved by using linear
projection methods such as Partial Least Squares Regression [Wold, 1975].

Mathematically, there are quite some advantages for PLS compared to
traditional regression algorithms. Because PLS is a linear projection method,
it decomposes the covariance matrix that settles the singularity problem. This
gives PLS the ability to handle multicollinearity among the predictors (X).
Furthermore, these linear projection methods have the advantage that they
can handle missing data points in the data set. For example, if a particular
sensor has a short term failure or certain data points are removed from the



7.1 Shaver Production Plant 321

data set during outlier analysis, then the whole observation does not have to
be discarded, but can still serve as input to the algorithm. Moreover, PLS has
the extra advantage that it can incorporate multiple Y-variables (or responses)
in one statistical model. Finally, PLS is suitable for modelling and monitoring
larger number of variables simultaneously.

The trained PLS model gives promising results. In Figure 7.6, the results
of the PLS predictions are plotted against the actual (observed) results of a
specific product quality parameter. We see that there is only a small deviation
between the two trend lines; the Root Mean Square Error (RMSE) is 1.86,
and the R2 is 71.2%, which are good results given the acceptable range of the
quality parameter and the complexity of the production process itself.

7.1.4.4 Computational trust
Every production line has incidents. These incidents can be related to, for
example, machine failures or process errors. Due to the complexity of the
manufacturing process, quite many process errors are generated in time.
Some of these errors are critical, as they may cause additional damage.
Other errors have minor impact. The impact level and the frequency of
occurrence are both important factors in calculating the current state of a
particular process, but more advanced interactions are only possible, in which
a particular order or process errors can be critical.

Therefore, the concept of computational trust is researched, in order to
quantify the current ‘trust’ in the machine being in a ‘good’ state, or in a
‘bad’ state. This allows for errors to be specified (impact-level, fall-off level)
and to be combined in a specific ‘trust in good machine’-metric, as input for
the overall tool failure predictions. For example, refer to the particular case
presented in Figure 7.7, which reports generated error codes over time. Values
under the threshold of 0.6 are considered as a ‘bad’ state.

Figure 7.6 Graph of the predicted and the observed quality with PLS regression.



322 Success Stories on Real Pilots

Figure 7.7 Error codes over time, and corresponding trust values.

7.1.5 Visualization and HMI

For visualization of the analytics toolset, a prototype interactive dashboard
was developed and tested in production. It is inspired by a principle
component analysis (PCA) score plot, but redesigned to be better usable in a
production environment.

The goal is to give operators direct insight to the current status of the
production process in terms of overall process stability, but also enable
more detailed insight by allowing to drill down to the specific cause of
potential deviations. This is a major advantage of the methods described in
Sections 7.1.4.2 and 7.1.4.3, since it allows to relate aggregated scores (like
Hotelling’s T2) with individual sensor values.

The main screen (Figure 7.8) for giving direct insight consists of eight
plots, corresponding to eight machines performing the same process in
parallel. The individual graphs consist of a scatterplot, where the first and
second principal components are plotted. The green ellipse indicates the 95%
confidence limit, in which the process can be considered stable. Each point
represents an individual product manufactured on that specific machine (the
yellow point is the latest product).
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Figure 7.8 Main screen for production operators, showing process performance for eight
similar machines. The green circles indicate ‘good’ behaviour.

When the outcome of the process is too critical, the top bar will change
to either orange or red, indicating potential problems. The operators are
expected to respond to the alarm, and perform pre-specified actions.

By clicking on one of the eight machines, the dashboard will show
more information about this particular machine (see Figure 7.9). This
screen provides additional details, such as time-series graphs, to get a

Figure 7.9 Analysis screen of operator dashboard.
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better understanding of the problem. The operator (or engineer) can select
individual points, can show individual plots of sensor values and can colour
the scores based on a selected sensor. These are all experimental tools to help
find root-causes and solve production issues much faster.

7.1.6 Maintenance and Inventory Optimization Results

Within the MANTIS project, research has been performed on both the
prediction of machine process errors and failures of tools. So far, remaining
useful life estimations for the tooling are still uncertain, but moderate results
have been achieved with classification methods. Hence, it is investigated
what the added value is by using imperfect predictions of tool failures
to decide when to perform maintenance actions (e.g., tool inspections and
replacements) and when to place orders for new tools. Therefore, it is
assumed that a classification model (and its approximate performance) will
be the predictive input to the designed policy.

Furthermore, an analysis is carried out into the amount of products that
a tool can produce before being discarded. It turns out that the chance that a
tool is replaced due to a defect decreases when a tool reaches a longer tool life
(see Figure 7.10). In other words, tools that have a longer lifetime are more
likely to be replaced due to the age of the tool rather than defects caused by
the machine.

For the proposed policy, predictions of upcoming tool failures are
generated for every predefined time period (8-hour shift) within a prediction
horizon. With a multi-period prediction horizon, the predictions thus overlap.
The aggregate of the overlapping predictions is compared to an ‘inspection
threshold’ to decide whether to inspect a tool in the upcoming shift.
This threshold is optimized by explicitly modeling the imperfectness in
predictions. The predictions are also added as a data-driven component
to a (R, s, Q) inventory control policy. The expected amount of tools is
added to not fail in the coming review period (based on imperfect predictions)

Figure 7.10 Time to failure (in amount of products) for the three main tool types.
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to the conventional inventory position (IP). This altered IP is compared
to the reorder level s at each review period R to decide on whether to
order Q tools.

The predictions thus allow for postponing orders to the next review period
if enough tools are still expected to be operational by then. Implementing this
joint policy for the use case study will lead to an estimated annual savings that
consists of inventory savings, maintenance savings and a decrease in tools
ordered. There are also one-time savings in tooling purchasing costs from
lowering the current average inventory on hand level to the optimal level.

7.1.7 Conclusions

For the shaver production plant use case, quite a lot of effort has been spent
on the analytics parts during the MANTIS project. This was mainly possible
due to the already existing data acquisition platform, which provided a solid
starting point for analytics. Some very promising results have been found for
this use case.

It is proven that it is possible to use process data of the machines to make
good estimations of product quality. As a result, insights into current quality
performance has increased significantly, as well as a reduced reliability on
(slow) offline quality measurements of the products. On top of this, it can also
be used as an input for estimation on tooling status, since there is a known
relationship between the quality (shape) of the product and the shape of the
tool.

Another result is that with some creative thinking, concepts from the
academic world can be translated to real-world use cases. One such an
example is the computational trust-modeling, which looks quite promising
to quantify machine performance with respect to error behavior over time.
Again, this quantification is important, as it can be used as an input to the
tooling status model.

Image recognition techniques applied to the tools has proven to be
difficult, especially on complex shapes and glossy surfaces. Several attempts
have been made to use image recognition techniques to calculate tool wear,
which can also be used as an input for the wear model. None of them, so far,
have given any usable results.

Last, we also looked at the promises of predictive maintenance on tooling,
while keeping in mind the future applications to other production tooling
assets as well. One challenge is the predictive performance of models, which
is hard to estimate when the real output of the models is yet unknown.
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Data driven assumptions and simulation modeling can still provide good
insights in potential (financial) benefits. From a business point of view this
is important, as businesses typically demand clear business cases in order to
provide resources for further enhancements of these concepts.

7.2 Deploying an User Friendly Monitoring System for
Pultrusion Line Production

Contributors: Rafael Socorro, Raquel Garcı́a, Nayra Uranga, Silvia
Hernández, Mónica Sánchez, Alejandro Veiga, Eva Martı́nez, Stefano Primi

This use case aims to design and develop a reliable monitoring system
locating different sensors in key locations for gathering relevant data to
improve the preventive maintenance for different processes included in the
pultrusion process. Moreover, it allows to create an historical storage of all
the data collected to identify patterns in the future, and contribute to better
proactive maintenance.

7.2.1 Introduction to the Pultrusion Use Case

ACCIONA operates one manufacturing plant (with two production lines)
in Alcobendas (Madrid) for production of composite structures through a
pultrusion process. This process has been widely used for manufacturing
highly strengthened and continuous composite structures with low weight,
elevated mechanical and chemical resistance, and electrical and thermal
insulation. For example, they were used for the Pajares tunnels in Asturias
(Figure 7.11), for Valencia Lighthouse (Figure 7.12), and for the pedestrian
bridge in Madrid (Figure 7.13). The properties of the composite structures are
the main reason why this method has become essential in the development of
ACCIONA’s highly differentiated construction projects.

This process is very challenging in terms of production and maintenance
of the equipment involved as it is a continuous process and the machines
are running 24 hours a day, so it is necessary to avoid production stops or
unexpected delays.

7.2.2 Scope and Logic

The production line, shown in Figure 7.14, is continuous, it stops only when
the part model being produced changes. A new product to be produced
entails a new configuration of the machine. The current maintenance policy
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Figure 7.11 Waterproofing the Pajares tunnel in Asturias, Spain.

Figure 7.12 Valencia lightouse (Spain).
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Figure 7.13 Pedestrian bridge in Madrid (Spain).

Figure 7.14 Pultrusion machine at ACCIONA workshop.

for the pultrusion line is preventive (some tasks are performed every time unit
periodically), reactive corrective (if a failure is detected) and opportunistic (if
the line is stopped and the deadline for the maintenance task is close), which
means that once the production line stops to perform maintenance tasks, units
can be replaced because they were detected as defective but also because it is
an opportunity to change it because the line is stopped. Ideally the line will
not stop until the type of product being produced changes.

There exist three roles involved in the production site of pultrusion line
from ACCIONA; production manager, process engineer and operator. Each
of them has the following responsibilities and objectives in the framework of
the pultrusion process:
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• Production Manager responsibilities:
Study how to improve the overall process for achieve a higher level
of efficiency, adapt the process to new kinds of work requests,
transmit the outputs obtained from the aforementioned evaluations to the
process engineer, and along with the process engineer make appropriate
decisions about how to solve deviations caused by repetitive failures;

• Process Engineer responsibilities:
General maintenance of the machine, designing the incoming updates
from the production manager, deploying the aforementioned updates
and test them, leave the equipment ready for use, develop technical
instruction for the operators to explain how to proceed with the process,
give training sessions to the operators involved in the process, decide
how to proceed when a deviation occurs;

• Operator responsibilities:
Daily use of the machine, acquire a high level of autonomy to perform
the work requests without supervision, in case of any nonconformity in
the process the operator must report the problem to the process engineer.

Focusing on maintenance tasks, the process engineer is the person
who makes important decisions related to several aspects, such as machine
maintenance or in the case of any deviation occurs. He is responsible for
the equipment to be ready for use and this requires to develop technical
instruction for the operators explaining how to proceed with the maintenance
tasks. Furthermore, he is in charge of giving training sessions to the operators
involved in the maintenance process oriented to apply knowledge in a
practical way from the technical instruction.

Maintenance tasks within pultrusion line are manual processes based on
visual checks or manual tasks scheduled from time to time. For this reason,
these processes must be optimized in order to achieve a reliable analysis
of maintenance tasks, foresee potential failures in the systems, decrease
production delays and assure proper machine functioning.

7.2.3 Data Platform and Sensors

The maintenance tasks related to this machine do not only involve the
machine itself. It is necessary to monitor the workshop’s environmental
conditions.

Data to be collected from the workshop.
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• Environmental parameters:
Temperature, humidity and luminosity. These parameters concern
to possible change of machine configuration, which can affect the
maintenance tasks. The obtained information through temperature and
humidity sensors will be an indication of workshop status with a direct
implication on the workshop maintenance tasks. For example, the resin
used during the production process becomes solid at different points
depending on temperature and humidity. The proper mixture of the
components should be carried out in a controlled environment that
influences on the reaction rate and the proper maintenance of these
substances to ensure good criteria of quality. In turn, environmental
conditions affect the cleanup and purge tasks of the machine;
• Workshop air extraction capacity:

The maintenance of the ventilation system can vary significantly
depending on its use and the outside environment. It is an important
system to be taking into account due to the kind of substances that are
used during the pultrusion process (i.e., carbon fibre, resin...) and the
need to offer the best conditions in the workshop;
• Workshop electrical consumption:

Currently there is no information about machine downtimes produced
by electrical failures. Electrical consumption monitoring will help to
provide a reliable maintenance of the machine, engines or any other
electrical installation in order to find the possible causes of downtimes
or malfunctions.

Data to be collected from the pultrusion machine:

• Pull-Clamp system:
It is one of the main pultrusion line subsystems responsible for moving
the profile along the machine and its subsystems while the different
treatments to produce composite profiles are performed. The data that is
missing regarding this subsystem is the one related to production speed,
pull force and presses oil status:

• Production speed in order to detect machine behavioural patterns
and anomalies;
• Pull force in order to know the appropriate amount of oil for

lubricating this subsystem;
• Oil tank presses system. Generally, oil contamination is one of the

major causes of hydraulic system and lubricating system failures.
The oil inside the hydraulic system is changed from time to time by
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the operators, based on the process engineer instructions through
visual check. Therefore, the continuous supervision of oil state
plays a vital role in predictive maintenance systems. The status of
oil humidity and temperature are parameters that influence on the
quality and profitability of process;

• Injection Chamber Resin system:
It is the responsible for impregnating the fiber with resin. The profile
quality depends on the homogeneity of the spray pattern within this
process. There are several parameters that will help to analyze an
adequate maintenance of this system, such as:

• Injection System Temperature: To determine possible malfunctions
that can impact on the proper resin status and manufacture profile
quality;
• Thermocouples break detection, in order to avoid malfunctions and

errors in the production line;
• Resin Header (resin pressure or stream flow rate): It was an

unreliable system without any sensor installed. Measuring pressure
or resin stream flow rate proved to help to identify when drain
maneuvers are needed to avoid breakdown/malfunction of resin
injection system;

• Compressed Air:
Monitoring pressure, humidity and temperature for ensure a proper
maintenance of this system. Continuous monitoring reduces ongoing
operation costs, cuts investment costs for new compressors and ensures
availability around-the-clock. Compressed air subsystem is one of the
most expensive systems in production plants. Many companies are not
aware of the fact that the generation and treatment of compressed air
accounts for up to 20% of their overall energy costs;

Measurement of compressed air maintenance activities is the first
important step towards a cost-conscious and efficient approach to energy
consumption and to increase the life-time of the system. Detailed
knowledge of the actual compressed air is the basis for reducing energy
costs and is an important indicator for investment decisions;

Dew point, pressure, temperature and flow monitoring makes a
significant contribution to quality assurance in expensive systems and
the products produced there. Only sufficiently dry compressed air can
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reduce the risk of corrosion, machine failures and low-quality end
products;

The correct maintenance of this system will assure:

• To ensure efficiency

Permanently record, monitor and optimize the effectiveness
and efficiency of compressed air generation and treatment
processes;

• To assure product quality

A change in consumption of compressed air in a production
plant is a first indication of possible deviations in the
production process. Sufficiently dry compressed air assures
the quality of the system and the pultrusion pieces produced;

• For accounting

Billing individual costs for compressed air according to actual
consumption can contribute significantly to enhancing a cost-
conscious system, and it can suggest whether the compressed
air is dry enough and can thereby avoid unnecessary operating
costs for compressed air treatment;

• To detect leaks

25–40% of the compressed air generated is lost through leaks.
Consumption of compressed air in a system that is switched
off is a clear indication that there is a leak.

After some analysis and lab tests, the most suitable sensors were selected for
gathering the data.

The main drivers and constrains that were considered are:

• An efficient sensor installation process was needed, as the
pultrusion line is continuously working with a few limited stops
per months. Moreover, these stops usually are very short;
• Wires installation has been limited, both for communication and

for powering the devices;
• The required maintenance for the monitoring system should be

minimum;
• The ambient conditions inside the workshop are far from a friendly

environment, so all devices installed need to be protected.
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An overview of the architecture deployed in the use case demonstrator is
given in Figure 7.15, and the list of installed sensors is given in Table 7.1.
The figure represents all equipment, communications and software services
needed to transfer the information provided by sensors to the specific point
where the HMI is going to show all the information to the user.

The system implemented can be divided in different parts or subsystems:

• Sensors;
• Local Sensors Controller

• Zigbee Root Node
• X86 Gateway
• LTE Router
• Wi-Fi Access Point

• Local HMI
• Cloud Servers

• OpenMQ Server
• Database Server
• Web Server

Figure 7.15 Monitoring system.
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Table 7.1 List of installed sensors

Sensor Measure Unit Range

Connection
with Wireless
Platform Icon

Environmental
parameters:
Temperature,
Humidity,
Luminosity

Temperature,
humidity,
luminosity

◦C, %, lux -50 - 80,
0 - 100,
0 - 1000

Wireless
ZigBee

Workshop and
Pultrusion
Machines
Electrical
Consumption –
Energy meter
sensor

Energy
consumption
and electrical
parameters of
the installation.

V, Hz, A,φ 0-200A Wireless-
Modbus RTU
Protocol

Air flow sensor Air flow m/s, l/min,
m3/h (fps,
gpm, cfm)

Measuring
range [m/s]
2...100
Setting range
[m/s] 0...200

Wireless-4-
20mA
output

Air pressure
sensor

Air pressure bar 0-35 bar Wireless-
Modbus RTU
Protocol

Air temperature
and humidity
Sensor

Air temperature
and humidity

◦C, % Relative
humidity: 0
%HR ... 100
% HR
Temperature:
0 ◦C ... 85 ◦C

Wireless-
Modbus RTU
Protocol

Oil quality sensor Percentage of
fine particles/
Percentage of
coarse
particles/

µm % 4,6,14,21µm
%

Wireless-
4-20mA output

Oil Temperature
sensor

Oil temperature ◦C 0 - 200 Wireless-
4-20mA output
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Table 7.1 Continued
Water temperature
sensor

Water
temperature

◦C Measuring
range [◦C]
-20...90
Resolution
[◦C] 0.2

Wireless-4-
20mA and
frequency
output

Water flow sensor:
Up Circuit/ Flow,
Temperature: Down
Circuit

Water flow m/s, l/min,
m3/h (fps,
gpm, cfm)

Measuring
range [m/s]
0.05...3Setting
range [m/s]
0...6

Wireless-4-
20mA and
frequency
output

Coolant reservoir
level

Level
measurement

◦C -40◦C to
+125◦C.

Wireless-
0-5V Analogue
output

Resistors
Consumption/
Rupture of wire

Consumption/
Rupture

A 0˜50mA Wireless-4-
20mA
output

Impregnation
chamber
temperature/
Surface resistors
temperature

Surface
temperature

◦C 0-150 Wireless

7.2.4 Human Machine Interfaces

Given the different roles of the professionals who use this system, there have
been developed and deployed two different HMIs: Local HMI and Remote
HMI.

Local HMI:

Our use case has particularities due to 24h/day production in the pultrusion
line. In general, local HMI is focused on providing useful information for the
machine operators and process engineers, displaying instant parameter values
and alerts detected by the sensors (Figure 7.16). The display is located near
the pultrusion line machine, in a very visible spot for the workers. Whenever
an alert occurs in the local HMI (due to data out of range) the operators
and process engineers who are near the local HMI are able to see the alert
and they will act in order to face the problem when possible. The operators,
following process engineer directions, get the job done and in case of any
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Figure 7.16 Local HMI. PC, Tablets, mobile devices.

nonconformity in the process the operator must report the problem to the
process engineer.

All the information and alarms should be shown without any interaction.
There are several priorities of alert level composed by warnings and alarms.

Remote HMI:

This HMI, on the other hand, is focused on displaying historical information
and high or low level alerts detected by the sensors devices (data out of range,
the latter will be the same alert as in local HMI). Historical information and
its representation using graphs can help the process engineer or production
manager to anticipate possible failure and plan maintenance tasks.

The objective of this HMI, represented in Figures 7.17 and 7.18, is to
provide a powerful tool not only for data visualisation but also for showing
any analysis that the production manager (or the maintenance staff) would
require.

Some of the features include:

• User management;
• Notifications configuration;
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Figure 7.17 Remote HMI. Home menu.

• Alarms configuration;
• Report generation;
• Data graphs.

The HMI is able to display alerts if values are out of range (warning or
alarms) or if possible anomalies or failures are detected from historical data.
Historical information includes input of time-stamped data. The detection of
anomalies could have future implications in the machine with the resulting
risk of failures. The system involved in the maintenance task would be
identified, together with what is wrong according to the sensing devices.

7.2.5 Maintenance Optimization and Validation Results

This section focuses on the results achieved on the pilots by the MANTIS
techniques and monitoring process.

7.2.5.1 Temperature control system located in the mixing area
and in the storage area

It is required to keep the storage and mixing temperature of some products
used during the pultrusion process lower than a specific value due to safety
and quality issues. Consequently, the temperature of the storage and mixing
area (Figure 7.19) must be controlled, in this case using an air cooling
system.
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Figure 7.18 Remote HMI. Temperature, Humidity & Light (THL) menu.

The environmental parameters are gathered through the monitoring
system. The operator checks out on the local display warnings and alarms in
case that abnormal values of temperature, flow, or air pressure were detected.
The Process Engineer checks out the system performance through the Remote
HMI according to the Control Program.

In the case that a temperature alarm has been triggered and if the
maximum temperature allowed is reached (safe temperature is recommended
in the safety-sheet of the stored products), explosive products should be
moved to an alternative secure area before carrying out the reparation of
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Figure 7.19 Mixing area at workshop.

the cooling system and the safety manager should be reported. If failure was
not critical, the problem could be solved during a scheduled stop of the line
according to the maintenance program.

Figures 7.20 and 7.21 show some values of temperature and relative
humidity of the mixing zone during a continuous parameter registration
between February and March 2018. The plots illustrate periods where the
machine is not working, achieving temperatures between 15 to 23 degrees
Celsius, as well as temperature ranges where the pultrusion line is working
during production, achieving temperatures between 22 to 24 degrees Celsius.
Relative humidity is always below 50%.

No warning and alarms (yellow and red color alarms) were detected by
the operator in the local and remote user interfaces according to the obtained
data. The temperature and humidity were kept within the optimal parameters
in the mixing area during the pultrusion process tests.

7.2.5.2 Cooling system for the injection chamber
The cooling system (Figure 7.22) maintains the temperature of the injection
chamber low enough to avoid premature gelification of the resin inside the
injection chamber. The temperature of the chamber is controlled through a
liquid chiller. The cooling fluid must be water, optionally mixed with a certain
percentage of ethylene glycol (to prevent freezing), depending on the water
outlet temperature. The water is cooled using a refrigeration circuit.
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Figure 7.20 Temperature control in the Mixing Area. (Monitoring period 21/02/2018
-06/03/2018).

Figure 7.21 Humidity control in the Mixing Area. (Monitoring period 21/02/2018 -
06/03/2018).

Figure 7.23 shows the elementary scheme of the circuit that allows a
refrigerating cycle. Figure 7.24 shows a schema of the pipeline circuit used
to cool the injection chamber.

The cooling system is monitored detecting the liquid temperature and
flow as well as its level in the chiller’s deposit, using wireless sensors located
in the liquid tank (level) and at the pipelines that connect the chiller with the
refrigeration circuit of the injection chamber (temperature and flow).

The operator checks the possible warnings and alarms on the local display
in the case that abnormal values of temperature, level or flow of refrigerant
liquid were detected. The process engineer views the system performance
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Figure 7.22 Cooling system from injection chamber.

through the Remote HMI according to the Control Program. The specialized
operator, who is allowed to manage the machine in emergency cases, will be
responsible for checking the local display.

If failures were not critical, the problems would be solved during a
scheduled stop of the line according to the maintenance program or keeping
the machine running (for example, when the chiller’s deposit needs to be
filled or if a leak occurs). Repair on the fly is allowed in this scenario because
the chiller is not physically integrated in the pultrusion machine so it is easier
and safer to solve small complications. If it was critical, a non-scheduled
stop would be performed and the process manager would be reported. Then,
both the process engineer and the process manager would analyse the data
available and decide if it is necessary to modify the maintenance program
or instead, if it is an unforeseen failure and it is preferable to contact the
specialised technical service.

The limits of the temperatures were defined by means of previous
manufacturing experience and taking into account that the set temperature of
the chiller must be different than the ones we obtain inside the manufacturing
site. During the winter the chiller set temperature is between 22–24◦C and
during summer it is adjusted to 16–18◦C to obtain the desired process
parameters. It is expected that after a complete year of monitoring a more
accurate relationship between these two parameters can be obtained. The
installed sensors can be seen in Figure 7.25.
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Figure 7.23 Schema of the chiller cooling system from injection chamber.

Figure 7.24 Schema of the injection chambers cooling circuit.
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Figure 7.25 Sensors installed in the refrigeration circuit.

Time series data of the liquid temperature have been recorded for
3 months with the sensors installed as part of the Mantis project. Due to some
problems between the sensors and the data acquisition program it has not
been possible to see the flow measurements, but it can be predicted that some
of the variations seen in the temperature could be directly related with it.

The graphical display for room temperatures and the inlet circuit
temperature of the refrigeration liquid is shown in Figure 7.26. It can be
clearly seen that although the exterior temperature suffers large variations
than the temperature in the refrigeration circuit. An important point to check
is that the refrigeration circuit operates correctly and that the external factors
are not directly affecting the manufacturing process.

Taking into account upper and lower limits for the alarms defined, it can
be seen that some points must be checked although none of them are in the
red alarm range. In the first part of the control chart the variation of the
temperature is larger than in the last stage. The increase of the temperature
(Early January 2018) is due to problems derived from non-constant flows, the
water stagnates in the pipes and the temperature increases. On the other hand,
low temperatures (middle January 2018) are due to some maintenance stops
for the installation of new sensors and connections. As the room temperature
is low the refrigeration system decreases its temperature.

In the chart in Figure 7.27, which corresponds to the production of the
pultruded profiles, the temperature of the refrigeration circuit is more stable.
It can be seen that some points are in the rage of the yellow alarm. As can be
seen by comparing Figures 7.27 and 7.28, these increases in the temperature
occur at the same time that the level of the liquid in the refrigeration circuit
decrease.
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Figure 7.26 Room temperature vs. liquid inlet temperature control chart.

Figure 7.27 Refrigeration circuit inlet temperature control chart.

Figure 7.28 shows the evolution of the refrigeration liquid tank level.
The consumption of the tank depends on different factors such as exterior
temperature, working hours, number of equipment connected to the circuit,
etc. so it is not easy to predict a constant behavior. But it has been seen that
a reduction of more than a 35% of the level of the tank has a direct impact in
the refrigeration circuit temperature, so it has been decided to refill the tank
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Figure 7.28 Refrigeration liquid tank level control chart.

once a day above the 80%. The operator must be in charge of this action and
also must be aware of any other alarm that can appear.

All the charts in Figures 7.26–7.28 are displayed in the data recorded by
the remote HMI system. Any data out of the target values will give an alarm
that must be checked out by the process engineer.

It has been seen that the monitoring system of the refrigeration
temperature and tank level exhibit useful information for the control of the
manufacturing process. The system works correctly and in-situ checks with
the control through the monitoring system could avoid production problems
and advise of maintenance needs that otherwise are difficult to detect. A good
control of the refrigeration circuit will allow reducing the purge needs of the
system and the cleaning operations.

7.2.5.3 Compressed air system from pulling system
For this application, the goal is to assure the correct workings of
the compressor (Figure 7.29) and, on the other hand to detect any
anomaly in the injection circuit (Figure 7.30) (pressurized tanks, pipelines,
connections, etc.).

Using wireless sensors located at the compressor outlet and at the
pipelines that connect to the injection chamber, air pressure, temperature and
flow are monitored. The operator checks out on the local display warnings and
alarms in case of abnormal values of temperature, flow or air pressure were
detected. The process engineer checks out the system performance through
the Remote HMI according to the Control Program.

Figure 7.31 shows the data record of the evolution of the air pressure
obtained from the Remote HMI interface for a period of two and a half
months of production (Monitoring period 01/01/2018–14/03/2018).
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Figure 7.29 Detail of the main compressor that supplies compressed air to the resin injection
system.

Figure 7.30 (a) Schema of the injection chamber resin injection circuit. (b) Detail of the
resin injection circuit.

Figure 7.31 shows that the air pressure remained above 8 bar and thus
above the operational limits fixed during the period studied. In fact, the
Control Program states that:

• Value > 6 bar that corresponds to regular operational conditions no
alarm;
• L1: Value < 6 that corresponds to non-regular operational conditions,

but not critical alarm turns to yellow;
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Figure 7.31 Data record of the evolution of the air pressure obtained from the Remote HMI
interface.

Green Alarm Yellow Alarm Red Alarm
Temperature 10–25◦C 5–10◦C//25–30◦C > 30◦C and < 5◦C

Pressure >6% 2–6% < 2%

• L2: Value < 2 bar that corresponds to critical operational conditions
alarm turns to red.

The air pressure remained stable oscillating between 8–9.5 bars
(Figure 7.32). This oscillation is normal within the regular operating regime
of the compressor because the compressor’s engine does not work constantly.
It automatically turns on when the pressure inside the pressurized tank falls
below a consigned value (about 8 bar).

Operators did not detect any alarm trigger in relation to air pressure
during this period except 19 January when the compressor shut down due

Figure 7.32 Detail of the data record of the evolution of the air pressure obtained from the
Remote HMI interface.
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to a power cut. Because of this event, the pressure decreased, triggering the
yellow alarm. However, the red alarm was not activated since the pressure
remained above two bars until the power was recovered. The compressor
was able to keep the air moderately pressurized inside the tank for few hours
(Figure 7.31).

Therefore, the in situ control carried out by the operators matched with
the data recorded by the remote HMI system and checked out by the process
engineer.

The temperature inside the room where the compressor is placed was
also recorded. Figure 7.33 shows the data record of the evolution of the
temperature obtained from the Remote HMI interface for a period of two and
a half months of production (Monitoring period 01/01/2018–14/03/2018).

Even though the temperature oscillates between 10 and 25◦C inside the
room, the effect on the air pressure control is negligible (Figure 7.32). The
heat generated by the operation of the compressor causes this oscillation. The
room is conditioned by means of an extraction system that brings out the room
the hot air when the temperature inside the room reaches 25◦C. On weekends,
highlighted in red, the compressor remains off and the temperature is closer
to the exterior room temperature.

During the monitoring period, the temperature values stayed within
the operational limits allowed, between 5–30◦C. Therefore, the current
conditioning system is enough to keep the temperature within the
recommended operation values.

In addition to the sensors installed in the compressor room, another
sensor has been installed at the furthest point from the compressed air circuit
(Figure 7.34). This sensor will help to check if the pressure in the compressor

Figure 7.33 Data record of the evolution of the temperature obtained from the Remote HMI
interface.
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Figure 7.34 Pressure and temperature sensor installed in the compressed air circuit.

maintains the same or if there is any loss along the circuit. The installation
of the sensor had to be done while there was no production in progress and
complies with different security.

7.3 Maintenance in Press Forming Machinery

Contributors: Urko Zurutuza, Javier Fernandez-Anakabe, Ekhi Zugasti,
Petri Helo, Lauri Välimaa, Mathias Grädler, Mikel Mondragon,
Andoitz Aranburu, David Chico, Oier Sarasua, Marı́a Aguirregabiria,
Xabier Eguiluz, Iosu Gabilondo, Eduardo Saiz, Iban Barrutia Inza,
Mikel Viguera, Félix Larrinaga Barrenechea, Mikel Anasagasti,
Jon Olaizola and Ricardo Romero.

This use cases focuses on stamping press machines, which are metal working
machines used to shape or cut metal by deforming it with a die. See
Figure 7.35 for some examples of this kind of machinery.

This kind of press is built by FAGOR and, during its active lifetime, might
be capable of giving more than 40 million strokes characterized by impressive
force and precision, insofar as the press is used and maintained appropriately.
This use case considers two scenarios.

The first scenario focuses on the press forming machinery itself.
The customers expect both high quality of the pieces produced by the
machine, and high availability, which led FAGOR to incorporate cutting-edge
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Figure 7.35 Fagor Arrasate mechanical and servo driven presses.

technologies in their products as a means of enhancing products robustness
and functionality in order to facilitate proactive maintenance activities.

The second scenario considers the pneumatic Clutch Brake, which is a
critical device within the mechanical press machine. The Clutch Brake is
responsible of activating and stopping the tool of the press machine in order
to perform different processes. In this scenario, the clutch brake became a
CPS itself, able to provide data regarding its own health conditions.

7.3.1 Introduction

FAGOR ARRASATE S.COOP is a company of 800 employees specialized
in designing, manufacturing and supplying sheet metal forming machine
tools. Fagor Arrasate was created in 1957 and, since then, has expanded its
products and business in an significant manner, being now one of the world
leaders in the field. It is one of the 5 biggest manufacturers in the world in
terms of turnover and the first one considering the product’s portfolio.

The Company is located in the Basque Country, in the north of Spain,
very close to the French border in the most industrialized area of the country
and surrounded by a traditionally metallurgical and exporting environment.

FAGOR is a world leader in the design and manufacture of mechanical
and hydraulic presses, complete stamping systems, transfer presses, robotised
press lines, press hardening, forging; Cut-to-Length, Slitting, Combi and
multiblanking lines; Processing lines as pickling lines, skin passes, reversible
mills, painting, galvanizing or levelling lines; special metal part forming
systems, strip roll forming, flexible roll forming, rotor/stator cutting
equipment, dies and many other types of equipment.
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Fagor Arrasate serves to numerous sectors, with a particular focus on the
car industry, the domestic appliances industry, the Steel Industry and Service
Centres. For Fagor Arrasate a key goal is the constant collaboration with
its customers, so there is a close and continuous presence in order to give
solutions for any process with the most adequate technology.

GOIZPER S.COOP is one of the leading technology suppliers in power
transmission components, such us brakes, clutches, turning systems, gear
boxes, cams or elevators. GOIZPER designs, manufactures and supplies
customized power transmission components to meet market needs in sectors
like metal forming, automotive, aeronautics, packaging, construction, marine,
machine tools, etc.

As mentioned, Clutch Brakes and gearboxes are products consumed in
automotive industry and Fagor Arrasate is currently using them within their
mechanical press machines (see Figure 7.36). In other words, Goizper is one
of Fagor Arrasate’s current power transmission components supplier.

GOIZPER’s headquarters and productive plant are located in Antzuola,
Spain, and almost 80% of the sales come from exports all over the world. The
maintenance of sold parts has become an issue due to the different locations
of the parts around the world.

GOIZPER also has another division, totally different, focused on the
design, manufacture and marketing of manual sprayers and dusters for
treatments in farming, gardening, industry, construction, cleaning, pest
control and vector control.

7.3.2 Scope and Logic

The final customers of FAGOR ARRASATE produce products with high
levels of quality and availability seeking a drastic reduction of high
cost caused by production downtimes with required maintenance-repair
operations and a better delivery times’ compliance. This is why FAGOR

Figure 7.36 Clutch Brake (left) and gearboxes (center) by Goizper, used in Fagor’s
mechanical press machines (right).
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ARRASATE needs to increase the reliability of machines and components.
To meet this challenge FAGOR ARRASATE is continuously incorporating
cutting-edge technologies in their products as a means of enhancing products
robustness and functionality in order to facilitate proactive maintenance
activities.

7.3.2.1 Background information on the press machine
Mechanical and servo driven press machine elements have been analysed
using sensor technologies in order to improve maintenance strategies for
detecting early failures on the cranks and in forming elements of the stamping
press.

A platform has been developed where the data from different components
of a press machine could be captured, monitored, transmitted, stored and
analyzed in order to come to reliable predictive and proactive maintenance.
The data is analyzed and monitored via local or cloud level (see Figure 7.37).

The components of the press machine that require sensors with innovative
CPSs are:

• Bushings (Temperature and oil condition status);
• Bolster (Relative displacements);
• Head (Structural health);
• Gear axis (Torque);
• Engine (Tension and current);
• Connecting rod (Displacement, forces).

Figure 7.37 Predictive maintenance HMI platform.
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Figure 7.38 illustrates the location of the source of each component data.
The objectives of this use case are:

• Maintenance Cloud Platform development;
• Torque measurement using wireless sensors;
• Head structural health monitoring;
• Torque measurement using wireless sensors;
• Bushing status measurement;
• Gears wear measurement;
• Crank strain and force measurement;
• Press unbalances forces measurement;
• Press cutting shock measurement.

Figure 7.38 Location of data sources.
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7.3.2.2 Background information on the clutch brake component
A critical device within the mechanical press machine is the pneumatic clutch
brake. The Clutch Brake is the responsible component of activating and
stopping the tool of the press machine in order to perform different processes.
In this case, metal forming process is considered, where the clutch brake
works as a mechanical commutator. The clutch brake components suffer
from degradation during operation. Component degradation usually causes
machine failures and downtime, generating unwanted and unexpected costs.
Figure 7.39 shows how a pneumatic clutch brake looks like.

The focus lies on identifying issues related to the maintenance of the
clutch brake, adopting strategies to monitor and to make decisions against
those issues.

Downtimes caused by the clutch brake have been listed taking into
account the number of stops. From this list, the following topics were picked
in order to analyse and solve.

• Friction material slippage detection at clutching;
• Friction material slippage detection at braking;
• Friction material wear and misalignment;
• Piston chamber air leakage;
• Brake springs degradation.

For the Clutch Brake scenario, two demonstrators have been used. One of
them is situated at MGEP facilities in Mondragon, Spain, and it consists of
a Fagor mechanical press machine that contains a GOIZPER’s Clutch Brake
component. The other one is located at GOIZPER’s facilities in Antzuola,
Spain, and it consists of a Clutch Brake wear test bench.

MGEP Press Machine demonstrator
In Figure 7.40, Fagor’s press machine demonstrator’s front and back sides are
shown. This machine contains a GOIZPER Clutch Brake and it is located in
MGEP shopfloor for small size metal parts forming.

Figure 7.39 GOIZPER pneumatic Clutch Brake outside and inside.
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Figure 7.40 MGEP press machine, demonstrator 1.

This machine is a mechanical press machine used for low duty metal
forming processes. It contains a pneumatic Clutch Brake at the back side
(shown in Figure 7.41) in order to activate and deactivate the ram of the press.
The ram is the orange part of the press which performs the action of metal
forming.
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Figure 7.41 GOIZPER clutch brake in MGEP demonstrator before MANTIS.

Figure 7.42 shows the back side of the demonstrator, and the GOIZPER
clutch brake next to the flywheel (orange). Sensors have been installed within
the Clutch Brake in order to capture data and execute the algorithms for the
preventive maintenance of the component. The electric motor, power source
of the application, is located at the top side (not visible) connected to the
flywheel by means of a black belt.

Within the pneumatic circuit, the electro valve is located at the right side
of the picture, opening and closing the air flow into the clutch brake. This
air is introduced through the black tube connected to the application axis, in
the middle of the picture. Sensors have been installed in order to receive data
from the Clutch Brake. These installed sensors are visualized in Figure 7.40,
which indicates each sensor’s location.

GOIZPER Test Bench
The second demonstrator is the test bench in GOIZPER’s installations
(Figure 7.43). Friction discs accelerated degradation has been forced in order
to get the data from the beginning (%0 of wear) until the end of the friction
discs life (%10 of wear).

The installed sensors are not giving direct information, all the captured
data needs a processing stage (Figure 7.44) in order to know the actual health
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Figure 7.42 Clutch Brake in MGEP demonstrator with the sensors installed.

Figure 7.43 GOIZPER Clutch Brake test bench, demonstrator 2.

of the Clutch Brake. From these calculations, different problematic scenarios
have been identified. Some of the algorithms are located in a local data logger
and the rest are located within the cloud.

7.3.3 MANTIS Solutions for Press Machine

This section focuses on the first scenario of the use case, and thus on the
solution implemented by FAGOR for the press machine itself.
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Figure 7.44 Local data logger for data capturing and processing.

7.3.3.1 Maintenance cloud platform
A new demand of technical solutions and services aiming at improving the
efficiency of maintenance and repair operations is arising. In line with this
need, FAGOR ARRASATE wants to offer to its customers a broad range of
maintenance services based on digital technologies that allow the company to
collect real-time data from the press machines installed all over the world. As
Fagor and Goizper are different firms, each company is developing its own
Cloud solution. However, interoperability has been taken into account for the
cases that both partners work together.
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7.3.3.1.1 Solution approach
The solution selected by FAGOR has been to develop a digital cloud platform
where data from different components of a remote press machine can be
collected, monitored, transmitted, stored and analysed providing services for
reliable predictive and proactive maintenance. The cloud platform has an
architecture divided into two different environments: On-cloud where data
coming from the different sources are stored, processed and analysed and
On-premise where is the data acquisition system to extract the data from
the different sensors of the machines. Data format is based on the Event
Information Model adopted for the present project and communications
among both environments are secured by using VPN tunnels that guarantee
the data integrity, confidentiality and availability.

In the Cloud, a Big Data architecture following the MANTIS reference
architecture principles and based on different applications has been designed
aiming at supporting fault-tolerance and high scalability. In this way,
each part of the system is independent and loosely coupled. The general
architecture of this approach is illustrated in Figure 7.45.

On-Cloud architecture consists of the following core components:

• Elastic Search: The data coming from the different manufacturing
facilities will be persisted in a NoSQL database. It allows the storage
of huge volumes of data as well as an optimised search mechanism with
a flexible approach to perform a number of aggregations;
• [Apache Kafka]: A distributed queue message system to decouple

the different applications by following the publisher-subscriber
communication pattern. This technology uses a topic approach to
categorise the data. In this work the different data natures are published
through different topics;
• Proxy: This application is an HTTP proxy that receives the data from

on-premise sources and categorises them in different data natures by
considering their origin. Afterwards, the data is published in different
Kafka topics;
• Real Time Processing: this application has three objectives:

• Extracting the raw data categorised by means of the Kafka topics;
• Persisting the data in elastic search also categorised by data nature;
• Executing data analytics to detect possible alarms (that are

published to Kafka), and performing a predictive maintenance.

• API: A REST API in charge of exposing the functionalities supported
by the Cloud to allow the connection with a front-end (App Web).
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Figure 7.45 Architecture design.

Among the functionalities, they are worth emphasising the possibility
of querying an Elastic Search NoSQL database to obtain historic data
by applying distinct filters, the execution of [CRUD] operations over
the resources required and the users’ management system. This API is
implemented as a [Spring Boot] application, a framework to simplify the
creation and development of Java Web applications. In addition, OAuth
2.0 protocol [Aaron Parecki, 2018] is adopted in order to guarantee the
security in the communications;
• Alarm: This application consumes from Kafka the alarms generated

from real-time processing and push the corresponding values to a front
end to trigger an alarm when necessary.
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On-premise is considered as the technological solution deployed on the
manufacturing plants of the customers where their machines are located. This
environment usually has limited hardware, software and network resources.
This leads to frequently delegate the high-consume processes and the
exhaustive exploitation of the data to the cloud environment. Therefore, in
some cases data will be directly submitted to the Cloud, while in other cases
data will be normalised, standardised and persisted in a local database to
subsequently be submitted to the Cloud. In the On-premise environment there
is an Industrial PLC that provides resources with which the information from
the automation is obtained from the sensors of the machines. This computer
executes the following modules:

• Machine2Raw: This is the system in charge of extracting the data from
the different PLCs through a PLC obtaining, in turn, the data from the
different machines of the customers;
• Datalogger: This system is responsible for storing in a local database

the data coming from the sensors and the systems that are being
monitored;
• Local Database: A local database in SQL server to allocate the raw

data structures provided by the sensors. In this database there are some
triggers to centralize the information in a table that is the entry point for
Apache NiFi;
• Apache NIFI [The Apache Software Foundation, 2018]: A technology

that processes the raw data stored in the local database by the
DataLogger. This system allows defining data-flows in a visual way. It
is fault-tolerant, has a low-latency and is able to manage a high volume
of data. After processing the data, Apache NiFi transfers the data to the
cloud through a proxy.

7.3.3.1.2 Results
As a first result, FAGOR ARRASATE ended up having a cloud platform
(Figure 7.46) to monitor the status of the press machine park running on their
customers’ premises. This platform provides several functionalities to create
the network of press machines, to collect and monitor data from selected
components, to analyse them and triggering alarms.

For operating the cloud platform, a control room (Figure 7.47) is set
up at FAGOR’s headquarters in Arrasate. This will allow the company to
offer new maintenance services to its customers looking for increasing their
press machines performance and availability. This way, the company aims to
strengthen their market position and to create new business opportunities.
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Figure 7.46 FALINK Cloud Platform.

7.3.3.2 Torque measurement using wireless sensors
Press machines manufacturers are confronted with increasing technological
and cost pressure. Many customers demand faster and more precise presses.
The more precisely force is applied in a press machine, the higher is the
quality of the parts manufactured. Thus, increasing the press machines
accuracy is one of the most important challenges for manufacturers of these
assets. In addition, the market requires increasingly faster press machines
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Figure 7.47 FAGOR ARRASATE future control room.

that, at the same time, offer higher bandwidth to increase production output
in existing systems.

Nowadays, the torque of the press gear shaft is measured indirectly from
the force that is applied in the connecting rod. This measure is quite precise
but it needs to be continuously recalibrated to keep it accurate. To solve this
problem, the torque is measured directly by using wireless sensors placed in
the press gear shaft.

7.3.3.2.1 Solution approach
As a solution, IKERLAN has designed and manufactured a prototype of
a shaft-adapted wireless sensor node that comprises a transducer based on
torque oriented gauges, a signal conditioning circuit and a signal processing
software, the latter allowing local preprocessing and treatment of the
collected data by means of intelligent functions.

The design process has been made following two main phases:

• Phase 1: Testbed validation

Before starting the development of the wireless torque sensor, a preliminary
validation step was made in testbeds both in IKERLAN and in the Try-Out
press machine of FAGOR ARRASATE. This was an initial requirement to
ensure the proper functioning of gauges, generic electronics and wireless
communication for working in press-based conditions.

Two types of strain gauges were used: FCT strain gauges designed for
torque measurement and FCA gauges chosen as a pair of strain gages oriented
at 90. Also, a generic signal conditioning circuit was used where the signal
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is then processed by a low power microcontroller, which transmits data
wirelessly with a radio module. The data is received by a similar access
point, which is controlled by a LabVIEW National Instruments Corporation
interface (configuration and visualisation).

Initial tests were carried out on two testbeds scenarios. In the first testbed
(Figure 7.48), different weights, which correspond to corresponding micro
strains, were loaded on the bar and static measurements were performed in
half bridge and full bridge configuration for gauge calibration. In the second
one (Figure 7.49), the test was made using a motorized test bench. To check if
measurements were suitable, the electric engine speed was slowly increased
resulting in increases of the measured torque.

With regards to wireless communications, two main challenges were
tested: (i) signal attenuation due to the rotation of the emitter around the
shaft and (ii) multipath fading due to RF signal reflections in the metallic
(steal) elements of the head of the press in which the torque sensor will
be installed. Tests were successful, taking into account that depending on
the angular position of the shaft, and therefore, on the relative position of
the transmission and reception antennas, more or less amount of power is
received periodically.

Figure 7.48 Static testbed scenario.



7.3 Maintenance in Press Forming Machinery 365

Figure 7.49 Dynamic testbed scenario.

A similar test has been performed in the Try-Out press machine from
FAGOR ARRASATE. In this case, both the emitter and the reception antenna
have been placed in a realistic place within the head of the press machine as
in can be seen in Figure 7.50.

Once the top cover is closed, creating a complete metallic case, it was
observed how the received signal was not as clean as the one in the previous
measurements due to multipath reflections. The statistical features obtained
from this signals were used in the selection of the most suitable wireless
communication technology to be used for the torque sensor.

Figure 7.50 Measurement setup in the press machine.
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• Phase 2: Design and development

Once the concept and the elements of the device (gauges, conditioning and
processing, radio) were validated in a rotational environment, the system
design and development was started taking into account the following
Try-Out press specifications:

• Shaft material: F1140 (C45E) steel;
• Shaft dimensions:

• Diameter: Φ 310.07 mm
• External diameter: Φ 360 mm
• Width: 150 mm

• System thickness: 25mm max
• Electronics & Cover:

• No screwing
• Speed: 88 rpm
• Expected torque:

• 188762 Nm
• ∼200 microstrain

• Environment:

• Temperature: <45◦C
• Subjected to oil: CLP-150ftesp @ 400cm3/mm

• Placement: Head of the press machine (see Figure 7.50)

From these specifications, a prototype of the wireless sensor node was
designed and developed. It consists of a single PCB with the necessary
interfaces to attach torque gauges, besides the conditioning, processing and
wireless communication electronics. The whole system is powered by a
rechargeable lithium ion polymer battery and it is encapsulated and protected
by a plastic cover in the shape of the press’ secondary driving shaft, which is
prepared to avoid oil leakage (see Figure 7.51).

In order to configure the system and show the measured data, an user
interface was designed in LabVIEW. From this interface, the Gage Factor,
Poisson Ratio, Young modulus and the bar diameter can be configured.
Typically the amount of received data is huge, so data values are averaged
and only the average value is visualised in the user interface.

7.3.3.2.2 Results
Once the design and fabrication of the wireless torque sensor was finished,
the sensor was installed in the Try-Out press machine from FAGOR
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Figure 7.51 Wireless sensor node.

ARRASATE. First tests regarding the overall performance of the sensor were
successful providing signals with the torque measurements were sent to an
external laptop were they could be visualized (Figure 7.52).

Later, the complete validation process was carried out. This process aimed
to test de accuracy of the sensor’s measurement against several torque and
speeds and the robustness of the wireless communication protocol employed.

15 different tests were carried out combining 30%, 60% and 87% of the
nominal torque of the press, 57%, 78% and 100% of the nominal speed
and several configurations of the sensing electronics. These results were

Figure 7.52 Torque measures.
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compared with an estimation of the torque at the drive shaft obtained from an
overload pressure evolution analysis. Besides, some measurements regarding
the performance of the wireless communication were also taken.

Figure 7.53 shows the results of the test in which the maximum torque
(87%) and the maximum speed (100%) were configured at the press machine.

The measured torque values at almost each stroke are close to 60 kNm,
which fit the estimated torque values. Moreover, the clutch brake engage and
disengage events were captured.

In general terms, it is considered that the obtained results are valid, taking
into account that they are compared with estimated values and not with
another measurement obtained by a commercial system. However, regarding
the amount of data shown at the measured torque values, some data can be
missed either on the positive or the negative peaks, as the same amplitude
should be acquired for each stroke. With regards to wireless communications,
in general the expected performance in terms of data throughput and network
availability has been achieved. However, the loss of some data packets has
been detected, which should be corrected in future versions.

As future work, the use of antenna diversity inside the shell of the press
machine will improve the communication between emitter and receiver hence
decreasing the number of packets lost. Besides, being the energy management
of the system a key feature if it is pretended to leave it permanently attached
to the press machine’s drive shaft, a more energy efficient redesign will be
carried out together with the development of an energy harvesting system to
power up the wireless sensor node.

Figure 7.53 Comparison between estimated and measured torque values (87% of the
nominal torque, 100% of the nominal speed and gain 1000).
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7.3.3.3 Head structural health monitoring
The press structural components are welded steel structures where, on rare
occasions, cracks may appear. The crack initiation is usually associated to
fatigue damage in the welds and weld transitions (maximum design load is
not exceeded due to the overload security devices). Fatigue is a cumulative
phenomenon due to fluctuating loads, when material is subjected to repeated
loading and unloading. The nominal stress for such loads may be much
less than the ultimate tensile stress limit of the yield stress. If the loads
are above a certain threshold, microscopic cracks begin to form at the stress
concentrators. Eventually, a crack could reach a critical size, suddenly spread
and provoke the fracture of the structure.

7.3.3.3.1 Solution approach
Physics based degradation models (see Section 3 of Chapter 5 on RUL)
are implemented to detect most damaged zones of the press structural
components. Based on the classical high cycle fatigue damage model, a
damage indicator map is implemented. A damage threshold is set (Damage
threshold = 1.3, for example), which is associated with a minimum
length crack (2 mm, for example) appearance probability. Based on the
measurements of real forces in the press rods and the stresses calculated at
every point with Finite Element Models, 3 methods recommended by the
International Institute of Welding are used to calculate the damage indicators
at the welded structural components (mean stress, hot spot and notch stress).

As the real forces are being measured, dynamic and asymmetric loading
effects are taken into account and accumulated over time. At the same
time the damage indicator is calculated, the remaining time to reach the
predefined threshold (see Section 3 of Chapter 5 on RUL) is also calculated.
Identification of unexpected premature occurrences can easily be identified
and analyse probable associated Root Cause (see Section 2 of Chapter 5 on
RCA).

Additionally, for certain cases, a minimum crack length is supposed and
a second physics based degradation model is applied to study the fracture
mechanics. This is the field of mechanics concerned with the study of
the propagation of cracks in materials. During the second stage of crack
propagation or stable propagation stage, Paris’ law is used to estimate the
crack propagation under certain load. The time needed to reach a threshold
critical length is calculated. This is interesting when a crack is detected
and the evolution needs to be estimated in order to schedule the corrective
maintenance action.
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Two different crack sensors were tested to detect or measure crack
propagation: a commercial local crack gauge and a conductive ink sensor at a
stage of development. Once a crack has been localised, the RUL to a critical
crack length is calculated. If crack length data is available, Particle Filter
method is used. This method combines the physical model and the available
measurements in order to improve the RUL estimation to the critical crack
length.

Algorithms and sensors are applied in a testbed prototype before the final
application in the press machine head, shown in Figure 7.54. As a result of
this, the structural health of the head of the press machine is monitored by
means of two developments: i) The setup of a testbed for structural failure
prediction and simulation and, ii) the analysis of conductive inks for crack
detection.

• Testbed for structural failure prediction and simulation

Due to the difficulty to artificially create structural failures in a real press, the
press head Structural Health Monitoring scenario has two demonstrators:

• A fatigue testbed, where welded structural details are tested until
complete fracture. The algorithms and sensors are applied and checked
in this demonstrator prior to applying them in a real press machine;
• A real press, where a structural damage and associated RUL indicator

is applied, taking into account the results obtained in the fatigue testbed
demonstrator and the features of the real press.

In the case of the testbed, a fully sensor welded specimen has been submitted
to fatigue loading until its complete fracture. The welded specimen is selected
according to a structural detail located in the press head. The material of the
specimen is the same of the press head as well as the welding procedure.
The thicknesses of the sheets have been reduced according to the testbed load
capacity.

Figure 7.54 Selected structural detail from press head.
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A Finite Element Model of the specimen (Figure 7.55) was built in order
to estimate the stresses at any location of the welded specimen.

The damage and RUL are estimated every minute during the test.
Complete sensor data for a period of 20 seconds were stored every hour. Some
results to remark are that the complete fracture occurs at 3.1E6 cycles, 3.8
times compared to the design life for 95% (8.4E5). The macrocrack initiation
(failure) is estimated to occur near 1.25E6 cycles, 50% above the estimated
design life. Crack initiation occurs where predicted by the FE model and the
weld damage methods (Figure 7.56).

• Conductive inks

The objective is to proof the concept of using conductive inks to detect
cracks in a mechanical test specimen. Tests with several conductive inks
have been carried out. Different circuits are painted by this conductive ink
on top of a test specimen coated manually with an insulating layer (e.g.,
Magnesia 919). The specimen is heated at different temperatures to increase
the ink conductivity. During this heating step, cracks appeared in the
insulating layer, which is interesting for the application since the objective
is to study the bottom crack effect in the conductive ink. It is observed that
it is difficult to apply the conductive ink homogeneously along the insulating
layer surface.

Figure 7.55 Fully sensorised welded specimen in the testbed.

Figure 7.56 Stress plot in the testbed due to a unitary load.
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After these preliminary tests, a conductive ink is deposited on top of a
mechanical test specimen prior to subjecting it to a mechanical fatigue test to
create a crack, which should be detected by the conductive ink.

First, the “silver conductive adhesive pro” from RS is deposited on top
of a mechanical test specimen shown in Figure 7.57, next to the pre crack,
in perpendicular direction. First of all, an insulating layer is bonded directly
on the test specimen surface. Secondly, different insulating adhesive layers
are tested: a kapton adhesive film (A) and a Teflon adhesive film (B). Then,
a rectangle of silver conductive ink (4 x 40 mm2) is painted on top of each
insulating layer, using the paint brush provided by the ink. Finally, electric
cables are bonded in the four ends using a silver conductive epoxy adhesive.

Regarding the experimental conditions for fatigue test, a mechanical
test specimen made of S235JR steel material and CT Compact Tension
geometry is created. The stress is applied in a different way in two different
phases: (i) 225000 cycles of 0.8–8 kN with a frequency of 10 Hz and
(ii) 109000 cycles of 1–10 kN with a frequency of 10 Hz. In both phases,
every 1000 cycles, a constant force is applied (F = (Fmax + Fmin)/2) during
10 seconds. The subsequent post processing is carried out with data acquired
in these intervals of 10 seconds. The sampling frequency is 20Hz.

Apart from the signal of conductive inks, two other signals are acquired in
the test, in order to be able to compare afterwards the results with a reference
(a commercial crack detection gauge and a commercial extensometer, see
Figure 7.58 for all the elements used in the test, and Figure 7.59 for the final
set-up for the experiments).

7.3.3.3.2 Results
Structural damage and associated RUL indicator based on fatigue damage are
ready to be integrated in a real press machine. Stress at critical positions is
obtained from a finite element model and online experimentally measured
forces.

Figure 7.57 Mechanical test specimen with two sensors based on silver conductive adhesive
deposited directly on top of the surface.
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Figure 7.58 (a) Two sensors based on conductive inks placed in one side of the specimen;
(b) Commercial crack detection gauge placed on the opposite side of the specimen; (c)
Commercial extensometer placed in the crack, during the fatigue test.

Figure 7.59 Picture of experimental set-up.

With regards to conductive inks, the following results were achieved. The
blue line in Figure 7.60 corresponds to ink B, which is placed closer to the
pre-crack and is deposited on top of the Teflon insulating layer. On the other
hand, the red line corresponds to ink A, which is placed farther away from
the pre-crack and is deposited on top of the Kapton insulating layer.

The signal increase of ink B indicats the presence of a crack. However,
this increase started too late, when the tests specimen was completely broken.
The behaviour of ink A is similar, where the signal began to increase later,
again when the test specimen was completely broken.

It is concluded that although apparently the ink performance is correct,
the bottom insulating layer behaviour is not as expected. It is too flexible and
does not transfer in a correct way the crack from the test specimen to the ink.
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Figure 7.60 Ink signal during the second phase of fatigue test and ink pictures corresponding
to the two points indicated in the graph. Pictures of both sides of the test specimen, at the end
of the fatigue test.

Both insulating layers are extended too much before cracking due to their
high flexibility.

Direct crack detection methods are going to be tested (ink sensors and
crack gauges, acoustic emission sensors) and an indirect model based damage
detection method (Extended Constitutive Relation Error approach). This
method compares the measured strain at different moments of the system
with the ones expected by the model. It is a method to identify, localize and
determine the severity of the damage.

Three research lines of interest are identified:

• Probabilistic approach of the fatigue damage;
• Stress estimation based on model and sensor data. Improvement of stress

estimation and hence, structural damage and associated RUL indicators;
• Crack length estimation based on fracture mechanics and RUL

estimation using particle filter based prognostics algorithm.

The last two will improve the estimation of the stress or the crack length by
combining physical models and experimental data.

7.3.3.4 Bushing status measurement
Bushings are critical parts in press machines to reduce friction between
rotating shafts and stationary support members. Depending on the working
conditions and oil status, the bushing can increase its temperature getting
stuck with the connecting rod. This failure forces to stop the stamping process
and the time to repair it is about one working week. Taking into account that
the one just described is the best case scenario when there are spare parts
available in stock, due to the magnitude of the problem, it was necessary to
tackle it within the MANTIS project.
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7.3.3.4.1 Solution approach
It is considered that bushing failure due to seizure can be anticipated, and
that it is possible to estimate its RUL by collecting and analysing defined
measured data. Bushings were tested and run to failure at different ranges of
working conditions in a test bench. A wear out model is created based on the
time data obtained from the sensors and control installed in the test bench.
For the analysis, regression based models are used as a first approach.

Bushing temperature and oil sensor signal based alarms are set in order
to prevent seizure failure. This is done by limit and trending checking. A
physical model represented in Figure 7.61 and based on DIN 31652 has been
programmed in a simulator to characterise the theoretical behaviour of the
bushing when it is working in hydrodynamic ideal conditions. For some given
working conditions, the model calculates the expected equivalent friction,
temperature rising in the bushing as well as the lubrication through the oil
film thickness (Figure 7.62). This is done in two steps:

• Firstly, it is checked if the model describes the real behaviour of the
bushings during the tests;
• Secondly, the model is used to define a safety working condition where

bushing seizure should not occur. The main idea lies in detecting bushing
abnormal behaviour when temperature alarm triggers in the defined
safety working conditions.

Figure 7.61 Bushing seizure model.
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Figure 7.62 OilWear sensor.

7.3.3.4.2 Results
Some improvements were made to the test bench in order to improve the
automation of the tests and lubrication conditions. Further tests are carried out
in different working conditions and bushing types to complete the correlation
between the measurements and the model, characterising the theoretical safe
working conditions zone. Additionally, analysis is conducted to establish the
safe working condition area based on real data measured from the tests.

Results of this analysis are expected to be applied in the future to press
machines by installing temperature and oil sensors in critical bushings for
collecting, monitoring and analysing real time data. This is in line with the
company strategy of minimising these kinds of incidents.

7.3.3.5 Gears wear measurement
Another failure that happens in press hardening machinery is that, depending
on the force and working conditions of the press, the gear can be damaged.
Sometimes this damage is caused by wear with the passing of the years or
working hours, sometimes the problem can raise much earlier caused by bad
working conditions.

7.3.3.5.1 Solution approach
To predict that the gear is wearing out and must be replaced, it is possible to
analyze the oil condition. Taking into account that the more hours the press
works the more metal particles appears in the oil, it is possible to predict if
the gear is wearing by analysing the oil itself.

The selected sensor for acquiring and monitoring the particles present
in fluids is the OilWear S100. This sensor can classify particles larger than
20 µm according to their size and shape, to determine the root cause: fatigue,
sliding or cutting.
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The OilWear S100 is located in the hydraulic tube from where the oil
returns to the tank.

Data is captured every scan cycle. The different data values are stored on
a local server.

Once data is storage in the local server, data pre-processing is done in
local mode, taking into account requited parameters such as the maximum
and minimum values as KPIs. After data pre-processing, particles data that
FAGOR ARRASATE considers are critical for their press machine working
conditions will be analyse using specific algorithms for that.

Apart from acquiring oil particles characteristics data, some other data is
acquired, in order to know exactly the main reason of the gears wear:

• Die reference;
• Press machine Total Strokes;
• Die Total Strokes;
• Press machine Speed: Stroke Per Minute;
• Press machines maximum force;
• Stamping force.

7.3.3.5.2 Results
The OilWear S100 sensor is now installed in FAGOR ARRASATEs press
machine. During next months, data will be captured and preprocessed locally
tacking into account defined KPIs.

The next step will be to integrate the data sources within the cloud
platform.

7.3.3.6 Press forces measurement
The ram force is a fundamental parameter that affects the final quality of
the produced workpieces. Furthermore, its deviations could cause damage to
the press machine’s components. Besides, in presses with multiple cranks, an
unbalanced forces could appear due to an imbalance of the cranks or other
components, affecting both the quality of the produced workpieces and the
integrity of the press. The cutting shock effect is another undesired effect that
has to be taken into account during any process of metal forming. If a big
enough cutting shock is exerted, many components of the press can suffer
damages.

These force measurements usually are carried out by hardware sensors
located throughout the press structure and tooling, whose calibration loss are
caused by the strongest forces the press experiences during its life cycle.
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7.3.3.6.1 Solution approach
In order to overcome the limitations associated to the hardware sensors,
indirect measurements are proposed by means of model based soft sensors
that leverage the existing signals and the knowledge about the process that
the system performs.

The servo driven press machine is modelled as slider - connecting rod -
crank mechanism, considering also the gearbox between the connecting rod
shaft and the servomotor shaft. Along with the servo driven press machine
model signals are measured in order to use them as inputs for the model,
such as the servomotor current signals, voltage signals and rotor position
signal. A Prediction Error Method based soft sensor is used for estimating
the coefficients of a friction model that completes the model of the system.

As visible in Figure 7.63, the servo driven press machine model is formed
by three sub-models, each one generating a torque that interacts with the rest
of the system.

After estimating the coefficients of the friction model, the whole model is
utilised for estimating important coefficients that are:

• Press ram/slider force;
• Cutting shock effect;
• Unbalanced forces.

Model

Initially the system model mathematical representation is developed applying
Euler-Lagrange function considering all the mechanical elements of the
system. The shortened mathematical model is reported in Equation (7.5):

M (θ) θ̈ (t) +N (θ) +O (θ) = τe + τlb − τfric (7.5)

Figure 7.63 Servo driven press machine model diagram.
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WhereM (θ) , N (θ) andO(θ) represent the inertia and mass of the gearbox,
crank, connecting rod and the slider of the system. Respectively, τe is the
electric torque, τlb is the load balancer torque and τfric is the torque exerted
by the friction of the system. At this point, the Prediction Error Method
based soft sensor is applied for estimating the aforementioned friction model
coefficients, yielding a friction related torque that acts against the electric
torque. For this purpose, unladen tests (without strokes) are carried out at
different press speeds.

Once the model is fitted, the estimated angular position is plotted against
the measured one, tracing a path similar to the measured one, as shown in
Figure 7.64.

Estimation of the objectives
The estimation of the previously mentioned objectives is performed adding
another stroke related torque to the Equation (7.1), which yields the
Equation (7.6):

M (θ) θ̈ (t) +N (θ) +O (θ) = τe − τfric − τS (7.6)

where τS represents the torque generated by the slider stroke. This new
term collects the applied force during a cycle, and thus, many metal
forming processes are monitored through the measured signals, the model
(Figure 7.65), and a soft sensor.

In order to estimate the states (position and velocity of the slider, process
force) of the model, a step by step Bayesian soft sensor is used, which
can perform real time estimations of the system states. On a first stage,

Figure 7.64 Estimated and actual angular positions.
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Figure 7.65 Step by step Bayesian soft sensor estimation performance diagram.

all the system inputs are recorded in advance and are used in a computer
environment. The Bayesian soft sensor takes system inputs and measured
outputs and is able to estimate unmeasured system states as shown in
Figure 7.65.

The three estimation objectives of the use case are related to the slider
stroke force.

7.3.3.6.2 Results
Preliminary results of measured electric magnitudes of the servomotor
are discussed in this section. Some of those test results are displayed in
Figures 7.66 and 7.67 where the relation between electric magnitudes of the
servomotor and the applied ram force is shown.

Figure 7.66 Estimated electric torque for different tonnage tests.
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Figure 7.67 Calculated active power for different tonnage tests.

These tests reveal that the servomotor magnitudes (electric torque and
active power) change accordingly with the applied process force, feature that
is used for estimating the applied real force directly from measurement of the
servomotor magnitudes.

Regarding the cutting shock effect, Figure 7.68 shows the estimated
electric torque and its corresponding tonnage for two cutting shock tests. In
the test where the narrowest metal sheet is cut, the cutting process finishes
earlier comparing to the widest metal sheet cutting test and besides, the
generated cutting shock compensation electric torque is smaller than in the
other test. The image on the right side of Figure 7.68 depicts the applied
force and the cutting shock effect quantification which are of 5 and 21 tons
for the 300mm and 500mm wide metal sheets respectively.

Figure 7.69 displays the consumed active power by the PMSM. As in
Figure 7.68, the cutting process and the cutting shock effect compensation
shape the PMSM power consumption.

With respect to the unbalanced forces, tests have not revealed any
difference looking at the analysed electric magnitudes between the balanced
and unbalanced process. Figure 7.70 shows a similar electric torque for
the unbalanced and balanced processes. Estimated electric torques for
unbalanced and balanced processes are also unable to determine differences
between the two processes, as displayed in Figure 7.71.
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Figure 7.68 Estimated electric torque for 300mm and 500mm wide tough metal sheet
cutting process.

Figure 7.69 Calculated active power for 300mm and 500mm wide tough metal sheet cutting
process.
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Figure 7.70 Calculated active power of centred and off-centred tests.

Figure 7.71 Estimated electric torque for a centred and off-centred tests.
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As future work, the soft sensor approach will be employed once the final
test is done in order to measure indirectly (estimate) the applied ram force.

7.3.4 MANTIS Solutions for Clutch Brake

GOIZPER considers critical to increase machines and components reliability.
To meet this challenge GOIZPER decided to incorporate cutting-edge
technologies in their products as a means of enhancing product robustness and
functionality in order to facilitate proactive-predictive maintenance activities.

GOIZPER decided to investigate different ways of sending data of its
components to the Cloud. The main objective is to find the most robust
and reliable architecture, and for this reason, two different data fluxes were
developed in order to send the Clutch Brakes information to the cloud. One
of the architectures is coordinated and developed by MGEP and the second
architecture is coordinated by TEKNIKER. These two different approaches
(at edge/sensor, and at platform level) are explained in detail in the next
sections.

7.3.4.1 Maintenance cloud platform by MGEP
The platform presented in this section is concerned with analysing a clutch
brake system and its components in press machines to detect the most
important failure sources and be able to perform predictive maintenance
in those press machines. Analysis techniques and algorithms, to be used
on the assets data, were implemented in the platform with the aim to
support predictive maintenance of clutch-brake. These technologies are
(1) Root Cause Analysis powered by Attribute Oriented Induction Clustering
and (2) Remaining Useful Life powered by Time Series Forecasting. The
implementation of that platform was previously published in a conference
paper [Larrinaga et al., 2018].

7.3.4.1.1 Background
The overall objective sought by GOIZPER is to early detect internal
wear of a clutch-brake. To do that, the moving parts of the clutch-brake
were sensorized. By continuously monitoring the system conditions proper
operation of the clutch-brake can be ensured. Moreover, the most critical
operating variables are registered in the platform in order to analyze the
working process and prevent misuses. The data is uploaded enabling the
holistic analysis of the clutch-brake system, with the aim to determine/detect
the main causes of failure and the components’ remaining useful life.
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7.3.4.1.2 Solution approach
The architecture implementation agrees with the three-tier architecture
presented in [Hegedus, 2018] and in Chapter 3. There are three levels: Edge
tier, Platform tier and Enterprise tier. The Edge Tier is concerned with
the technological solution deployed on the sites where the Press Machines
(including the Clutch Brake component) are located. At this level, data
acquisition systems to extract the data from the different sensors and SCADA
systems connected to the machines are deployed. Figure 7.72 depicts the
elements of this tier. An Industrial PLC based on the B&R X20CP1382
module was connected to the sensors attached to the Clutch-Brake (including
the intelligent soft-sensors). The module collects all the measurements from
the sensors and runs local code to pre-process the signals and produce a set of
parameters that are able to characterize the overall status of the Clutch Brake.
The module stores these parameters in a local file to act as a Datalogger for
the cyber physical system. A second embedded computer (Edge Gateway)
is attached to the Datalogger, and it retrieves the parameter files and creates
IoT-A CEP Events [Internet of Things Architecture] that are sent to the cloud
platform as messages.

At platform level, data coming from the different sources is persisted
and different applications that allow analyzing of this data are available. The
specific modules for the Platform Tier are presented in Figure 7.73, and are:

• Edge Brokers: It maintains the connection between the edge devices
and edge tier, and it includes a data distributor. The distributor is a
message-oriented component to collect and redistribute the in- and
outbound messages between components. In this use case, this module
is a publish/subscribe system that receives the data from edge tier in
different queues and publish the message received to the modules in the

Figure 7.72 Edge Tier.
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Figure 7.73 Platform Tier.

platform that have subscribed to each queue. The technological solution
for the Edge Broker is RabbitMQ. RabbitMQ [RabbitMQ, 2018] is an
open source message broker that supports multiple messaging protocols
[Albano et al., 2015] such as Advanced Message Queuing Protocol
(AMQP) [Vinoski, 2006];
• Converters: Software components or modules to translate edge cloud

interface (IoTA CEP Events) into a database interface (MIMOSA API
Rest [MIMOSA Consortium, 2003]) or files system interface (HDFS
API). The converter is implemented using the translation capabilities of
an Enterprise Service Bus (ESB) named WSO2 [WSO, 2018];
• Data Storage systems store the information coming from Cyber

Physical Systems (CPS) and results obtained from data analysis
maintenance actions and algorithms. Two storage systems are employed:

• MIMOSA DB: This is a database compliant with the ISO-
13374 Standard (Condition Monitoring and Diagnostic of
Machines) [ISO, 2018]. One of the main objectives of the
MIMOSA CBM architecture is to standardize the information
flow between the various blocks, so that equipment from different
vendors could be interoperable. The MIMOSA database is
deployed in SQL Server and API REST is used to access data from
applications;
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• Hadoop Distributed File System (HDFS): This is a distributed file
system designed to run on commodity hardware. Designed to be
deployed on low-cost hardware, HDFS is highly fault-tolerant and
provides high throughput access to application data, which makes
it suitable for applications that have large data sets;

• Batch Processing: data analysis and processor mechanisms to enable
the management of large volumes of data, fetched from storage
systems and process on demand. This is implemented over Apache
Spark [Apache, 2018]. The batch processor units implement the offline
analytics capabilities of the platform. These technologies are (1) RCA
powered by Attribute Oriented Induction Clustering and (2) RUL
powered by Time Series Forecasting;
• API or WS: To interact with the Enterprise Tier an API offering services

is provided. This component provides information and functionality (for
example RUL) to components external to the platform such as HMI,
applications (ERP) or even other platforms that lack certain maintenance
algorithms.

The enterprise level is concerned with the applications that integrate
information from one/several sites to enhance the global decision-making
process using monitoring through Human Machine Interfaces (HMI) and data
aggregation and analysis.

In relation to CBM-based PM the following aspects have been addressed
for this scenario:

Equipment Failure Root Cause Analysis: The RCA is the first and
necessary step to identify the main equipment failure causes. An AOI
algorithm is used as the principal RCA algorithm. AOI is considered
a hierarchical clustering algorithm, it is considered a rule-based concept
hierarchy algorithm, and it was first proposed by [Han et al., 1992] Jiawei Han
et al. as a method for knowledge discovery in databases. The representation of
the knowledge is structured in different generalization-levels of the concept
hierarchy with IF-THEN rules. The execution of the algorithm AOI follows
an iterative process in which each variable (also referred as attribute) is
generalized based on its own hierarchy-tree. This step is denoted as concept-
tree ascension [Cheung et al., 1994]. To ensure the correct functioning of the
algorithm, it is necessary to establish background knowledge, which specifies
attribute generalization levels.

Equipment Remaining Useful Life estimation: The main objective of
the RUL estimation process is to estimate the useful life of an asset before



388 Success Stories on Real Pilots

a catastrophic failure occurs. The RUL estimation process is performed as
a combination of AOI algorithm outcome and Auto Regressive Integrated
Moving Average (ARIMA) statistical time series forecasting models. A
common objective of Time Series Forecasting methods is to learn from
previous data in order to be able to make predictions of future behaviours.
In order to estimate the RUL, the first step is to evaluate a new variable
to represent the machine behaviour correction factor, denoted as Normality
Factor. The Normality Factor quantifies the extent of the damage of the
machine. By applying ARIMA time series forecasting models, the Normality
Factor evolution is modelled. As a final result, the Normality Factor model
allows to predict the wear of the Normality Factor, providing the machine
RUL in terms of clutch-brake cycles. Finally, clutch-brake cycles are
translated into days, by combining the number of cycles the clutch-brake
system does per day.

7.3.4.1.3 Results
Regarding the implementation of the reference architecture, a platform
that accommodates different industrial processes and assets data for CBM
analysis was built. The platform integrates an interoperable data model
for CBM. Additionally a data/protocol converter that enables translations
between most common data formats and protocols was developed.

Regarding data analysis, preliminary results performed as a proof of
concept show the capability of the proposal. For the experiment, several
features of the clutch-break machine have been used (trigger, angular
position, application pressure, line pressure and flywheel speed). Once the
knowledge-base has been created applying AOI and the most significant
cluster-appearance order for the working cycles was calculated, the anomaly
detection step is processed using the Normality Factor as threshold (value
of 0.70). The Normality Factor evolution signal shown in Figure 7.74, is the
result of applying ARIMA model over the training data utilized to generate
the knowledge-base. In this experiment, around two hundred and fifty ‘break’
working cycles have been predicted. As it can be observed, there are five
different work cycles cutting the established Normality Threshold; thus, it
can be inferred that five different anomalies were detected. The next step is
to analyze the characteristics of the anomalies, inspecting the reasons of their
occurrence. For example, if there is any cluster in the abnormal work cycle
that is not registered in the knowledge-base, it is recommendable to check
the features or the grips of features in which the new values have occurred in
order to establish the reason of the failure; if the order of the clusters inside
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Figure 7.74 Evolution of the Normality Factor over work cycles.

the abnormal working cycle is significatively different respect to the ones
registered in the knowledge-base, it can be reasonable to check the evolution
of the values of the features in order to specify the reasons of the failure.

7.3.4.2 Maintenance cloud platform by Tekniker
As it is stated at the beginning of Section 7.3.4, the main objective of
Tekniker’s platform is the analysis of clutch-brake systems in order to
detect failures. The platform supports Smart-G, a cyber-physical system that
compiles critical process values and condition-related parameters, performs
pre-processing based on algorithms specifically designed for this purpose,
and offers a first level of monitoring and decision support directly back at the
edge tier.

In addition, this valuable information recorded locally can be sent to the
cloud platform where the user can access the entire historical information
related to the use of the component. Therefore, the objective of this platform
is to support the knowledge of GOIZPER and give predictive maintenance
capabilities using different algorithms integrated in the system.

7.3.4.2.1 Background
The main objective is to understand clutch-brake wear in order to give
services and advices to the customers. All the critical signals are acquired,
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stored and processed in a PLC-based device called “Smart-G”, and then sent
to the cloud platform, where they are stored and processed to predict failures
and give visual decision support capabilities. Therefore, information on the
condition of machine components and operating processes is recorded locally
on the Smart-G devices, and transmitted remotely to reduce unforeseen
downtime and increase equipment availability.

7.3.4.2.2 Solution approach
The platform is built using the Microsoft Azure cloud services, and is
represented in Figure 7.75.

The system is designed using a typical pattern in big data scenarios
known as “lambda architecture”, with uses three layers to solve the computing
problem: speed layer, batch layer and serving layer. The batch layer holds
an immutable, read-only master database, and it pre-computes a batch view
with indicators and aggregated data. The speed layer deals with recent data
only and executes quick algorithms (rules and machine learning algorithms)
to produce a speed view with alarms and predictions. The serving layer is
composed of the batch view and the speed view mentioned before.

Exploitation and visualization of data relies on the Microsoft Power
Business Intelligence capabilities to show aggregated information, indicators
and transient raw data of the monitored assets.

Application of big data techniques, combined with machine learning for
pattern identification, and complex event processing for the detection in real

Figure 7.75 Azure-based Maintenance Cloud Platform.
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time of the learned patterns, is the approach for reaching a high ratio of
availability and operational performance.

The Azure services used to build the platform are described below:

• Azure Event Hubs: It is a highly scalable publish-subscribe message
broker for event ingestion, with a partition-based approach to support
the ingestion of millions of events per second;
• Azure Stream Analytics: This is an event data processing service for

real-time analysis of streaming data. It uses a SQL-like language to
create rules, and can sent requests to the Azure Machine Learning
Service to execute algorithms in real time;
• Azure Machine Learning: It is a cloud service for the implementation

of predictive analytical solutions. It provides a big number of built-in
packages, and allows the customization of new ones;
• Azure HDInsight: This is a highly scalable solution used to prepare the

data in the batch layer. It allows the combination of data and statistical
equations providing many possibilities for data enrichment;
• Azure Blob Storage: It is a cloud service to store unstructured data as

blobs. A variety of data files can be stored, for example binary, text,
documents, multimedia files, etc.;
• Azure SQL Database: This is a relational database that is used to store

alarms and aggregated values.

Additionally, a business intelligence tool (Microsoft Power Business
Intelligence) is used for reporting and visualization of data. This tool
facilitates the representation of information in attractive panels and reports
that can be customized in a very flexible manner.

7.3.4.3 Friction material slippage
Two kind of slippages can arise during operation, clutch side slippages and
brake side slippages. Each of them are caused by different reasons. Clutch
side slippages cause a transmitted torque loss to the output shaft, which is
dissipated as heat. Brake side slippages also cause a transmitted torque loss
and in turn, a delay of the shaft’s braking time.

7.3.4.3.1 Solution approach
In the proposed solution, many factors have been considered in order to
identify slippages causes for each case. For the slippages that come up during
clutching, air leakages and clutch side friction material degradation have been
analysed. On the other hand, brake side slippages are produced due either to
brake springs degradation or brake side friction material degradation.
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Slippages can be detected directly from encoder velocity and acceleration
signals as shown in Figures 7.76 and 7.77.

7.3.4.3.2 Results
Figure 7.76 shows velocity and acceleration profiles when no slippage is
generated. As it is noticed, clutching and braking velocity and acceleration
curves are continuous.

In Figure 7.77, one can notice an interruption in the velocity and
acceleration rising curves generated during clutching. This interruption is
provoked by slippages that have emerged due to the different reasons
mentioned above.

Figure 7.76 Clutching and braking velocity and acceleration without slippage.

Figure 7.77 Clutching and braking velocity and acceleration with slippage at clutching.
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7.3.4.4 Brake spring degradation
Brake springs degradation reduces braking torque, increasing braking time.
This effect may put the integrity of the produced work pieces at risk, as well
as operators’ integrity.

7.3.4.4.1 Solution approach
A soft sensor approach is developed for estimating the brake springs stiffness.
Several test were done with many brake spring combinations for simulating
degradation. The set-up is shown in Figure 7.78. The pressure sensor P1
measured the line pressure, the pressure sensor P2 measured clutch brake
input port pressure and the pressure sensor P3 measured the chamber
pressure.

The developed soft sensor is able to estimate several clutch brake states
and a parameter by measuring only the line pressure P1 and the clutch
brake input port pressure P2. The estimated states were piston displacement,
velocity and acceleration, and the inner chamber pressure evolution over time.
The estimated parameter was the brake springs stiffness.

7.3.4.4.2 Results
For each test the inner brake springs were changed and the soft sensor is
able to estimate the brake springs stiffness with an error less than 5%. The
estimation results are depicted in Figure 7.79.

In the case of the estimated stiffness, the estimation line converges quite
well with the actual value of the brake springs. The estimation of the chamber
pressure does not converge so well due to the leakages that are not yet taken
into account in the model.

Figure 7.78 Prototyping clutch brake set-up.
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Figure 7.79 Estimated vs actual inner chamber pressure and brake springs stiffness.

7.3.4.5 Friction material wear
During operation, clutch and brake sides’ friction material suffer from wear.
These issues could cause some problems such as delays at braking and
clutching and, at the same time, they could also cause the degradation of
other components.

7.3.4.5.1 Solution approach
The wear of the clutch side and brake side friction material is monitored by
means of a soft sensor that takes advantage of the already installed pressure
sensors signals. Some metrics are defined in order to relate the air mass flow
and the instantaneous pressure level with the wear of both friction materials.
As in all cases where soft sensors have been applied, this solution needs a
model of the analysed system.

Many tests have been carried out combining different wear levels for
friction material for both sides. Analysed magnitudes or metrics have revealed
a similar behaviour for an identical friction material wear in the same side,
either in clutch side or brake side. Figure 7.80 shows air pressure vs air
mass curves shapes for different friction material wear combinations. The
percentages that appear in the figure legend represent the wear level of both
sides, being left side percentage brake side wear and right side percentage
clutch side’s.

7.3.4.5.2 Results
Figure 7.81 shows a zoomed-in view of the brake and clutch related curve
sections and shows how the curves track the same path for an identical wear
level for both sides.



7.3 Maintenance in Press Forming Machinery 395

Figure 7.80 Air pressure vs air mass representation.

Figure 7.81 Left side, brake friction material related curve section. Right side, clutch friction
material related curve section.

From those results, the soft sensor was able to estimate the wear level
of the friction material attached to the friction discs, establishing some
thresholds for different friction wear levels.

7.3.4.6 Piston chamber air leakage
Air leakages during a clutching operation imply an engaging force loss, which
in turn is associated to economic losses since more compressed air must be
provided to the clutch brake in order to compensate those leakages.



396 Success Stories on Real Pilots

7.3.4.6.1 Solution approach
The air leakages are detected and measured by the air mass flowmeter. The
mass flow of air reveals directly the air leakages during the press machine
operation while the clutch brake is clutched.

7.3.4.6.2 Results
Figure 7.82 depicts the evolution of the air mass flow during a single stroke
operation of the press machine. The portion surrounded in purple quantifies
the air leakage that the whole system has experimented.

7.4 Fault Detection for Metal Benders

Contributors: Rafael Rocha, Michele Albano, Luis Lino Ferreira,
Hugo Ferreira, Catarina Félix, Carlos Soares, Goreti Marreiros,
Diogo Martinho, Isabel Praça, Giovanni Di Orio, Pedro Maló,
Asif Mohammed, Rui Casais

The objective of this use case is to apply anomaly detection algorithms to
the data from the the CNC of metal benders and additional sensors in order
to detect failures. The idea is that the machine tool will have an expected

Figure 7.82 Air mass flow profile during a single stroke cycle.
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behaviour given a set of environmental and production parameters. If at any
point in time this behaviour deviates from the expected, then we can assume
that something is wrong. In such cases, it is necessary to flag these states
and warn both machine operator and maintenance personnel of this event.
More concretely an analytics module that processes the data generates alerts
or alarms according to the deviation detected from normal operation. These
alerts are sent to a monitoring system were they can be viewed and analysed
by the machine operators. This can save on downtime by both supporting the
diagnosis of the potential malfunction, collecting spare parts in advance, and
repairing the machine before the malfunction occurs [Ferreira et al., 2017].

7.4.1 Introduction to Press Braking

Press braking (brake forming) is the process of deforming a sheet of metal
along an axis by pressing it between a clamp (tool) (Figure 7.83), performed
by metal sheet bender machines, such as the one in Figure 7.84. A single sheet
metal may be subject to a sequence of bends resulting in complex metal parts.
Such operations can be used to produce a wide variety of products ranging
from electrical lighting posts to metal cabinets.

In the case at hand, brake forming can bend sheet-metal (thus the
common name of metal sheet benders) from 0.6 to 50 mm thick and lengths
from 150 mm to 8 m long. The sheet metal bender machine considered
in this section is a top of the line model and pertains to the Greenbender
family [Ferreira et al., 2017], manufactured and commercialized by ADIRA.
The machine (Figure 7.84) is able to exert a force up to 2200 kN using
2 electric motors of 7.5 kW each, and it is able to bend metal with high
precision while saving a considerable amount of energy in the process, as
per the EcoDesign (2005/32/CE) European directives.

Figure 7.83 Bending process.
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Figure 7.84 Sheet metal machine.

The angle and type of the bend are determined by the shape of the punch
and die and the depth with which a punch penetrates a die. The dies can
have “U”, “V” or channel shapes. A movable ram is attached to the beam
and is covered by a shroud. The punch is attached to the bottom of the ram
and the die to the top of bed (covered by the lower shroud). When the ram
descends on the table, a bending force is exerted on the sheet-metal between
the punch and the die. The bending force and bending speed must be carefully
controlled in order for the material being used to maintain their physical
characteristics and insure the required bending precision. Additionally, the
machine structure deforms due to the forces involved and those deformations
have to be compensated in order to guarantee the machine precision.

Although this may seem simple enough, these machines require very
accurate control to ensure the required bending precision (in the order of
tens of microns). This accuracy is critical when the bending axis is long. The
success of the operations depends on many variables including for example
the tensile strength and thickness of the work piece, the type of tools (punch
and die) used and the type of bend required.

To ensure the quality of the final product, the bending process comprises
of several sophisticated control methods that include:

• Calculating the deformation of the workpiece based on the metals
characteristics, tool geometry and the desired bend;
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• Compensating for spring back by measuring the deviations and repeating
the bending process;
• Compensating for frame deformation by measuring changes in the

machine tools structure and adapting the pressing accordingly;
• Compensating for deflections in the bed by changing the shape of the

bed during the pressing of the workpiece.

The machines used for this process consist of a hydraulic system that applies
pressure to sheet metal thereby deforming the workpiece to the required
specifications. The hydraulic and mechanical systems (pistons, valves, tubes,
pumps) are subject to high pressures and may fail. Mechanical wear and tear
also occur, which may result in damaged axis, shafts, bearings and tools
(punch and dies). The hydraulic systems depend on the correct function of
the electromechanical valves and motors. These elements are also subject to
electrical failure. Many supplies are consumed periodically, such as hydraulic
fluid, air filters and oil filters. These elements may also be subject to failure.

These machines have stringent safety requirements that also impose
certain restriction on its operation. In addition to this, the production
efficiency is also a very important factor in its operation. Moreover, since
these machines are used for very costly manufacturing processes, downtime
is extremely hurtful to the company that bought the machine. All these
requirements mean that the various components such as the hydraulic system,
tools (punch, die and bed) and back gauges, which are subject to extreme
pressure, must operate in the best of conditions. It is therefore important to
predict, detect and correct any failures that will either generate scrap, put an
operator’s life at risk, or cause downtime.

Next section describes the PM platform implemented to support this
use case, while Section 7.4.3 provides insights regarding the employed data
analysis techniques and their results.

7.4.2 Design & Implementation

Proactive maintenance strategies are implemented on the sheet metal bender
machine by means of a distributed platform compliant with the MANTIS
architecture described in chapter 3, and tailored to the work at hand. In
particular, the focus of the platform is on sensor data acquisition, data
transmission and storage, and forecasting and machine learning techniques.

The deployed platform is represented in Figure 7.85 and is described
in the rest of this subsection. In particular, the components are put into
relation with the three tiers the architecture is divided into (edge, platform,
and enterprise).
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Figure 7.85 Design of the Proactive Maintenance solution.

7.4.2.1 Data collected by the machine’s sensors
Data on the machine are collected by means of sensors that are part the
machine’s control systems or from sensors which were added specifically
for maintenance purposes. In fact, the machines under study are advanced
and heavily sensorized. The existing sensors can be grouped into three
different data sources: the Programmable Logic Controller (PLC), the
machine’s Computerized Numerical Controller (CNC) that controls the
machine, merging data from the PLC-connected sensors and actuators, and
the Safety PLC.

The sensors of the PLC are used internally to control its operation.
These range from buttons and pedals to advanced electric motor drives, with
positioning information. Although used primarily for control functions, these
sensors can also be used to determine anomalous events or states, to diagnose
problems and even to infer the root cause of problems.

The PLC works in close cooperation with the CNC controlling all
automation functionalities and, at the same time, it can send information from
its sensors to the CNC. The Safety PLC handles only safety-related functions
for the machine, such as preventing humans from being too close while the
machine is working, detecting critical conditions, etc. Data from these sensors
is mainly used to distinguish between component failures and safety-related
events.

Data are collected indirectly from the CNC of the Green Bender Press
Brake machine, which in turn collects information from the PLC control
system of the machine and from its Safety PLC. An application on the
CNC stores data regarding raised alarms, machine configuration and ERP-
related information (e.g.,: production related data such as type of metal and
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bend) on a Microsoft Access database. Note that the CNC is based on a
Windows machine. The same application stores data collected from existing
machine sensors (e.g.,: extensometers, pressure sensors, oil temperature and
oil quality), which is collected from shared memory and to a file in the
CNC filesystem. The information stored is then sent to the Edge Local
node using the OPC-UA protocol. The ideal solution would be to access the
shared memory directly by a single software module, but this solution was
a compromise in order to ensure the safety and certification of the machine
control system.

The application can be tailored and configured to different machines and
applications, but the current pilot collects data from 50 machine sensors,
with a periodicity of 20 ms, and from the MS Access database, which is
scanned every second. The amount of data generated and transmitted to
the cloud depends on the machine operation cycles. However, according to
the data collected so far, we can extrapolate that it averages 300 MB per
working day.

7.4.2.2 Wired nodes: The oil sensor
The application installed on the CNC also receives data directly from some
of the sensors that were installed for maintenance-specific purposes and
integrated with the PLC module. In particular, an oil sensor was the only
wired sensors installed explicitly for Proactive Maintenance operations.

Oil condition sensors have the capability to detect ferrous particles,
water, viscosity changes, etc., to detect lubricant related engine wear and
lubricant quality degradation, among other problems. The installed sensor
monitors the oil that lubricates the machine’s hydraulic circuits, both
in terms of its temperature and its quality, the latter being related to
presence of contaminations like water, particles, glycol and other impurities
in the oil.

The system that analyses the oil consists of two parts, the sensor unit
(Hydac Sensor AS1008), and the data acquisition and computation board.
The sensor reads temperature from –25 to 100◦C, and saturation from
0% to 100%. Both signals are reported using a 4–20 mA interface. The
data acquisition/computation module receives the signals, convert them, and
exports the data through an analogic voltage signal with a range from 0V to
10V to the machine’s CNC. The CNC digitalizes and sends the data through a
communication middleware to the cloud for storage and processing, the latter
being the comparison with custom thresholds.
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7.4.2.3 Wireless nodes: The accelerometer
Each machine is equipped with two wireless accelerometer sensors,
represented in Figure 7.86. The sensors monitor the blade that actually
performs the bending of the metal sheet. The sensors collect the data from
the own movement of the blade in the press, especially from the vibration
patterns that are caused by the hydraulics. In fact, given the fact that the
vibratory pattern can be associated to the condition of the machine’s bending
motors, the collected data can be used to perform PM of the machine.

The wireless protocol for the communication with the accelerometers
is Bluetooth Low Energy (BLE), which enables data collection while
maintaining energy consumption low. BLE is optimized for low power use
at low data rates, and was designed to operate from simple lithium coin cell
batteries.

The sensors are based on the Arduino 101 platform, which provide a
3-axis accelerometer with a maximum amplitude range of 8g. They are
powered by two 9V batteries, and the sensors are configured for a lower
measurement range (between 0 and 2g), aiming to attain a better accuracy.
The sensors are able to perform self-calibration, synchronization and security,
and the CurieBLE library is used to support communication between
the sensors and the Edge Gateway by using of the Generic Attribute
Profile (GATT). According to some preliminary experiments, the maximum
distance for this technology is 30 meters, which corresponds with the BLE
specifications.

7.4.2.4 Edge gateway
The Edge Gateway used for this deployment is located in the factory and
it isolates the latter from the outside world, at the same time providing
some functionalities at local level. From the security point of view, the Edge

Figure 7.86 Sensor component hardware
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gateway creates a DeMilitarized Zone (DMZ) in the sense that it is the only
module in the factory premises that has network access, and thus concentrates
all the security requirements on itself. Communication with the cloud is
mediated by the AMQP protocol, and in particular through a RabbitMQ bus.

On the other hand, communication with the wireless sensors in a factory
is done through BLE protocol, and the rest of the systems (CNCs of the
machines and the wired sensors) is done by means of the OPC-UA protocols,
which allows for a number of capabilities, including node discovery, data
caching, and some degree of security.

Node discovery is used to enable the fast configuration of new
machines in a factory. The CNC and the wireless sensors act as OPC-
UA server and are discoverable by the Edge Gateway, which then provides
the servers with mechanisms to support communication and management
of the data acquired across multiple heterogeneous and distributed data
sources. This is accomplished by providing an abstraction layer that
detaches the application development from the intricacies of the lower
level details. It acts as a virtualization platform and as data broker that
connects the Machine logical block to the Cloud Middleware, capable of
extracting, collecting, distributing/sharing, pre-processing, compressing, and
semantically enhancing the data produced in an efficient manner. Therefore,
the one of the fundamental goals of the Edge Gateway is – from one side is to
support the data integration of multiple data sources and – from the other side
is the provisioning of data to the cloud where more complex and resource
consuming data processing takes place.

Finally, the Edge Gateway of this pilot comprises a database to cache
collected data, and a local HMI service responsible for visualizing all the
necessary information generated within the factory, such as list of machines
available and their conditions, and data readouts.

7.4.2.5 Communication in the cloud
A few components on the cloud (Messaging Bus, Management Panel, Edge
Broker and Database) manage the data, by storing and transporting them
between the Edge Gateways of the factories and the Data Analysis and
HMI modules. The communication mechanisms are implemented on top of a
message-oriented bus and allow the interaction of the factories, mediated by
their Edge Gateway, with the rest of the Platform tier, and the Enterprise tier.
Communication is performed on top of a RabbitMQ bus, which is the most
popular implementation for the AMQP protocol.
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The basic elements of the message distribution system are the exchange
and the queue. The exchange is the recipient of a message from a message
producer, and its duty is to deliver the message to one or more queues,
the latter being buffers from which the message consumers will pull the
messages. An exchange can be connected to multiple queues, and the
exchange can be configured to treat messages in different ways, such as
relaying the messages to the queues in a round-robin fashion or broadcasting
the messages to all the queues. Finally, the decision on which queue(s)
receives each message from the exchange, is done by means of a routing key,
which is a meta-datum assigned to each message. The messaging system can
also implement Remote Procedure Calls (RPC) mechanisms, see for example
Figure 7.87.

In the pilot at hand, Edge Gateways send data to the RabbitMQ
server, where the routing process is used to deliver specific messages to
the other components, and in particular the Edge Broker and the Data
Analysis components. The RabbitMQ Bus is configured using a RabbitMQ
Management panel (which is part of the Enterprise tier as far as the
MANTIS reference architecture is concerned) and that obeys the REST
architectural pattern. The component respects the reactive programming
properties, namely, Responsive, Resilient, Elastic, and Message Driven. For
example, the RabbitMQ platform is fault tolerant since, if a message delivery
fails, the queue buffers the messages and retransmits them when the message
consumer is back online. Moreover, if the broker malfunctions, messages in
the queues are not lost since they are saved in the persistent memory of the
broker.

Figure 7.87 Consumer Remote procedure call (RPC).
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The Edge Broker is the main peer that receives messages from several
Edge Gateway devices through the queues and saves the data to a database
module, which is structured according to the MIMOSA standard, which
is described in Chapter 3. Current implementation of the DB is based on
Microsoft IIS, even though an alternative design based on No-SQL Mongo is
available. The RabbitMQ Bus provides queues for generic RPC connectors
for handling database queries, to expose stored data to other components.
The HMI is allowed to make queries trough RPC patterns to the database.
Anyway, when data from a device is received in the middleware, the Data
System Module component and HMI component will receive asynchronous
messages.

7.4.2.6 Components for data analysis
The Data Analysis techniques and results for this pilot are described in next
subsection, while this subsection is focused on the implemented components
that support the techniques.

The main component for Data Analysis is the Intelligent Maintenance
Decision Support System, which is used to manage the models (model
generation, selection, training and testing), for example on reception of
training data. The Intelligent Maintenance Decision Support System is
composed of a Knowledge Base that uses diagnosis and prediction models
and the data sent by sensors. On top of this Knowledge Base there will
be a Rule based Reasoning Engine which includes all the rules that are
necessary to deduce new knowledge that helps the maintenance crew to
diagnose failures.

In addition to the data and algorithms, expert knowledge has been
encoded as a set of rules that are used to detect and flag possible failures.
Each rule indicates what sensor and CNC signals need to be acquired, how
they are segmented, the type of analysis to be executed and what failure is
associated with these signals.

As an example, let us consider when the brake press is working in
automatic mode, terminates its bend cycle and has parked the ram on the
top position waiting for the next task. If no failure exists then the ram must
remain still in the same position where it stopped. Because the hydraulic
system is constantly losing pressure, the CNC compensates for any deviation.
Normally, such deviations are minor (imperceptible to the naked eye) and
occur at very low rates. However, if a hydraulic pump fails or a hydraulics
tube ruptures, leaks will cause large deviations as the CNC compensates for
this.
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In order to detect such problem, the positions of the pistons are recorded
when the control signal indicates that the ram is at top dead center
(segmentation). Statistical tests are used to check that the deviation is within
a specific tolerance threshold. This threshold is determined via the machine
learning algorithm (stream based) and is tweaked in order to reduce the false
positive and negative detection rates.

7.4.2.7 Human machine interface
This module is part of the Enterprise tier, and it provides a Human interface
for the proactive maintenance system. The HMI follows a web-oriented
design and therefore can be accessed from anywhere, at any time and through
all sort of electronic devices with the only requirement being the use of
the Internet to do so. This allows both remote (administrative) and on-site
operations such as analyzing the machine’s state or view its past performance.
It has two main modes, one for data visualization and another for data
management.

In the visualization mode, it is possible to view historical and live data,
which is collected from specific machine sensors (e.g., machine status, speed,
positioning and pedals state). It is also possible to show the results generated
by the data analysis module, more specifically the alarms for unusual sensor
data and the warnings regarding impending failures. It is possible to match
the warnings from the Data Analysis block with historical data collected
from the sensors. All data retrieved from the machine and the Data Analysis
logical block can be inspected through graphs and tables, provided by the
HMI module (see Figure 7.88). Also, each user can be promptly notified of
any event on the machine through a text notification.

The HMI also displays the results of data aggregation and calculation
of statistics. Several descriptive statistics provide useful (albeit simple)
indicators that support the decisions making by those responsible for
maintenance and design. These indicators are therefore available to the Data
Analysts. The results of the machine learning algorithms are displayed when
they generate alerts and alarms, but they can also be visualized as historical
data.

The Management mode allows for all the administrative operations,
like users and roles management, as well as factories and machines setup.
Role management allows to dynamically assign specific permissions to
each type of user, which can be Operator, Data Analyst, and Maintenance
Manager.
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Figure 7.88 Checking the “Bend” variable on a GreenBender machine.

Operator can view historical and live data only. The Data Analyst role
allows inspecting live streamed data collected from the machine, such as
oil-flow and temperature sensors. The data is displayed in near real-time
(Figure 7.89). The Data Analyst role also allows the visualization of historical
data by selecting the data variables to be shown as well as the desired time-
frame. The Maintenance Manager role allows to view some statistics, e.g., the
type of components substituted and the frequency rate of the replacements.
This should be specified for each monitored parameter according to the
current number of cycles performed and to the maintenance actions of the
machine tools. The user can also choose to display the results of the Data
Analysis logical block, in the form of alarms, alerts and reports, which
are displayed highlighting the relevant information for the maintenance
manager and allowing the consultation of details on their provenance. These
notifications include alarms that indicate unusual sensor data (for example
based on simple statistics) and, unexpected behavior (for example, using
outlier detection algorithms). These notifications only allow the detection of
failures (corrective maintenance), but in the future may also be used to plan
preventive maintenance tasks.

Security is implemented by means of SSL/TLS, for both the communi-
cation with the Cloud Middleware and the access to the HMI webpage
(HTTPS). It is also important to note that the web-based HMI is running
in the same node as Cloud Middleware, in order to reduce system complexity
and to be able to access the same Database.
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Figure 7.89 Example data from the controller.

7.4.3 Data Analysis

The analysis on data collected in the pilot is limited to a set of signals that can
be divided into 3 groups: a) movements of the mechanical parts via hydraulic
or electric power, b) temperature of the hydraulic fluid and c) extensometers
that measure the deformation of the press brake machine structure. Additional
signals are also available such as error codes and from the machine’s soft
numerical controller and alarms generated by the safety system. However
these are not processed statistically and are only forwarded as alerts to a
monitoring application.

The machine’s designers and maintenance engineers determine the
signals that need to be analysed. They are compiled as a set of rules that
indicate not only the signals that must be monitored, but also when these
signals should be collected and analysed and how the testing should be
performed.

The pilot applies anomaly detection algorithms to the data from the
machine tools controllers and sensors in order to detect failures. The idea
is that the machine tool will have an expected behaviour given a set
of environmental and production parameters. If at any point in time this
behaviour deviates from the expected, then we can assume that something
is wrong. In such cases, it is necessary to flag these states and warn both
machine operator and maintenance personnel of this event. More concretely
an analytics module that processes the data generates alerts or alarms
according to the deviation detected from normal operation. These alerts
are sent to a monitoring system were they can be viewed and analysed by
the machine operators. Anomaly detection done in this work uses simple
statistical testing (See for example Figure 7.89). The control signals are
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those signals generated by the machine controller that are used to activate
components and/or inform of the various process phases. Examples include:
the Top Dead Centre signal that is active when the press ram is parked at
the top position, the pedal signals (indicating if the operator pressed the up
or down pedals), the axis in position signal (indicates when the backgauge
is in position), the bending signal (that indicates if the ram is deforming the
workpiece in manual or automatic mode), the speed change points (when the
ram slows down for a press), the pinch points (indicating the start and end of
the press phase).

Domain knowledge was elicited from brake press machine experts, which
was then encoded as a set of rules that allow for the detection of possible
failures. These rules indicate how to use the control signals to sample the
process signals, thereby sampling data only during valid periods of time. It
also substantially reduces the amount of data that is processed and analysed
by the analytics module (for example, certain signals need not be collected
when the machine is in standby or parked).

The machine tool manufacturer has provided a list of components that
may be the cause of the failure for a given rule. For example, any deviations
in the ram’s position when parked may be indicative of a failure in hydraulic
system. This list includes leaking tubes or oil sump (due to ruptures),
malfunctioning valves, broken oil pumps and clogged tubes or pumps. Note
that this information does not indicate the root cause of the failure. For
example, a ruptured tube may be due to the hydraulic fluid being below
the required temperature or a broken pump may have either electrical or
mechanical malfunctions in other subcomponents. Currently this information
is not used but could conceivably be combined with the alerts to help in
diagnosing problems.

7.4.3.1 Data pre-processing
Data related to the machine’s behaviour are received from the machine in
chunks and are sent to the Data Analytics module, which has two functions.
The first is the off-line learning and tweaking of the statistical anomaly
detection models and the second is the on-line use of the models to detect
failures and generate alerts. The combination of the alerts generated by the
analytics module and the signal data collected from the machine tool facilitate
the diagnosis of failures by machine operators and maintenance personnel
(data selection and visualization).

An initial pre-processing phase of data processing will first segment and
collect only those signals that, according to the rules we have previously



410 Success Stories on Real Pilots

described, are required. For example, only the movement data is collected for
the “parking rule” when the Top Dead Centre signal is on or we only analyse
the ram speeds and synchronization when the pedal down control signal is on.

A second pre-processing phase will transform data in order to be
able to either learn the statistics or use the statistical tests to check for
anomalies. These transformations depend on the type of test to perform,
which is determined by the rule. For example, this can involve calculating
the difference between the two signals of piston distances when testing for
synchronization between those pistons.

A third transformation of the signals is the calculation of the temporal
difference of the piston displacement signals. This is used in the rules that
use speed as a basis for comparison and checking. Note that usually such
difference introduces significant noise into the signal and this may require
additional filtering (smoothing).

From the experiments, it appears that the signals from the numeric
controller and the oil quality sensor are clean. Even though the accelerometer
and extensometers data are relatively noisy, no additional sophisticated
pre-processing was used because the related failures could not be evaluated.

7.4.3.2 Failure detection
Statistical hypothesis testing allows one to compare two processes by
comparing the distributions generated by the random variables that describe
those processes [Stuart et al., 1999]. If the distributions are not equivalent,
then we assume a failure occurred. A p-value is used as a threshold in
order to detect any deviations from the expected process with the goal of
reducing the number of false positives and negatives. In the case of the formal
statistical tests, if the p-value does not allow us to reject the null hypothesis
we cannot infer that the machine has no failure (type 2 error). However, here
we assume that this is true, and alerts are only sent when the null hypothesis
is successfully rejected. A distribution of a given process may be described
by one or more random variables. Here we limited our analysis to the use of
univariate statistics only using both parametric and non-parametric models.

7.4.3.2.1 Parametric models
In the case of the parametric models two basic tests were performed:
univariate signal that should be close to a constant (within an unknown
threshold), or two signals must not diverge from each other (no more than
an unknown threshold). In both cases we can use the signals that indicate
velocity, distance, heat and acceleration. In either case, if we can perform a
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parametric Gaussian test on the mean (using a t-Test) or deviation (directly
compare deviations, F-test, Bonett’s test and Levene’s test).

In addition to the tests described above, additional naı̈ve statistical
tests were used. In both cases an online Gaussian model is obtained via
the calculation of a mean and variance. These means and variances are
then directly compared to the continually sampled signals from a working
machine. If a significant divergence is found, alerts are generated. Due to the
high false positive and false negative rates (type 1 and type 2 respectively),
an additional multiplicative threshold (in respect to one standard deviation) is
used when comparing deviations. The initial values of this threshold are set
automatically by selecting the lowest possible threshold that reduces type 1
errors.

7.4.3.2.2 Non-parametric models
As with the case of parametric statistic, the process of defining the hypothesis,
sampling data and establishing a significance level as a threshold were the
same. However, not all of the non-parametric methods provide a p-value for
a significance level comparison. Three types of statistical tests were used in
our work: the Kolmogorov-Smirnov test (K-S test), the Mann-Whitney U test
and the use of a kernel density estimator (KDE). In the case of the U statistic,
which is approximated by a normal distribution, a p-value is available to
establish a threshold for accepting or rejecting the null hypothesis.

In the case of the KDE, an online algorithm was used that generates
a dynamic number of (Guassian) kernels. The kernels and respective
parameters of two different distributions cannot be directly compared.
Experimentation shows that the estimated densities may be visually very
similar, but the kernels themselves differ significantly. However, because
we can use the kernel to sample the underlying estimated distribution we
used the parametric statistical tests to compare the samples (both for the
parametric cases and non-parametric cases using the Kolmogorov-Smirnov
test and Mann-Whitney U test respectively). Here we could have also opted
for the use of alternative algorithms such as the earth movers distance but
did not do so because the naı̈ve parametric tests seemed to be working well
[Levina and Bickel, 2001] (see Section 7.4.3.2.1).

7.4.3.2.3 Evaluation and interpretation
For anomaly detection the positive labels are indicative of failures. Expected
failure rates (as reported by the machine tool manufacturer) are very low. We
therefore need to deal with data-sets that will be highly skewed (very few
positive labels). This brings with it two challenges.
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The first is that false negatives are more important than the false positives.
This is due to the fact that if we incorrectly predict that the machine is failing
(false positive), the alert/alarm message will be sent and the operator, which
will verify that the machine is not in fact failing. On the other hand, if we in-
correctly predict the machine is not failing (false negative) it could have seri-
ous consequences, since the operator will not receive any warning message.

The second challenge is related to the selection of the appropriate metrics
used in the evaluation of the model’s performance. Accuracy is not a viable
metric because a biased prediction of no failure will always result in high
accuracy values. We considered the following metrics: the AUC-ROC (Area
under the Curve for the ROC Curve) and a set of relations involving a
combination of true positive (TP), true negative (TN) and false positive (FP)
and false negative (FN) counts:

Precision, P rec =
TP

TP + FP
(7.7)

Recall, Rec =
TP

TP + FN
(7.8)

Accuracy, Acc =
TP + TN

TP + FP + FN + TN
(7.9)

F0.5, F1 and F2 measures (Fβ for β ∈ {0.5, 1, 2}), Fβ =
(1+β2)×(Prec×Rec)

(β2×Prec+Rec)

Mathews correlation coefficient,

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(7.10)

Exploratory work was done using precision, accuracy and the MCC
metrics. Final comparisons were done using MMC. Future work will consider
the metric Fβ and how to establish an appropriate value of β.

Due to lack of data, initial exploratory work used artificial (synthetic)
data. This data was generated using normal (Gaussian), Bimodal (composed
of two joined normal distributions), Pareto and Weibull distributions because
we had no way of checking the signals distributions. We assumed a
failure rate of 5%. Each of these distributions was tested for differences
in the mean and/or standard deviation using both the parametric and non-
parametric statistics referred to above (T-test, Kolmogorov-Smirnov Test,
Mann-Whitney U test). We also generated non-parametric statistical models
of the synthetic data using the Kernel Density Estimation (KDE). We then
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used this model to generate a reference distribution that was used in the
statistical test. In addition to this we also modelled the data as a Gaussian
distribution and naively compared the means and deviations to determine if
the processes are different.

We found that statistical methods tend to be very brittle and usually
result in many false positives. Increasing the threshold would result in an
unreasonably high rate of false positives. The reason is that the formal
statistical tests make important assumptions about the distributions. For
example, the t-Test is only valid if the distributions have the same standard
deviation. The best results were obtained using the Mann-Whitney U test and
the naı̈ve Gaussian tests.

In the next phase of the work we opted to use the naı̈ve Gaussian tests
because it allowed for the easy generation and update of the model. The data
we got from the machine seems to be Gaussian (we say seems to be because
at the time of writing, data with failures had not been obtained and cannot
therefore confirm this). During this period we collected data from a single
machine tool executing a preprogramed sequence of operations under optimal
conditions for several days.

The pre-processing steps described above are applied to this data (each
segment collected for a given rule) and the mean and standard deviation are
calculated using a robust algorithm. The Gaussian model is initially generated
using the first 10% of the data stream. During the calibration we use the same
10% of the data set to establish the threshold so that no false positives are
detected. The threshold indicates by how much a mean or standard deviation
must differ from the base models’ mean or standard in order to flag a failure.
This is not an appropriate way of setting this threshold, but because no failure
data exists, using a ROC curve to establish a good compromise between false
positives and negatives is not possible. We then tested the failure detection
models of each rule calculating the Gaussian parameters of the segmented
data and comparing those parameters to the base model. We expected a false
positive rate to be close to 0 but got the results in Table 7.2.

As referred above, a multiplicative factor can be tweaked to increase or
decrease the false positives rates, but there is no way to measure the false
negatives and hence use the MCC metric (Equation (7.3)). However, these
test serve as an important sanity check and allow us to detect and correct
several issues.

The first issue is that there is a lag between the control and measured
signals (due to sampling delays and (mostly) due to mechanical inertia). This
means that, for example, when a control signal indicated the start or stop
of the ram, the corresponding sensor reading of the ram displacement does
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Table 7.2 True negatives (OK) and false positives (ALERT, ALARM) detected
rule trained OK ALERT ALARM

1 112 1004 0 7
2 83 749 0 7
3 112 1011 0 0
4 146 1310 0 5
5 187 1631 0 152
6 187 1631 0 52
7 112 1010 0 0
8 90 813 0 0
9 120 1027 53 0

101 152 1368 0 1
102 95 855 0 3
11 117 0 0 1058
12 8109 8109 0 0
13 14938 74690 0 0
14 95 734 0 124
15 184 1665 0 0

not show up immediately. This also means that the control signals are not
perfectly aligned with the ram movement (for example ram movement occurs
after a stop signal is sent). To solve this, in certain rules, only the final signal
samples are used to generate and compare the models.

Another issue is that oil temperature varies widely during the operation
of the machine. This depends not only on the load, but also on the rate of the
ram movement and the environmental temperature. In addition to this, several
brake press machines have a heating element to warm up the oil to acceptable
operational levels. The only way to truly solve this is to increase the sampling
population to several machine tools operating in very diverse conditions.
More important however is the fact that the machines’ oil temperature will
initially rise significantly compared to its initial operation. This means that
we cannot limit our sampling of the oil temperature (or any other signal) to
the start of the data stream when generating the models.

7.4.4 Conclusions

The pilot described in this section is used to experiment with building a
PM platform able to collect data in an effective and efficient manner from
a metal sheet bender machine, and with machine learning techniques applied
to collected data to find misbehaviors.

The implemented platform is used to collect data from a single machine
in a factory, and transport data to a cloud for processing. It is straightforward
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to align all of the pre-existing and new components with concepts from the
MANTIS reference architecture, and the design of the platform is used to
validate the solution described in Chapter 3. The platform uses different
protocols in the different tiers of the platform, and in particular OPC-UA
in the Edge tier, AMQP between the Edge Gateway and the Edge Broker and
between the components in the Platform tier, and HTTPS for the components
in the Enterprise tier since these latter components are web-based.

A naı̈ve Gaussian model is used to identify failures in a brake
press machine using signal readings of position, speed, temperature, and
acceleration. The type of failures and the respective signal analysis is selected
and encoded by domain experts. Due to a lack of failure data (positive labels)
it is not possible to evaluate the effectiveness of the models using standard
metrics such as the F score and MCC (Equation (7.3)). On the other hand,
it is possible to partially validate the solution based on the measure of false
positives. The results seems to indicate that for this specific case, the naı̈ve
Gaussian model may be a viable solution. We are able to determine how
to implement and test the experts’ checks by applying a simple set of pre-
processing steps and using Gaussian means and standard deviations. More
importantly, it enabled us to identify and resolve some issues regarding the
sampling and use of the signals (delayed signals due to inertia, time series
with very high variability of the oil temperature).

7.5 Off-road and Special Purpose Vehicles

Contributors: Ansgar Bergmann

Off-road and special purpose vehicles include lorries (trucks), buses,
agricultural machinery, construction machinery, and forklift trucks. These
types of vehicles share many common characteristics, and offer the possibility
of the development of related technical solutions and technologies under
technically similar challenges. In addition to the property as an investment
and a working machine in production and value-added processes, there are
facts like high complexity, low-volume, high variety and high quality and
reliability requirements over a long lifetime.

7.5.1 Introduction to the Use Case on Vehicles

STILL supplies customized internal logistics solutions and implements
the intelligent management of material handling equipment, software and
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services worldwide. With over 7000 employees, four production facilities,
14 branches in Germany and 20 international subsidiaries as well as a
global dealer network, STILL is a successful international player. Today and
in the future, STILL fulfils the requirements of small, medium-sized and
large companies with highest quality, reliability and innovative technology.
STILL’s forklift trucks are operating in a variety of areas and conditions
with often totally different application profiles, which differ not only in the
temporal use (one to multi shift) as also in the environmental conditions
(from easy hall operation up to use in the heavy industry or fishing industry).
This results in high demands concerning ensuring the availability of vehicles,
recognition of special types of damage and an optimized maintenance
scenario, which fits to the special needs of this types of usage and thereby
minimizes potential and also safety-critical damages resulting from this.

STILL currently collects its data only for internal processes and customer
applications. A key problem lies in the mobility of the machines, which
does not allow large amounts of data to be transferred on a wireless way
without high costs. In addition, the systems are operated in a wide variety of
environmental conditions. Within this project, the aim is to determine whether
existing data collection mechanisms are already sufficient for the desired
objectives or whether new solutions have to be chosen, to be an enabler for
new service solutions and other maintenance based products. Basing on these
fundamental analyses, options for business actions can be derived.

Smart services (see Figure 7.90) are interesting for a company as they:

• Enable higher added value (optimization of service in combination with
intelligent products) and better service quality, e.g., through shorter
reaction and repair times;
• Increase user-friendliness;
• Open up new markets for services and data-driven business models;
• Enable a drastically increased efficiency of service-based operating

models;
• Result in higher machine availability;
• Guarantee a more detailed planning of machine operation and downtime

times;
• Improve component design through monitoring.

7.5.2 Scope and Logic

Currently, STILL has established systems to support all standard issues of
maintenance, where actions and processes are mainly based on existing
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Figure 7.90 Smart service landscape as a possible result of the Mantis basis work.

technical and historical know-how and supplier specifications. There is no
off-the-shelf solution for such brand specific processes on the market, all the
tools which are used to day have been custom-made for the company. This
is also due to the fact that this is property and essential technical expertise
of the company, so there is a need to protect this intellectual property. But
because of the increasing demands of the market and the increasing price
pressure, processes have to be shortened and optimized. In addition, the
complexity and variability of forklift trucks is increasing, so solutions have
to be implemented to support the service technician in his work. In order to
ensure the next steps in the service evolution, clear statements in the process
chain must make fault detection clearer. First time fix is one of the most
important goals of the future. By analyzing the internal system values of
machine components and all other existing databases related to the service
process (master data, repair databases, customer information) a fundamental
base for this steps will be generated. For this reason, both the technical know-
how from the examination of defective parts and the big data analysis will be
used to identify specific patterns in the application and the environmental
conditions that lead to breakdowns or high service costs. STILL GmbH is
focusing on two main topics - Wear and Root cause analysis. Both topics
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are too extensive, that a global solution found in one research project, so the
expectation lies in creating first demonstration cases on this topics, which are
to be refined over a longer observation period.

So concerning wear, STILL is finally focusing now on the subject of tires,
because there are measurable conditions. All other relevant topics of wear
of filters, mechanical and electronic parts have been discussed in the first
phase of this project, but the necessary measures go beyond the possibilities
of MANTIS. The study focuses in particular on the relationship between
usages of the forklift by the driver and wear, since this knowledge can also
be used in other business models (e.g., pay per use). Due to the lack of
other environmental information like temperature, humidity and quality of
the ground (this information is not recorded by the truck automatically) which
are also important on wear, their influence has to be estimated.

In the topic of RCA, STILL uses the existing error messages of the forklift
trucks with regard to the cumulated service reports and internal knowledge.
At present, most error messages have no clear reference to the existing error
screens in the field, since they are created as developer knowledge under
laboratory conditions. Influencing conditions such as the environment or
faulty interaction with other damaged components can be difficult to simulate
in the laboratory. Under real conditions, however, the causal chains can differ
considerably, so that errors can have other causes or effects. A broken wire
can cause the display of a device defect, although the control unit is fully
functional. The aim is therefore to achieve useful results through pattern
finding and cooperative decision-making. The project will initially focus on
some electronic errors to validate these results. However, these analyses are
made more difficult by the fact that the error reports are freely formulated and
do not show any clarity either.

The illustrated example (Figure 7.91) shows the complete range of
components required for a powerful future concept in the field. Most of these
modules are only listed for the purpose of being complete, but will not be
considered in the following context.

7.5.3 Data Platform and Sensors

As mentioned above, most industrial companies, as well as STILL, tend
to have a grown data infrastructure. For these reasons, data are neither
harmonized nor centralized. The data used can therefore be based on
platforms whose technologies are up to 10 years apart. The demands on the
merge are enormous, especially since many data have not been checked for
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their electronic processing capability in the past. It must therefore be checked
whether it is meaningful and effective to integrate these data via interface, or
whether one prefers to collect the data in a new and future-proof way. This is
also due to the fact that 80% of the time spent on data analysis flows into data
preparation. The following graphic (Figure 7.92) shows the necessary data
sources for the following analytic steps.

Since the data landscape of STILL GmbH cannot be completely
replicated for MANTIS, a demonstration solution on MS Azure was chosen
(see Figure 7.93). The main reasons for this decision is the great flexibility
of the step and the simple scalability. All Elements can be selected without
having a negative impact on normal business processes. In the initial phase,
a small number of internal forklifts (up to 5) are connected to this system.
The advantage of this approach lies in the traceability of the use of these
forklifts. The results can thus be validated directly. Once usable results are
achieved, the integration of forklifts can also be extended to rental forklifts,
for example.

The presented architecture serves as a basis for the validation and further
development of the resulting knowledge from the project. As data sources, the
architecture includes vehicle data as well as data from company databases and
from results of the interaction with the service technician. It is deliberately
designed in such a way that individual blocks can be extended or replaced as
required. Communication with the forklift trucks is via Microsoft’s IoT Hub1.
The industrial protocol MQTT is used for data transmission. The incoming
data can be pre-processed via various stream analytics blocks and thus either
reformatted or already evaluated in parts for further steps. The incoming
data is stored in the data lake for the next analysis steps. This enables the
possibility of offline processing. Modified analysis methods can then be
applied to vehicle data several times and the results can be compared directly
with each other. This part is mainly used for RUL. For RCA additional the
event hub is used, which can convert online analysis results directly into an
action. This will be used for pattern recognition. To make the results available
for the service technician in a special smartphone app, STILL uses the API
app from Azure. Company data from the SAP system is coupled in via the
Azure data factory element.

As mentioned in the previous paragraphs, forklift truck data in particular
are used for the analysis. The forklift truck itself has a large number

1An IoT Hub is a site focused on the connectivity between software, the cloud and the
devices used in everyday business operations.
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of sensors that are used to control its movements and processes to the
operator. These sensors are primarily intended for internal control operations,
so their measurement data are not transferred to the outside world for
further processing as a standard. Therefore, there is a need for an additional
external sensor that records on one hand all relevant external measurement
data autonomously. So this sensor should provide the following external
information to draw a precise picture of the environment conditions:

• Acceleration in x, y and z direction;
• Ambient temperature;
• Humidity;
• Pollution degree.

On the other hand he should also have access to internal control values,
with the aim to draw a precise picture of the detailed usage profile and transfer
this data to the Azure cloud.

This sensor is shown in Figure 7.94 and it was built prototypically, but
due to the complex mechanical interfaces, e.g., for dirt detection, the sensor
could not be implemented in this project for a real validation on the forklift
truck. Nevertheless, the functional principle is promising and will be used in
further developments. Without this sensor, the environmental data are initially
determined via questionnaires and weather information from the internet.
The vehicle information is provided by so-called soft sensors. Soft sensors
are software solutions that convert existing system variables into algorithmic
data.

First, all available and relevant data for the creation of possible soft
sensors were recorded via data logging and visualized for the forklift. For

Figure 7.94 Raspberry Pi based sensor based.
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logging, powerful multi-channel industrial data loggers are used, which
record the data traffic on the can bus in real time (see Figure 7.95). It
is important to ensure that the process does not interfere, as the vehicles
have a high risk potential during operation and are subject to the Machinery
Directive. Especially since most measurements have to be carried out on real
customers in order to obtain data sets that are as variable as possible. These
several gigabytes of data were then processed via Matlab2 to determine the
most promising constellation.

7.5.4 Data Analytics and Maintenance Optimization

The core problem for the subsequent analytical processes lies in both data
preparation and the transfer of expert knowledge as described in the chapters
before. The data is therefore first processed after the ETL3 process to extract
the core information. The data situation in mobile systems is fundamentally
problematic for statistical processes, since the high transfer costs and the
low storage depth of these devices mean that less data is available about
these systems than needed for statistical analytics. The high influence of
the environment also reduces the possibility to extract algorithms from the
data, because each additional element need more validation data. The last
burdening influence on analytics is the lack of precision in describing the
problem. Many data sources (e.g., service reports) are not designed for later

Figure 7.95 Data Logging on the internal CAN bus.

2Matlab (spelling: MATLAB) is a commercial software from the US company MathWorks
for solving mathematical problems and displaying the results graphically.

3ETL is a process in which data from several possibly differently structured data sources is
combined in a target database.
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analysis processes. Several preliminary studies are conducted to find out
which data sources and constellations are suitable for the expansion of its
existing processes and business models. Among other things, tools such as
Spotfire4 and programming languages such as R5 are used for faster analysis
visualization.

The example in Figure 7.96 illustrates the analysis of vehicle usage data
with regard to fault events for RCA. In particular, pattern analysis plays an
important role. Are there recurring patterns to which special errors can be
assigned? Once such patterns are identified, appropriate processes can be
stored to perform automatic service actions. For this reason, STILL initially
selected errors for its basic analysis that have little scope for interpretation.
For meaningful results, the ambient boundary conditions are also of great
importance (see also Chapter 5 Section 2). For the final results in real-time
operating systems, it is necessary to choose learning systems that allow an
adequate response also to each new situation.

Figure 7.96 Example for graphical pattern recognition by Spotfire.

4TIBCO Spotfire Analytics is a commercial software platform for business intelligence
solutions for the systematic analysis of internal and external data.

5R is a free programming language for statistical calculations and graphics.
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In the area of wear, as mentioned above, STILL has concentrated on tires,
assuming that the tires in particular give a good picture of how the truck is
used by the driver and of the interaction with the environmental situation.
STILL has analyzed the data sets of approximately 70 forklift trucks in the
topic RUL in terms of use and tire wear.

However, the first approaches basing on the service reports were
problematic, since the reason for replacing a tire can be quite different:

Not every tire is changed because it is worn. A lot of tires are also
changed, due to damages (see Figure 7.97), so the existing database is faulty
with respect to precise information about the real wear. Due to this fact we
start with a basic analytic, which will be optimized during operation.

In order to find a pragmatic solution, STILL approached the problem by
analyzing the behavior of the different forklift trucks. This means that the
forklift trucks are examined over a long period of time and their behavior
is classified. The basis for this assumption is the fact that there must

Figure 7.97 Tire changed due to wear and damage.
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be a statistical correlation between physical usage and the resulting wear.
Therefore, various operating conditions of the forklift truck are considered
with regard to their possible influence. It turned out that agility seems
to be the one of the most promising values, since its influence on wear
is disproportionately high. For the first analytics the agility was divided
into 100 elements, where 100 is representing an extreme dynamic driving
(Figure 7.98). As a rule, the forklift trucks are observed over a period of one
year, so that it can be assumed that we have an average of the typical usage of
the trucks. The individual dynamic elements are summed up per vehicle and
per class. Due to a simple weighting of the dynamic classes, a ranking of the
dynamic use could be created, which corrodes in parts with the wear. Since
the ground condition, load and environmental conditions were not considered,
certain deviations can be explained. For the complete model further
analyses are necessary, but these are not carried out in the course of this
project.

The graphic in Figure 7.98 also shows that the weighting does not always
allow an explicit conclusion. Vehicles with low dynamics can be clearly
identified and the result fits to their wear. But there are also vehicles in the
midfield in particular that have entries in the very dynamic classes. However,
due to the weighting selected so far, they are classified as medium in terms of
wear. Since the associated tire wear does not match the placement, it can be
assumed that a linear weighting between the classes does not seem to finally
apply. There are currently too few data sets available for a clear statement,
so that the results still need to be sharpened with appropriate self-learning
mechanisms.

Figure 7.98 Agility heat map of analysed forklift trucks.



428 Success Stories on Real Pilots

The extent to which the knowledge gained can be used to improve
maintenance processes must be demonstrated by subsequent field studies. An
installed example architecture (shown in green in Figure 7.99) will produce
over a period of time to be defined, results of the algorithm. This results are
then rated and used to refine the analytics.

The high level of service product requirements is due to the fact that a
large part of these products are subject to a fee for the customer. For this
reason, the highest diligence is required when developing solutions so that
these do not have a negative cost effect on the customer and burden the
business relationship. However, there is always a need to improve processes,
since all services provided are subject to considerable cost pressure from
the market. For this reason, the provision of individualized solutions and the
increase in effectiveness is of great importance to the company.

The developed solution modules from the wear area are used in particular
for the optimization of demand-based billing of services like rental or
full service, while the RCA solutions are to be used for increasing the
effectiveness in the processing of defects in the field.

Figure 7.99 Second step in architecture to improve process results.
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7.5.5 Conclusions

Considerations in the project have shown that mobile systems with small data
volumes are particularly difficult to handle. For this reason, technical aspects
are required in such systems in a much higher than expected dimension.
Purely statistical observation cannot lead to success with such conditions.

It became clear that especially the knowledge of the required data is of
great importance and an important key to success. It also became clear that
the quality of the data has to be checked at an early stage and ensured by
appropriate measures.

For STILL, these considerations provide clear starting points that can be
used in future applications. Due to the very complex relationships between
physical vehicle use and the interaction with environmental influences, an
expansion of the data structures will be necessary in the future. The results
achieved so far are refined in further validation loops and enriched by artificial
intelligence. This is necessary in order to realize the high potential in the
general area of optimization of maintenance processes. However, in addition
to the classical support in problem solving tips and analyses results, there are
also elements that will result from visual and/or HMI technology. These will
even open up opportunities for further business areas.

A chosen system architecture must therefore always offer the possibility
of expansion. The platform of this system architecture plays a rather
subordinate role, as the solutions present themselves as a kind of modular
system rather than an integrated solution.

7.6 Proactive Maintenance of Railway Switches

Contributors: Csaba Hegedűs, Paolo Ciancarini, Attila Frankó,
Aleš Kancilija, István Moldován, Gregor Papa, Špela Poklukar,
Mario Riccardi, Alberto Sillitti, Pal Varga, Paolo Sannino,
Salvatore Esposito, and Antonio Ruggieri

A larger pressure on the railway infrastructure has been created by a strong
necessity for faster mass transport with high capacities and frequent runs.
This makes it fundamental to continuously monitor the technical equipment
of the railroad tracks in the most efficient way possible. By detecting fatigue
wear of the track system in an early stage – due to issues such as broken
rails or increased rail wear, caused by natural hazards or by excess loading
on the track system – it is possible to avoid serious damage, also by means
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of correct interpretation of collected data, which allows for rapid intervention
on the track system.

The railway use-case within the MANTIS project [The MANTIS
consortium] is dealing with these issues through a proactive maintenance
approach of the railway system [Hegedus et al., 2018]. This concerns the
interlocking system and the study of possible complications that affect
railway signalling – i.e., non-functional and out of control situations – with its
main focus on describing the development of a set of approaches and support
tools which allow to continuously analyse the status of specific components
within the infrastructure. The use case aims at determining whether and
within which limits it is possible to make reliable predictions for improving
the maintenance process. In particular, it targets identifying anomalies and
reducing emergency maintenance, since it is very costly and cases major train
delays.

7.6.1 Introduction to Railway Monitoring

In the railway infrastructure, the prevailing maintenance approach is still
following the preventive model where most of the maintenance operations
are based on periodical check-ups and substitutions of parts when a failure
is detected. These tasks are carried out at given periodical intervals designed
to mitigate risk with a considerable safety margin involving having to send
maintenance staff to the asset site on a regular basis, exposing them to the
usual safety risks of a running railway [Cocciaglia, 2012].

Modern railways have very low level of signalling installed. For switches,
this comprises only of the detection if a switch is in the correct end position
and locked. The development of new maintenance systems, including the
integration of heterogeneous monitoring and diagnostic technologies, plays a
key role in the improvement of railway safety operations. Existing monitoring
solutions show some limitations due to their non-standardized, proprietary
nature and very low integration level. Consequently, they are not able to
monitor properly the degradation of complex asset, and to detect correlations
between the condition of assets [Cocciaglia, 2012].

7.6.2 Scope and Logic

A railroad switch allows trains to change tracks (Figure 7.100). When a train
is destined to run on another track, the switch-man on the train or another
employee in the railroad yard will turn the switch to direct the train toward
the chosen direction. The railroad switch is activated by moving a long arm
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Figure 7.100 Simple turnout schematic. Moving switch blades are shown in red.

from side to side and moving the train tracks to the desired position. While
many railroad switch activations are accomplished by hand, nowadays some
are electronic and can be changed by an employee in an elevated office at the
railroad yard.

A realistic proactive maintenance solution for railway switches is based
on the concept of Cyber-Physical Systems (CPSs), where a cyber-twin of the
physical system is modelled, and its status is kept up-to-date through data
collection from physical sensors deployed on-site.

The rest of this section provides some details on data processing,
presents the proactive measurement system, and describes the developed data
visualization subsystem.

7.6.3 Data Processing

The data processing requires the consideration of all the available datasets
connected to each switch. In particular, the data available are in the form of
time series and can be grouped as follows:

• Control: data generated by the switch control unit. They include
commands sent to the switch (i.e., start, stop, etc.), and some feedback
data provided by already existing sensors in the switch. The collected
information is coarse grained, with a log sequence structure;
• Physical: data generated by sensors temporary added to the switches

to measure some specific parameters. The most interesting data
used in this analysis are the electric current consumed during the
movement [Ampere], the duration of the movement [second], and the
environmental temperature [◦C].
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The goal is to identify anomalies that could require a maintenance activity.
We have focused on the following behaviours:

• Drifts of the profiles: could be caused by accumulation of dust on the
switch resulting in an increased amount of current leading also to a
failure of the switch;
• Unexpected behaviour: could be caused by physical obstacles in the

switch that may cause damages to the device.

During data exploration, we have identified the following behaviours:

• Behaviour 1 (Figure 7.101): This is a very noisy profile that makes the
identification of the behaviour difficult and may highlight problems in
the data collection. In particular, in the correct positioning of the sensor
and/or the presence of sources of noise that may alter the collection;
• Behaviour 2 (Figure 7.102): Similar to Profile 1 but with a limited

amount of noise;

Figure 7.101 Switch Data – Behaviour 1.

Figure 7.102 Switch Data – Behaviour 2.



7.6 Proactive Maintenance of Railway Switches 433

• Behaviour 3 (Figure 7.103): Expected profile of a double switch;
• Behaviour 4 (Figure 7.104): Expected profile of a switch;
• Behaviour 5 (Figure 7.105): Profile of a switch with an abnormal

behaviour.

The profiles of the current depend on several physical variables linked
to the mechanical and electrical components that compose switches. These
profiles are linked to the specific model of the switch from which the
data are collected. The current is influenced also by environmental factors:
temperature, humidity, and dust.

Due to the large variability of the profiles, our main problem is the
identification of an approach to define the default correct behaviour. This can
be achieved in different ways:

• Physics: this approach is able to define the physical model of each
switch, and it is able to predict the correct behaviour in many different

Figure 7.103 Switch Data – Behaviour 3.

Figure 7.104 Switch Data – Behaviour 4.



434 Success Stories on Real Pilots

Figure 7.105 Switch Data – Behaviour 5.

environmental conditions. However, it requires building a model for
each kind of switch and tuning the parameters for each installation;
• Statistics: this approach requires the collection of data from a wide

set of devices in different operating conditions to define the default
behaviours that are known with some level of uncertainty, but it does not
require the manual development of a physical model for each switch.
The model can be derived from the data and can be adapted to different
switches collecting additional data.

Figure 7.106 shows the statistical features of a specific switch. The
black line is generated calculating the median of the different time series
representing the current profiles of hundreds of movements that happened
correctly in the past.

Threshold detection was used. If the current is outside the bounds, a
warning is risen. The definition of proper bounds is of a great importance

Figure 7.106 Identification of bands for quartiles and outliers.
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for the detection of an abnormal behaviour. As the distribution of the samples
at each time instance is not normal, the outliers’ bounds are defined using
the 1st and 3rd quartiles, according to the Tukey’s range test for outliers
[q1-1.5*IRQ; q3+1.5*IRQ].

There is quite a large range, especially at the end of the movement. After
a deeper investigation, it was found that the behaviour was caused by the
fact that the analysed single set of data was hiding two different data sets.
Actually, the behaviour of the switch in the summer and in the winter is
different due to the temperature sensitiveness. There are several aspects that
depend on the temperature, such as the duration of the movements (longer
in winter) and the current peaks (higher in winter). For these reasons, the
statistical model had to consider the current season (the temperature of the
environment). Therefore, the same analysis was repeated, but the dataset was
divided into two sets based on the time of the year of the data.

The model validation was done by a bootstrap approach building the
model using a random subset of correct movements in the same season and
verifying it with the rest of the data. This analysis was helpful for defining
the statistically correct behaviour of a switch using data coming from the field
and tuning a model without any specific knowledge of the internal structure of
the switch. Such a model can be easily adapted to different switches working
in different conditions, and it was tuned using data in the different seasons.

The data can be analysed by log analysis approaches. However, the coarse
grain and the lack of a sufficient information from the field (including tagged
data describing anomalies) resulted in an analysis that was not able to build a
relevant model that can actually be used.

So, the aim for analysing such data by applying those different statistical
approaches is to determine a model of the default behaviour of the switch,
and to identify anomalies in the behaviour. Among various purposes of
diagnosis and prognosis [Jantunen et al., 2016], this can be used for
failure prediction [Fronza et al., 2013], and other proactive maintenance
purposes [Lenarduzzi et al., 2017], including root cause analysis and the
calculation of remaining useful life.

7.6.4 Measurement System for Proactive Maintenance of
Railway Switches

For failure prediction and diagnostics, a new maintenance system was
needed. We built a new, low cost non-invasive measurement system that
can be attached in retrofit to operational switches. The measurement
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system measures the factors that affect the life expectancy of the railway
infrastructure. The choice of the appropriate attributes is based on expert
knowledge since the different types of switches are not equally affected by
these impacts.

The data acquisition system is part of an architecture which is based
on the MANTIS platform [Hegedus et al., 2018] and complies with
the architecture of the platform in full extent. The architecture of the
system is shown on Figure 7.107 and consists on the following modules:
(1) Standalone data gathering edge device; (2) Edge broker implementing
MQTT; (3) MIMOSA database on a Microsoft SQL Server; (4) Data analytic
modules; and (5) MANTIS Human-Machine Interface (HMI).

The edge device – which is the embedded subsystem deployed with
the railway switch – is not only responsible for gathering new data but
pre-processing and forwarding it to the cloud in an appropriate, MANTIS-
enabled message format. The heart of this device is an STM32F4 series
MCU (Microcontroller Unit) which employs a single ARM-Cortex-M4 core
is capable of collecting, storing and pre-processing the information, while
also handing the communication tasks as well. It offers numerous interfaces –
including UART, SPI, I2C –, and 12-bit analogue-to-digital converters; thus
both analogue and digital sensors can be used.

In this use case, the edge device contains one digital integrated humidity
and ambient temperature sensor, a digital temperature sensor and four
analogue displacement sensors.

Figure 7.107 Measurement system setup.



7.6 Proactive Maintenance of Railway Switches 437

7.6.4.1 New factors collected
The system measures several factors that can affect the wear of the railway
switch over time. These expert-identified factors can be divided into two
groups:

• Operational factors: These parameters are directly related to the
operation of switches – they have direct impact on condition
deterioration. In our implementation, we measure lateral and
longitudinal displacement of point blades. These point blades direct
trains to one of the possible paths, i.e., they are the moving parts of a
switch. Here the excepted resolution is high, and we are interested in
gathering data only during switching sequences;
• Environmental factors: These parameters are well-known to affect

almost every cyber-physical system. The most significant one is
temperature. Both the ambient temperature and the temperature of the
rails are measured. The rail temperature can cause dilation of rails thus
it affects the operation of switches indirectly. Another environmental
factor is humidity, which plays a lead role in corrosion. Since the
ambient parameters are changing slowly, reading the values periodically,
every half an hour provides appropriate accuracy and resolution for this
use-case.

The blade movement measurement must be event driven, data is collected
when a switching of blades occurs. Therefore, the switching itself must be
detected. Detecting the start of a switchover is tricky, since measurement
noise and passing trains may interfere. Therefore, a threshold based triggering
is used together with a pre-fetch measurement phase, as Figure 7.108 shows.
The thresholds are set high enough to avoid false positive triggers, and the
pre-fetch phase ensures that the acquired data contains the full movement
of the blades. Moreover, if the device starts a measurement and the actual
position does not reach the end position – just nearly approaches it –, the
measurement cycle will not stop. In this case all information about the
movement between the real end positions and the threshold levels would be
lost.

The state-transitions of the measurement are presented on Figure 7.109.
In the case when the measurement takes longer than a predefined (expected)
interval, the measurement stops and triggers the device to send a warning
message to the central cloud. This function indicates an error, which means
that the point blades cannot reach their end position – so the switching
operation failed.
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Figure 7.108 Switch’s point blades displacements.

7.6.4.1.1 Platform level
The gathered information is encoded in an interoperable JSON-based
message format developed within the MANTIS project, based on the
MIMOSA [MIMOSA Consortium] domain ontology. The messages contain
not only the results of measurements, but additional information: (i) exact
timestamp, (ii) duration of the measurement, (iii) identifier of the edge device
instance and (iv) additional values that help the re-assembly of the message
at broker side.

The messages are transmitted via the MQTT protocol over TCP/IP. The
wireless connection between the edge device and the central cloud is provided
by a SIMcom SIM800 based GPRS modem which is attached to the MCU via
serial line. The central cloud contains an MQTT Edge Broker, which handles
the messaging, while both the Low-level Device and the cloud have an MQTT
implementation each.

In the central cloud, the message is received by a Mosquitto MQTT
broker [MosquittoTM, 2010] with a parser client. The information is then
stored into a MIMOSA OSA-CBM database, which is a standard architecture
for condition-based maintenance systems. The parsed datasets will be
processed offline by data mining and analysing tools. Future work includes
that the incoming message can be analysed online, automatically by a stream
processor. This will enable an automated alerting and forecasting system.
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Figure 7.109 Measurement state diagram.

The processed and analysed information is stored in the database, thus
the central cloud can provide relevant information to different parts of the
MANTIS architecture, for example for the Human-Machine Interfaces.

7.6.5 Data Visualization

To increase the efficiency of the maintenance personnel and to evaluate the
results of the data analysis [Korošec et al., 2013], an intelligent HMI had
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to be developed. Following the scenario-based design approach, user needs
and the context of use were described in the human-machine interaction
scenarios. In the iterative process of scenarios refinement, five main human
roles have been identified, ranging from the maintenance technician to the
business manager. Further refinement of the scenarios led to identification of
three main functionalities of the user interface:

• Monitoring the parameters given by the measurement box;
• Displaying the alarms that indicate the abnormal movement of the

railway switch;
• Displaying the task schedule for the maintenance service.

The interface was developed on top of the generic MANTIS HMI,
described in Chapter 6. It supports multiple users with different roles, where
each user or role can be presented with one or more dashboards covering
their intended interaction. Dashboard is customizable and does not require
any web development skills.

As it can be seen in Figure 7.110, the HMI allows the user to quickly
see the position of the railway switch through the corresponding graphics.
An additional graphics with the IoT image indicates the connection to the
measurement box to ensure the reliability of the data. When the connection
is established, the image turns green. Otherwise, the user should not assume

Figure 7.110 Graphics, displaying the state and the position of the switch (left) and the
instant values of the environmental parameters (right).
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that the data presented on the interface is accurate or up to date. In addition to
the switch position and state, instant parameter values related to the railway
switch, such as the rail temperature, switch status, ambient temperature and
humidity, are displayed. If the alert thresholds for a measurement are set,
values out of range will also be shown as alarms. Historic values of the
raw sensor measurements and environmental parameters are displayed as
a graph (Figure 7.111). Visualization of the data analysis and prediction
results is done through the same monitoring widgets, which can also show
predictions, remaining useful life estimations. For more in-depth analysis,
Kibana visualizations are integrated.

Scheduled maintenance tasks are currently displayed in the alarms table,
but they can also be displayed separately. The table is editable, filterable and
sortable and allows the user to acknowledge the task/alarm as well as to enter
textual feedback. To assist the maintenance personnel working on the field, a
map with the location of the railway switch is displayed on a separate widget.

Several context-awareness features, mainly based on location and the user
role, have been proposed to assist the maintenance personnel in performing
their tasks. Such features proved to be most useful in performing the
maintenance actions on the field, where the visualization of the information
varies depending on the location of maintenance team. Another such example
is a personalised suggestion of the user’s next step according to their past
interaction with the interface. In this way, the users are provided with the
right information in the right moment and context.

Figure 7.111 Graph displaying blade displacement sensor measurements.
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7.6.6 Conclusion

The Industrial Internet of Things, the concept of CPS and the industrial
initiatives force the evolution of proactive maintenance solutions for
industrial systems. This section presented some results, where the MANTIS
concepts were applied to the use-case of railway switches. These include
the measurement method, the analysis of the measured data, and the result
visualization HMI tailored for various types of contexts and users – ranging
from the maintenance technician to the business manager.

7.7 Fault Detection for Photovoltaic Plants

Contributors: Achim Woyte, Babacar Sarr, Karel De Brabandere,
Tom Tourwé

The high-level objectives of the Photovoltaic plants use case are mainly
concerning the reduction of efforts for operation and maintenance (O&M)
by more cost-efficient monitoring. This is pursued through smart sensing and
data acquisition as well as through analysis and decision-making functions
applied in real time to the operational data. These developed analytical
methods are meant to reduce downtime and subsequent losses in electricity
production due to component failures. Also one of the main objective is
to improve the energetic performance of the plants by detecting design
flaws, bad installation and maintenance practices, performance degradation
of components over time, and sudden changes in the performance of
components. Such possibility of early detections requires improvements of
O&M scheduling departing from root cause analysis, alerting and prediction
functions, and maintenance optimisation.

7.7.1 Introduction to PV Plants

Established in 1999, 3E is an independent technology and consultancy
company. 3E provides solutions as well as guidance to improve renewable
energy system performance, to optimise energy consumption and facilitate
grid and power market interaction. 3E pursues innovation to provide leading
energy intelligence and practical solutions to its customers and it disposes
of long-term monitoring data sets recorded with high time resolution for
more than 3000 PV installations distributed over the world with a total
installed capacity of more than 2GW via its monitoring service SynaptiQ.
3E has worked on projects in more than 40 countries and operates with an
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international team of around 100 experts from its headquarters in Brussels
and offices in Toulouse, Paris, Beijing, Istanbul, Cape Town, and London. 3E
is certified ISO 9001:2008 since early 2010.

A huge potential for more effective pro-active maintenance actions
passing through automated fault detection and identification lies in the large
amounts of PV monitoring data that are recorded but currently used in a
very limited way. It is in this perspective of exploiting this potential that 3E
has been developing analysis and decision-making functions for proactive
maintenance of Photovoltaic (PV) plants.

In view of the objectives of this use case, mentioned at the beginning of
this section, the exploration and validation of analysis and decision-making
functions for proactive maintenance of PV plants has therefore been the
principal focus. 3E and its partners have been developing intelligent functions
for pyranometers sensors, and overall automatic PV plant analysis to assess
the “health” of the plant.

The following section provides an overview of a practical application of
RCA developed for the Photovoltaic Plants use case lead by 3E. It focuses
on the illustration of one of the techniques used for fault detection: Limit
checking applied on the PV use case.

7.7.2 Practical Application of Root Cause Analysis in
Photovoltaic Plants

Photovoltaic plants are energy conversion systems. They convert the power
of light, i.e., photon beams or electromagnetic waves, into electricity that can
be used in an off-grid system and/or fed into the public utility grid in terms
of frequency and voltage. The efficiency of this energy conversion step is
influenced primarily by ambient temperature and secondarily by wind speed
(Sw). Wind speed is often neglected.

Consequently, the primary input variables for this energy conversion
process are the solar irradiance in the plane of the PV array (GPOA) and the
ambient temperature (Tamb). The output variable is the electric AC power
to the grid (PAC) as indicated in Figure 7.112. The PV module temperature
(Tmod), the DC voltage, current and power at the output of the PV array
(VDC, IDC, PDC, respectively), and the AC voltage and current to the grid
(VAC, IAC, respectively) may be considered measurable state variables of
this conversion process. The so-called yields (Y) and losses (L) describe the
energy balance throughout the system in operation and are represented in
Figure 7.112 at the different stages of the plant.
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Data received from the PV array comes in the form of time-series data.
After standard data cleaning procedures, based on pre-mentioned variables
listed above, normalized performance parameters are derived. They allow to
quantify the energy flow and losses through the PV array per loss type.

They are:

• Availability loss: due to unavailability of grid, inverter, or DC input. This
is encountered in the situation when power monitored from the plants is
equal to zero while there is still light coming from the sun;
• Array-current loss: due to deviations of the measured DC current from

proportionality with irradiance through STC (Standard Test Conditions),
for times when the plant is available;
• Array-voltage loss: due to deviations of measured DC voltage from

‘STC voltage’;
• Inverter loss: due to deviations between measured AC and DC power.

The yields and losses are typically hourly average values but can be
integrated over time.

The main variables used for limit checking are solar irradiance in the
plane of the PV array (GPOA), ambient temperature (Tamb), PV module
temperature (Tmod), DC voltage and current at the output of the PV array
(VDC, IDC) and electric AC power injected to the grid (PAC). The AC
voltage (VAC) and power factor (PF) are not used for limit checking.

For checking the operational performance over different energy
conversion steps, a performance loss ratio per step is defined. This
performance loss ratio is computed for a given time span, e.g., a day up
to several months. It is the useful energy lost over the energy conversion
step divided by the energy available, i.e., the incoming solar energy on
the PV array as represented by the solar irradiance in the plane of the PV
array (GPOA); all normalized to standard rating conditions of the PV array.
Accordingly, the overall performance of a PV plant is described by the
performance ratio (PR), i.e., 100% minus the sum of all performance losses.

In practice, we compare the performance loss ratios from measurements
to model-based performance loss ratios and thresholds. The model is fed
with measured values of GPOA and Tamb. The model parameters can be
set from data sheet parameters of the devices in the PV plant or identified
from measurements from the plant in a healthy state. Accordingly, adequate
limits can be derived either from tolerances on the data sheet parameters
or from choosing percentiles from the healthy plant. Both the model-based
performance loss ratios and their limit values vary depending on the PV plant
and the weather during the evaluation period.
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Figure 7.113 illustrates this application of limit checking for a PV plant
located in Belgium. The current-related array losses (‘Array (current)’) in the
upper half of Figure 7.113 by far exceed the threshold. During a thorough

Figure 7.113 Example of limit checking results for the energy conversion process in a
PV plant; performance loss ratios per conversion step are compared to the model for each
conversion step.
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maintenance action after this problem was detected, several smaller PV
module failures were fixed. After maintenance action, all performance loss
ratios were back within their expected ranges, yielding a much higher PR of
82.9% (lower half of Figure 7.113).

7.8 Conventional Energy Production

Contributors: Matti Kaija, Antti Niemelä, Juha Valtonen, Ville Rauhala,
Veli-Pekka Salo, Erkki Jantunen

The most important goal of a power plant operator is to maximize the
availability and performance of their power plant and to minimize the
generating costs of energy. To reach this goal, the maintenance of the power
plant is crucial and maintenance can account up to 30 % of the cost of the
produced energy.

Most modern power plants use a combination of scheduled maintenance
and corrective maintenance. In this strategy, critical components, such as
turbines and pumps, are serviced based on statistical trend data and less
critical components are left to a run-to-failure strategy, where maintenance is
not done until the machinery fails. These maintenance strategies are not cost
optimized since scheduled maintenance usually results in either unnecessary
repairs if servicing is done too frequently or potentially catastrophic failures
if service is neglected. Ineffective maintenance not only wastes materials
and resources, but lost operating time resulting from equipment failure is a
significant expenditure to a power plant operator.

Effective maintenance planning and scheduling is essential for shortening
revision and downtime periods. Most of the revision work is done by external
contractors and work delays can be expensive. By maintaining components
based on their condition, revision work and cost can be optimized.

Current condition based maintenance strategies usually rely on periodical
measurements done by experts, because the power plant staff do not have
the necessary skills to analyse the measurement data. Most power plants
collect information that could be utilized in condition based maintenance,
but the data is not used because it is difficult to interpret or because it lacks
parameters for fault prediction. Implementing new sensors in power plant
equipment can be difficult.
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7.8.1 Introduction to the Plant Under Study

The Järvenpää power plant is combined heat and power (CHP) power plant
owned by Fortum Power and Heat Oy and operated by Maintpartner Oy. The
power plant is located in the city of Järvenpää in the Tuusula municipality in
southern Finland. The power plant main boiler K1 is a fluidized bed boiler
(BFB) with a fuel capacity of 76 MW. The K1 boiler was commissioned in
2013 and has a wide range of utilizable fuels, mainly wood biomass, peat and
waste based fuels. The plant also has three natural gas boilers for peak- and
reserve situations. Yearly the power plant generates 250-330 GWh heat for
the district heating network and 100 GWh electricity.

The flue gas recirculation blower was selected as the monitored machine
due to its easy accessibility and constant run status. The blower is used to
recirculate scrubbed flue gas back to the boiler to lift the fluidized bed in the
boiler in order to cool the bottom of the boiler furnace. The recirculation fan
is not an immediately process critical component, but a failure can affect the
combustion process and prolonged operation can reduce the boiler lifecycle
by overheating the boiler grate.

The blower consists of three parts, the engine, bearing and impeller
inside the impeller housing. Most common faults for any rotating machines
are bearing failures, imbalance and misalignment. All of these causes
have distinct vibration patterns that can be identified with proper vibration
instrumentation. The pilot instrumentation consisted of vibration sensors
installed to the blower bearing and a tachometer for measuring the rotation
frequency of the blower. The monitored blower is shown in Figure 7.114.

Figure 7.114 Flue gas recirculation blower monitored in the pilot project.
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7.8.2 Scope and Logic

The pilot project consists of instrumenting a flue gas recirculation blower
at Järvenpää power plant with several different types of vibration sensors
and creating a data collection and data storage system for the data. Also
implementing data collection from the plant process data to the same
data storage as the vibration data is studied. The goal of the project is
generate a pilot condition monitoring system including installed sensors, data
connection and collection and data analysis and display possibilities. The
current planned pilot structure is presented in Figure 7.115.

The pilot has been divided into three phases for management purposes.
The first phase consists of installation of the sensors and local data
collectors at the site. The installation takes into account the current Finnish
standards regarding vibration measurements and monitoring [PSK Standards
Association, 2006, 2007]. In the second phase, the local data collectors
are connected to the MANTIS data storage that is created following
the MIMOSA data structure presented in the OSA-CBM and OSA-EAI
standards [MIMOSA, 2010, 2014]. The data storage also utilizes the
reference architecture [Mantis Consortium, 2016]. From the MANTIS data
storage, the data is distributed to the individual systems. Some of the sensors
also provide direct access via internet that is used in the first phases of the
pilot to collect preliminary measurement data. The third phase focuses on the
analysis of the data and failure prediction.

The pilot structure allows for comparison of several different sensor types
to find the most applicable sensor for this type of condition monitoring
if such a preference can be made. The standardized data structures for
data communication and storage provide a basis for collaborative use and
development of the MANTIS platform.

The analysis and failure prediction study of the pilot is focused on rotating
machines. The applied techniques will be specified later in the project after
a preliminary technical study is complete and the data collection system
provides preliminary results for analysis.

As several partners already have commercial sensor and data collection
solutions available, these are used for maximum benefit in order to focus
the research work to areas that have not yet been studied. The main
focus of the pilot is the collaboration of different standardized solutions
and protocols and the utilization of the collected data to create new
value. The data analysis and failure prediction is a relatively new area
that is not implemented in the commercial systems and will require
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research on the analysis methods, not only implementation and collaboration
research.

7.8.3 Monitoring Rolling Element Bearings

Rolling element bearings are vital components of rotating machinery and
they can be found in almost all rotating machines. In theory they are usually
designed so that they should last the whole life time of the machine assuming
that proper lubrication is provided and that no over-loading takes place.
Unfortunately in real life it is rather typical that something goes wrong
either with the lubrication or the loading and that initiates the wear of the
bearing. Assuming that the outer or inner rolling surface has suffered, the
wear takes place with increasing speed because the wear particles tend to
cause further wear and worn surfaces cannot withstand the loading as well
as new intact surfaces. Consequently bearing wear develops in exponential
way. From financial point of view, it’s important to know if the worn bearing
will last until the next planned stoppage since in many cases it is very costly
to stop the production in order to change one bearing. Naturally, one option
could be to have redundancy i.e., a spare machine that could be used while the
one suffering from bearing wear is repaired. However, it is easy to understand
how costly this kind redundancy would be as in such a case two factories
would be needed to do the work of one.

Traditionally the condition monitoring of bearings is carried out manually
so that a trained professional is manually doing measurements once a month
or every two weeks and possibly so that if something strange has been noticed
in the measured signals the time period between consecutive measurements
has been reduced to much shorter level e.g., once a day measurements.
Clearly, this kind of manual monitoring is rather costly and takes a lot of
effort in industry because of the high number of potential bearing failure
objects. The aim is to automate the above described measuring process and
also to be able to carry out the diagnosis automatically i.e., define whether a
bearing fault is initiated with signal analysis and diagnosis based on artificial
intelligence. In addition, the capability of predicting the remaining useful life
is one of the objectives. In practice this means that we can predict when the
latest date would be when the bearing has to be changed.

During recent years, the price of sensors and processors has reduced
dramatically and this is the reason why three different type of vibration
monitoring solutions for the detection of bearing wear have been tested. One
of the tested solutions is the Nome nmas system, which is developed for this
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type of purpose i.e., condition monitoring of machinery. The second tested
solution WRM can be seen as a more generic platform that supports not
only vibration measurement but also a wide range other kind of techniques.
The third option is based on low cost components Mems sensor and
RaspberryPi [Junnola, 2017] for processing the data, (see Figure 7.116). The
idea is to find out how well this kind of solution performs when compared to
more sophisticated equipment. The results of that comparison are discussed
in chapter 4 of this book.

The most common technique today to diagnose whether a bearing fault is
present or not is so called envelope detection, which is based on the detection
of the vibration impulses that are caused when a rolling element hits the worn
surface. The impulses vibrate at the first natural frequency of the structure in
question i.e., at relatively high frequency 0.5–5 kHz. The frequency at which
the impulses take place reveal which kind of fault is present. Is it outer or
inner race or possible cage fault? Naturally the reliable detection of bearing
faults at an early stage is the key action in condition monitoring. Quite a
lot of effort is dedicated in being able to predict the development of the
wear process. This is a very challenging task as there are so many factors
that influence this phenomenon. For example, the loading and lubrication
conditions together with the bearing geometry and material have an influence.

Figure 7.116 RaspberryPi based measuring system with a mems accelerometer.
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The fact that the signal analysis indicators that reveal the existence of a
bearing fault do not increase linearly but instead both increase and decrease
at certain phases. The development in the end of life is so rapid that it makes
the prognosis process challenging [38]. These techniques have been more
thoroughly discussed in chapter 5 of this book.

With the introduction of new sensor types and processing power of current
CPSs, the amount of data that needs to be managed increases dramatically
and this in turn emphasises the role of the platform that is for this purpose.
In this use case the idea is to use hierarchical data structure so that most of
the data is processed locally and only meaningful information of exceptions
is passed to higher levels. For example, the RaspberryPi processor is capable
of carrying out the necessary signal analysis tasks together with the diagnosis
of possible faults. The maths are programmed with Python which is an open
programming language dedicated to mathematical programming. It should
be noted that due the openness of the programming language a lot of useful
material is available free of charge. The data is at all levels (locally e.g.,
RaspberryPI, plant, cloud -Azure in this use case-, service centre) managed
with MIMOSA [Gorostegui, 2017]. This is again an open solution for
maintenance related data. MIMOSA can hold data of the bearing type and
geometry, its maintenance history (who, when, what . . . ), measurement data,
data to support the making of diagnosis and prognosis, results of diagnosis
and prognosis. Basically, this is all data that is needed for a CMMS that is
handled with MIMOSA. MIMOSA has also served the purpose of integration
(installation in Kemi) between the various systems that the individual partners
have been using. Mimosa is the platform for supporting the development of
OSA-CBM Web Services that are developed for diagnostic and prognostic
purposes.

7.8.4 IoT-Ticket Platform

One of the measurement platforms used in the pilot was industrial IoT
platform IoT-Ticket and reference edge computing device WRM247+ both
developed and owned by Wapice. For data connectivity IoT-Ticket offers
several possibilities to connect into data sources. These are e.g., OPC, OPC
UA, MQTT and other industrial standard communication methods. Custom
connectivity is possible through ready-made developer libraries and REST
API. Using the WRM247+ multi-purpose data collection and edge computing
device it is also possible to execute vibration measurements. As an off-the-
shelf solution for the vibration measurements it is possible to connect the
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device into IFM VSE sensor gateway solutions. Connectivity to any industrial
standard IEPE 4-20mA vibration sensor is built during the pilot phase in
addition to existing methods. In pilot setup the WRM 247+ device was
directly connected to vibration sensors using a signal condition amplifier. The
benefit of this approach is that it gives a full control of all measurements that
are done in the device. IMI 603C01 sensors are selected and connected to the
system under test using magnetic connectors.

A support for computing RMS (Root Mean Square), Peak (Maximum
Peak) and Crest (Peak/RMS) time domain analyses (KPIs) and FFT analysis
for sampled signal is implemented and configured appropriately. The pre-
processed data is then uploaded to IoT-Ticket server in regular intervals for
further analysis and condition dashboards and reports (see Figure 7.117).

Using the Interface Designer and graphical flow programming tools
the connection to MIMOSA database is implemented by creating the
necessary flows to connect, read and analyze required data. From IoT-
Ticket connectivity to MIMOSA was done using a standard flow-component
that allows connectivity to external REST sources. As a parameter this
component takes a combination of username and password, source URL and
REST method (contains the XML/JSON payload). Virtual data tags allow
forwarding REST response into IoT-Ticket’s system. In order to post-process
the data further several diagnostics flows are created to automatically monitor

Figure 7.117 IoT-Ticket dashboard utilizing the 3D model built by LapinAMK. Live values
are fused into 3D model.
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the vibration levels. Data driven events are enabled by utilizing the IoT-
Ticket alarms and reports feature. Automatic reporting was setup to trigger
if something exceptional would happen in the diagnosed data. This could
be for example an exceptional signal level in vibration measurements or a
decision based on statistical information computed inside IoT-Ticket or one
of the external prognostics service providers available through MIMOSA.

7.8.5 nmas Measuring System

Nome used and further developed the nmas monitoring system in the use case.
The nmas monitoring system is developed and owned by Nome and is made
for condition monitoring of rotating machinery. Connectivity to MIMOSA
database is made through a REST API. The pilot case monitoring system
included a local measurement unit capable of measuring, calculating, and
storing data. A remote connection is build using 4G connection and locally
the measurement unit is connected through WLAN.

Industrial standard 100mV/g IEPE acceleration sensors and optical
tachometer are used for measurements. All measurement channels are
measured simultaneously. Local device calculated velocity RMS (Root Mean
Square) values and acceleration peak value continuously and stored time
signals in defined intervals. Pre-Alarm and alarm limits are set according to
ISO10816 standards.

Analysing of signals is done using nmas Analysator or View Java based
analysing tools. A browser based viewing interface is made to view results
with cellular phone or tablet. Viewing software and browser interface displays
measurement trends, raw time signal, velocity spectrums, and alarm statuses.
More sophisticated analysis including different mathematical functions,
band-pass filters, window functions, different spectrums are available with
analysis software. Basic view of nmas View and Analysator software is
presented in Figure 7.118.

During the project Nome developed nmas Simple measuring device that is
highly adaptive and easy to install condition monitoring system for local and
remote monitoring of critical machinery. Nmas Simple measurement device
is presented in Figure 7.119.

7.8.6 Mantis Cloud Platform

A Microsoft Azure based MIMOSA deployment is used as an information
exchange platform. A REST interface into MIMOSA was developed by
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Figure 7.118 nmas Analysator UI basic view.

Figure 7.119 nmas Easy condition monitoring device.

Lapland University of Applied Sciences (LUAS) in order to integrate various
different measurement platforms together. It’s been developed in JAVA
using existing libraries such as Jersey2 and Jackson to provide basic REST
and JSON functionalities. The REST interface is named MIREI short for
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MIMOSA REST Interface. RESTful approach is chosen due to its simplicity,
ease of use and bi-directionality. Any possible performance related downsides
in the way REST operates is outweighed by the overall ease of integration and
flexibility of the approach.

MIREI was initially released as two separate variants with slightly
different HTTP command structures; the standard MIREI and the
experimental MIREI. The standard MIREI provides helpers to make CRUD
operations more streamlined and concise. It also can contain vendor specific
data mappers that allow systems to store and retrieve native data from
MIMOSA while still retaining MIMOSA compliancy. Such a mapper is
developed for Nome’s measurement system. The standard MIREI release
however is only available for specific tables and does not allow access to
other MIMOSA tables without further expansion. The MIREI experimental
enabled access to all MIMOSA tables. This, however, requires better
understanding of the MIMOSA data model to be of use. It does not contain
any helper functions and will require users to fill in all the fields marked NOT
NULL and adhere to the constraints existing within the data model. Though
the new commands automatically fill the information related to row updates.

Later the two were merged into a single release enabling both
functionalities, however the REST URLs are still kept separate. This is done
in order to make it easier to access the REST commands in scenarios where
it is necessary to use both the helpers and have a more complete access to the
underlying MIMOSA database. Figure 7.120 shows the REST interface and
its role in this use case.

The type of data inserted into the MIMOSA database is mostly focused on
measurement data and generated data provided by the analytics, prognostics
and simulation tools developed by VTT. Envisioned CMMS and ERP data
integration is not completed, however the REST interface would make this
possible. The MIMOSA database is used to store different types of location
information used in augmented reality and virtual reality applications. This
is accomplished by creating new data types to the MIMOSA and using the
existing tables related to assets, segments and measurement locations.

HTTP Basic authentication is used to restrict access to MIREI. Partners
received their own username and password for the system. There is
also possibility to enable more secure token-based authentication for the
MIREI. In the token-based authentication method the client needs to request
authentication token from the server using the login information provided and
then include this token in the REST headers.
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7.8.7 Data Analytics and Maintenance Optimization

The main optimization problem in power plant maintenance is to minimize
the total lifecycle maintenance costs and to maximize the total lifecycle
availability. This means that it could sometimes be beneficial to select
“sub-optimal” operational modes to reduce maintenance costs or vice-versa.
However these decions need to be made based on actual data that is carefully
analyzed.

The success/failure of lifecycle optimization is measured by total plant
availability and maintenance costs. However power plants are designed to
operate for 25–40 years making lifecycle optimization difficult. In order
to collect better data and thus make more informed decisions, better data
collection and analysis tools need to be developed. Modern data collection,
remote monitoring and analysis tools (neural networks, statistical analytics,
physical models) also allow cost effective implementation of more advanced
maintenance methods on less critical components.

7.8.8 Conclusions

This use case represents a quite normal situation that occurs in power plant
environments. Power plants are long-term investments and house IT systems
from several different vendors and technologies that need to be integrated
with each other and need to be able to communicate. Each of the different
technologies operate in their individual fields of expertise, but can have
common elements such as data collection and databases.

This use case represents such an integrated system and the research done
in the use case provides a reference architecture of how such a system can be
built as well as benchmarking some of the open source technologies such as
MIMOSA database and REST API needed for the integration.

Each of the partners also continued developing the individual components
of the integrated system to provide improved analysis, connectivity and
prognosis capabilities for the users. HMI and AR/VR is developed by the
partners and is presented and discussed in Chapter 6.

7.9 Health Equipment Maintenance

Contributors: Jeroen Gijsbers, Mauro Barbieri, Verus Pronk, Hans Sprong,
Jaap van der Voet, Godfried Webers, Karel Eerland, Marcel Boosten,
Kees Wouters, Mike Holenderski, and Alp Akçay
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This chapter provides an overview of practical application of several elements
developed for the Health equipment use-case lead by Philips Healthcare.
The chapter focusses on the most essential activities carried out by Philips
Healthcare and its research partners, as the whole use-case description would
go into too much detail for a chapter.

7.9.1 Introduction to Health Imaging Systems

Healthcare Imaging Systems are essential for the diagnosis and treatment of
patients in hospital and private clinics (Figure 7.121). Due to the complexity
of these systems and the large costs involved, it is not economically feasible to
implement backup systems. Therefore, system uptime has to be maximized,
planned downtime has to be minimized and unplanned shutdown has to
be prevented. To cope with the exploding cost of healthcare, the cost of
ownership has to be reduced, which also implies that maintenance budgets are
under pressure. In response, Philips Healthcare has developed maintenance
services for hospitals based on remote monitoring of their systems.

The biggest challenge there is to retrieve, store and analyze large amounts
of data from globally distributed systems such that predictive maintenance

Figure 7.121 Unplanned system shutdown has a large impact on patients and hospital staff.



7.9 Health Equipment Maintenance 461

can be offered instead of maintenance at fixed time intervals. Furthermore, an
alerting system is necessary when the online data analysis detects a threat of
shutdown.

Due to the large purchase cost and the cost of housing, unplanned
shutdown has a large impact on the hospitals and on the patients who may not
get the care they need. Philips Healthcare made use of MANTIS Reference
Architecture for equipment asset optimization, thereby aiming to move from
a reactive to proactive and predictive maintenance.

The objective is to accurately predict upcoming failures by mining large
amounts of data from heterogeneous systems distributed globally, such that
maintenance can be timely scheduled or in urgent cases, the responsible
person can be alerted. The main challenge is understanding how to get from
large amount of data to accurate and precise failure detection and prediction.

Next to that, the availability of data and the analytical outcomes can give
additional opportunities to exploit this information.

Every Healthcare Imaging Systems contains many sensors and generates
large log files daily. Since these systems are heterogeneous by nature, the
first challenge is to optimize logging such that data mining success can
be optimized (anamnesis in Figure 7.122). The next challenge is to make
all data available worldwide in the cloud (transport in Figure 7.122). Once
the data is centrally available, it has to be translated to behavioral models
and consolidated in a limited set of relevant parameters (translation in
Figure 7.122). This translation requires significant computing power and
storage space (infrastructure in Figure 7.122). Next, the obtained parameters
have to be analyzed with respect to the maintenance challenges (analytics in
Figure 7.122) and the results have to be visualized by end-users (visualization
in Figure 7.122).

From the Healthcare Imaging Systems division of Philips two modalities
participate in the MANTIS project: the Magnetic Resonance modality and the
Interventional X-ray modality recently renamed to Image Guided Therapy
Systems. They are introduced separately in the following sections.

7.9.1.1 Introduction to magnetic resonance
In the Business Unit Magnetic Resonance, medical Magnetic Resonance
systems are developed (see Figure 7.123). These systems are mainly used
to diagnose diseases. There is a variety of Magnetic Resonance system
configurations to cover different magnetic field strengths, different gradient
power strengths and different clinical application areas.
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Figure 7.123 Magnetic Resonance Unit.

A Magnetic Resonance system contains a cryogenically cooled
superconductive coil that generates a static magnetic field. When the cryo-
genic cooling shuts down, the liquid helium level reduces and, within a
few days, the superconducting coil loses its superconducting properties and
results in a quench. The net effect is that the static magnetic field is lost and
operation of the Magnetic Resonance system is no longer possible. It requires
days to refill and ramp up the magnetic field back. Early detection of the loss
or reduction of the cryogenic cooling function may stop the cascade of events
that lead to a quench.

7.9.1.2 Introduction to IGT systems
In the Business Unit Image Guided Therapy Systems, medical X-ray systems
in a C-arm configuration are developed (see Figure 7.124). The focus will be
on the larger motorized ‘fixed’ systems (also called Cath labs), though some
of the ideas may also be viable for the smaller “mobile” C-arms.

These larger X-ray systems can be used for diagnostics, but are most
useful in minimal invasive interventional X-ray procedures like the treatment
of coronary disease (Dotter treatment or stenting), structural heart disease
(valve placement or repair), stroke treatment (aneurisms or stenosis), vascular
disease (aortic aneurism or revascularization of limbs) and many other less
known treatments. Because vital organs are often targeted, it is essential that
the doctor can follow accurately what he is doing inside the patient’s body.
A wrong movement with a lead wire or catheter may cause serious harm
to the patient or even death. Hence, IGT systems philosophy of avoiding
interruptions of the image chain while there is a patient being treated. In the
equipment of interventional X-ray systems, there obviously is a serious need
for reliability.
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Figure 7.124 Image Guided Therapy Unit.

7.9.2 Data Platform

The existing data storage platform is outdated, not scalable, unstable, and
requires too much maintenance. The focus therefore is to transform the
existing platform towards a platform that adheres to the MANTIS Reference
Architecture. This is the foundation for all other activities in the project as
well for future activities. Figure 7.125 shows a high-level overview of the
implemented data architecture.

Healthcare Imaging Systems can upload their data via the Philips Remote
Services VPN. A Data Lake provides the high-volume storage required to

Figure 7.125 High-level overview of the data architecture.
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store large amounts of historical device files. The device files in the Data
Lake are processed by parallel ETL scripts to extract more useful information
that is then stored in a Data Warehouse. The Data Warehouse is also the
destination for structured data coming from administrative databases such
as MS SQL Server, SAP and Teradata. Data analytics can be performed on
the data stored in the Data Warehouse by using RapidMiner or programming
languages such as R, Python or Java.

The next sections provide more details on the individual elements of the
architecture.

7.9.3 Data Lake

Data from Healthcare Imaging Systems (Installed base) has been centrally
collected by Philips via the Philips Remote Services VPN and stored in
a Data Lake. The Data Lake is a component allowing low-cost secure
storage of large amounts of data. The current capacity is of a few hundred
terabytes but the system can be scaled out to multiple petabytes. It is
realized using a Spectrum Scale storage cluster with GPFS file system and
disaster recovery that is mounted as network shares on Linux and Windows
machines.

Approximately 3 years of data have been stored in the Data Lake.
Logically, the data lake space is divided in an archive and a live data-landing
zone. The archive contains all the historical data available while the live data-
landing zone contains the data received from medical devices that has still to
be processed.

Both the archive and the live data-landing zone are further divided per
imaging modality (e.g., Magnetic Resonance, IGT) and, within each imaging
modality, each medical device has its own space. Within the reserved space
for a medical device, the archive and the live data-landing zone are further
divided per year, month and day.

7.9.4 ETL Scripts

Although it is possible to run analysis scripts on the Data Lake, this is not
done very often due to the costs of developing parallel scripts and the lack
of interactivity. The preferred way to analyze the data is by interactively
querying a data warehouse that contains a pre-processed version of the
information contained in the log files.
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Log files come in many different file formats depending on the type of
equipment, type of log file, type of device and release. For example, IGT
equipment stores log events in textual format, parameters in a Microsoft
Windows registry format, and configuration information in XML. Magnetic
Resonance equipment produces log event files and parameters in textual
format, XML, and proprietary binary formats.

For each log file format, a parser has been developed or adapted from
existing tools to process the files and extract relevant data that can support
root cause analysis and predictive maintenance. Given the diverse nature,
formats and the large size of the log files from Healthcare Imaging Systems,
ETL scripts have been developed to extract known, potentially useful,
information from the log files. This information is stored in a Data Warehouse
along with structured data to enable the scenarios. The ETL scripts are
written in Java, Ruby, and Python and run on a cluster of computers that
uses TORQUE, a distributed resource manager for cluster management, to
parallelize the import operations. Each script is therefore written to support
parallel processing and be resilient to failures.

To this aim, two aspects are very important: idempotence and ensuring
correct data provenance. With idempotence we mean that an ETL script can
be applied multiple times to the same input file without resulting in the data
being imported more than once. This facilitates re-running ETL jobs that have
failed or partially failed. With data provenance, we mean that every record
in the Data Warehouse should have associated at least three key pieces of
information:

• A reference to the Healthcare Imaging System, preferably a direct
reference (e.g., serial number) that does not require joins with other
tables;
• The file it originates from with full path and last modification timestamp;
• The version of the ETL script that created the record;
• The date and time at which the record was created.

7.9.5 Data Warehouse

For the architecture, we choose a distributed column-based storage solution
(Vertica) that allows to store large amounts of data and to perform SQL
queries as if it were a “standard” relational database. The main characteristics
of the chosen data warehouse are the following:
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• Distributed: this allows scaling-out when more storage or speed is
required, increases robustness by replicating data on multiple nodes,
increases speed of access by storing multiple copies of the data and by
distributing load across nodes;
• Column-oriented: optimized for data access. Data is logically organized

in tables as in traditional relational databases, though on disk, the data
is stored “per column” instead of “per row”. This allows speeding up
queries by only reading the files of the columns involved in the queries;
• Advanced compression: aggressive compression of the data is used to

replace slow disk I/O for fast CPU cycles. Because the data is stored in
columns, different compression schemes can be used depending on the
property of a column (e.g., type, cardinality, order) achieving extremely
high compression rates;
• SQL-compatible: data can be retrieved using standard SQL queries and

via ODBC/JDBC connections. This makes it easy for the applications
and ETL scripts to upload data and for the users to retrieve it and
to perform data analytics. Additionally, structured data from existing
relational databases can be imported directly 1-1 without having to
change the data models.

Before designing and implementing ETL scripts, domain knowledge
experts and data scientists decide which information from device log
files they consider useful for further analysis. This is typically done in
an interactive way that involves interviews with R&D experts, gathering
of documentation and specification documents of the Healthcare Imaging
System, gathering and manual exploration of sample data as well as automatic
analysis to determine: structure, data types, data value boundaries, etc.

A “data model document” provides the specification of the ETL task as
well as the final format in which the data will be stored in the Data Warehouse.
Identifying the dataset to import is also part of the specification (e.g., which
files should be skipped or declared invalid).

After the data model document is approved by domain knowledge experts
and data scientists, the ETL is designed, implemented (this may include
porting or adapting an existing parser), tested and applied to the set of
historical device files. The resulting data is then verified using basic analytics
(e.g., checking data boundaries, number of records, etc.) and validated by
data scientists and domain knowledge experts. The process is repeated until
the desired quality level is achieved.
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Note that the data in the Data Warehouse is typically written once and read
multiple times. Unless the data needs to be corrected, updates and deletes will
be done rarely. Furthermore, due to the column-oriented nature of the chosen
Data Warehouse technology, the data models are de-normalized to achieve
fast access and simplify data analysis.

The data model document has also the function of data dictionary
documenting the definitions and the logic behind the records stored in the
Data Warehouse.

The ingestion in the Data Warehouse of structured data from existing
databases follows a similar process with the difference that instead of ETL
scripts, data loading scripts are written that use JDBC/ODBC connections or
simple CSV files to move sets of relational data from the sources to the Data
Warehouse.

7.9.6 Sensors

To monitor the performance of critical components in a Healthcare Imaging
System, intelligent components are developed. These intelligent components
sense and record their state in real-time. For components that have a wear-
out mechanism that would make them fail within the estimated lifetime of
a system, the known wear can be removed from computation by means of
calibration during planned maintenance activities. For the IGT equipment one
of these calibrations is automated in real-time with the use of an intelligent
function. There are more opportunities to automate calibrations in the future,
but therefore the required feedback loops need to be in place, which is not
always the case.

In the installed base, there are still many Healthcare Imaging Systems
that lack the required sensing for critical components. For those devices an
intelligent sensor, e-Alert sensor, has been developed. This stand-alone sensor
has embedded sensors to measure physical properties of the equipment or
environment, to process the signals and to send alerts. Such a sensor is not
available in the Healthcare Imaging System itself. The sensor is connected
to the healthcare facility network and can communicate via E-Mail and/or
SMS. Figure 7.126 shows the context diagram of the e-Alert sensor. In case
of unfavorable conditions that require a corrective action to resolve the issue,
messages can be sent directly to customers as well as to service engineers.
Next to that, the e-Alert sensor can be connected to the Philips Remote
Service Network. The e-Alert sensor uploads sensor logs and alert logs to
Philips Remote Service Network, where the data is stored and pre-processed.



7.9 Health Equipment Maintenance 469

F
ig

ur
e

7.
12

6
e-

A
le

rt
se

ns
or

co
nt

ex
td

ia
gr

am
.



470 Success Stories on Real Pilots

This data is accessible via a Philips Remote Service portal to enable Philips
to determine operational profiles (aggregated or on e-Alert sensor level). This
information is used to define control limits to keep the Healthcare Imaging
System in optimal operational condition.

7.9.7 Analysis and Decision Making Functionalities

The next sections explain on high level some topics with respect to analysis
and decision making functionalities. First, the scoring of predictive models
using live data, data sources and data preparation steps for the Log Pattern
Finder is explained. Then physical modeling of a unit that dominantly fails
due to wear-out, and finally a mathematical model that optimizes the decision
making process of remote service engineers in the presence of imperfect
failure alerts.

7.9.7.1 Predictive model deployment and live scoring
The data ingested in the data warehouse is used to develop predictive models
for particular failure modes. Predictive models are software programs that
take as input “live” and “historical” data from a Healthcare Imaging System
and calculate a probability of failure of a certain component or group of
components within a given period. Predictive models can be based on simple
and static rules and thresholds when the failure modes are well understood
and can be easily modelled with the data provided by the Healthcare Imaging
System. In the case of static rules and thresholds, historical data is typically
used to choose the best threshold values that minimize the false positive rate
while providing a high number of true positives.

Very often, simple and static rules and thresholds are not sufficient to
predict failures with the desired level of accuracy. In these cases, statistical
learning is applied. A machine-learning algorithm, such as a neural network
or a support vector machine, is trained on a historical dataset until it reaches
sufficient predictive performances on historical data.

Once a predictive model has been developed (and trained or tuned with
historical data), the model is deployed in a Quality Assurance environment
where it is scored daily with new data coming from the Healthcare Imaging
Systems in the field. The results of the models, called “alerts”, are stored
in the data warehouse for being consumed by a web application called
the “remote monitoring dashboard” where a team of remote monitoring
engineers evaluates them for their accuracy and predictive power. During this
evaluation, the remote monitoring engineers check whether an alert actually
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corresponds to a situation of imminent failure using all the knowledge at their
disposal. Furthermore, the remote monitoring engineers provide feedback
to the model development team on the text and plots to be used in the
alerts in order to make them more actionable and easier to understand. The
model development team uses the feedback of the remote monitoring team
to improve the predictive models until the alerts they generate in Quality
Assurance are deemed good enough for being promoted to production. At
this stage, a predictive model is deployed into production and its alerts are
displayed in the production remote monitoring dashboard. These alerts are
used to create the actual proactive cases for Healthcare Imaging Systems in
the field.

7.9.7.2 Log pattern finder data
In the previous section, we have seen how predictive models can be developed
and used within the data processing architecture. A particular set of models
that is useful in this context are the so-called log patterns. A log pattern is a
logical sequence of log events that correlates with a particular failure mode.
Ideally, we would like to be able to discover log patterns automatically using
data. In this section, an approach for automatically finding log patterns is
described.

7.9.7.3 Data sources
For the log pattern finder for IGT equipment, we make use of various data
sources. The primary data source is the calls data source. As the objective
is to find reactive patterns, we make use of a calls table to identify (i) the
time of the call, (ii) the system to which the call applies, (iii) the parts that
were replaced, if any, and the log events that were generated by the identified
system during a time window prior to the call. These four data sources are
linked as shown in Figure 7.127, where an arrow from data source A to B
indicates that one or more fields from an entry in A are used to identify the
proper entry or entries in B.

For any call, there is always a single associated Healthcare Imaging
System, but there may have been various parts replaced, depending on the
outcome of a root-cause analysis by the service engineers. There are also
calls where no part has been replaced, but other actions have been undertaken
to resolve the issue. We do not consider these and concentrate on those calls
where at least one part has been replaced.

For collecting the appropriate set of log events, we use various methods,
ranging from taking a fixed observation interval of n days prior to the call in
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Calls Log Events 

Systems

Parts

Figure 7.127 Overview of the main data sources used.

order to retrieve a set of log events to more carefully selecting an observation
interval containing a sufficient number of log events.

7.9.7.4 Inspect and normalize the data
It was necessary to invest quite some time into getting to “know” the data.
Blindly applying an algorithm to the data is usually not a good idea. For
example, for log events only a portion of the available fields is used to
obtain a concise representation of an event. This approach, however, results
in millions of different log events, a situation that is not appropriate in the
current context. We discovered that event ids with multiple descriptions are
present. The main reason for this is that these descriptions contain numbers,
dates, times, ip-addresses and such. As these numbers are most likely not
interesting, a normalization step is applied to reduce the number of different
descriptions. A specific filter has to be created for each specific issue. These
filters are handcrafted, based on the inspection of numerous descriptions.

As another example, there is the issue of dates and times. As the
Healthcare Imaging Systems are located in many different countries, one
inevitably has to investigate how time is represented in the data coming from
the various countries. This encompasses time zones, daylight savings time,
and the use of local time without any time zone. Especially for identifying
the proper log events, the call-open date is used, so the time information for
log events and calls should be encoded in the same way.
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7.9.7.5 Data pre-processing
As retrieving a complex set of data from various large databases can be quite
time consuming, we decided to implement a pre-processing step to generate
intermediate data, stored in easily accessible files. In particular, for a certain
configuration (e.g., a time window, a selected set of system codes and system
releases and the (maximal) length of the observation interval) we determine
for each part replaced, during a call that opened in the given time window,
details of all part replacements during this time window. These details include
the system for which the replacement was done, the exact system release,
various parameters and, finally, all the log events that occurred.

Although we do not consider calls wherein no part has been replaced, we
do generate data for these calls, as their contribution in all calls is significant.
We do this by creating a virtual part “NO PART” and treating all calls
without any part replacements as if this “NO PART” has been replaced. By
consistently doing this during the pre-processing step, we already prepare
ourselves to look in more detail into these calls.

As this pre-processing is only done once for each configuration, much
time is saved and the time required to run the experiments is greatly reduced.

7.9.7.6 Data representation
Finding log patterns entails combining the occurrence of combinations of log
events during an observation interval and the replacement of a specific part
during the associated call. To enable an efficient implementation, we decided
to encode calls, together with their observation intervals, as integers, meaning
that one integer is used to encode both a call and the associated observation
interval. In this way, a part p can be represented by a set of integers, i.e., those
that encode calls in which p has been replaced. A log event e can analogously
be represented as a set of integers, i.e., those that encode observation intervals
in which e has occurred. Note that log patterns in general can be represented
in exactly the same way.

This representation of parts and log patterns allows efficient computation
of all kinds of logical operations. For example, all calls wherein part p
has been replaced and before which log event e has occured is represented
by the intersection of their respective sets. A log pattern AND(E1, E2)
is also represented as the intersection of the representation of its two
arguments.

Another advantage of this representation is that, by precomputing a
fingerprint for each part and log pattern, checking equality can be done very
efficiently. Concatenating the integer elements of a set in a string in increasing
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order, separated by an appropriate character, allows string comparison to be
used. This will be further elaborated upon in the next subsection.

In addition, log events are encoded to allow efficient computation. The
encoding is by using integers, prepended with the letter E. This allows quick
comparison of log events, as well as a concise notation of log patterns. It is
noted that especially the additional info field can be as large as a few KBs,
so that a concise representation not only aids in readability, it can potentially
save a considerable amount of memory during computations.

7.9.7.7 Equivalent log patterns
When two log patterns have the same representation in terms of their sets or
fingerprints, they are called equivalent. This is handy when looking for log
patterns: of the equivalence classes that can be created by this equivalence
relation, only one representative needs to be used, as the others will give the
same results. This can significantly reduce the number of log patterns to be
searched through when looking for good log patterns, and even more when,
testing for a limited number of hypotheses, the total number of log patterns
to be taken into account gets small.

Although two equivalent log patterns give the same results, this does not
mean that they are equivalent in every sense. A service engineer may make a
distinction between two log patterns based on the available information. It is
also important to mention that this equivalence relation depends on the dataset
at hand. On a different dataset, e.g., the test set, they may not be equivalent.
Therefore, they may have differing performance. A service engineer may be
able to identify the most suitable candidate from an equivalence class to act
as representative. Of course, multiple log patterns from an equivalence class
can be selected.

7.9.7.8 Log pattern selection problem
Once candidate log patterns have been identified, they will have a certain
performance in terms of the number of true positives (TP) and false positives
(FP) found in the training data. During the search for log patterns, these
numbers have been subject to a number of constraints in order to generate
log patterns of sufficient quality.

Part of the functionality of the log pattern finder is the false-positive
analysis. Once, for a given part p, a log pattern with sufficient quality in
terms of the number of true positives (TPs) and a sufficiently low false
discovery rate (FDR) has been identified, an important and useful exercise
is to investigate why a false positive (FP) ended up as such. This gives us a
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better insight into the issues that caused these false positives and allows us to
improve the log pattern finder.

7.9.7.9 Design decisions
In order to limit the wide spectrum of possibilities, we have made a
number of simplifying assumptions and design decisions. The most important
one is choosing a fixed observation interval length of one day. This
has disadvantages, but we have experimented with longer intervals, and,
although the results are different, they were not significantly better. Currently,
investigations into choosing a proper observation interval length are ongoing.
Note that the observation interval length could be chosen differently for
different parts.

Another important decision is that we look at binary occurrences rather
than frequencies of occurrences. In other words, either a log pattern occurs or
it does not occur during an observation interval. We also do not consider the
ordering of individual log events in a log pattern containing more than one
log event. Yet another decision is not to apply processing on the description
and additional info other than normalization.

Further, we restrict ourselves to log events that only occur a limited
number of times, i.e., at most 400 times per year. This is a heuristic that
we introduce to deal with the issue of significance of individual log events in
a log pattern. We could have been stricter by also here considering p-values,
but this is for further investigation.

Finally, we adopt a file naming approach in order to facilitate the
management of these files. Although seemingly unimportant, we prepend all
generated files with a timestamp, so that the order in which they are generated
can be reflected in the directory and files are never overwritten. We use one
timestamp for each individual run of the software, so that multiple runs can
be performed in parallel.

7.9.7.10 Output
As output, we create files for individual parts and list all patterns found,
their performance, their equivalents, as well as the results of the FP-analysis.
We also report on the number of possible, allowed and actually generated
hypotheses. In the end, the individual log patterns are combined into an
overall log pattern, consisting of ORs of ANDs of individual log events.
Several dozen of these log patterns are now actively monitoring thousands
of Healthcare Imaging Systems daily and a few dozen are still under
development.
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7.9.7.11 Failure prediction
To come to a prediction, research is done on neural networks and their
capability to predict failure of a specific component, a high power amplifier
in equipment of the Business Unit Magnetic Resonance.

A neural network algorithm is used to predict failures in the high power
amplifiers, based on system utilization data and power amplifier demands. For
this purpose, utilization and demand data prior to an amplifier replacement
was compared to utilization and demand data after an amplifier replacement.
Data prior to amplifier replacement is considered as Failure data whereas
data after an amplifier replacement is considered as Good data. The Failure
data is gathered from a period of 17 days prior to device failure to 4 days
prior to device failure. The Good data for period of 13 days is collected after
10 days of part replacement. Please refer to Figure 7.128 for a summary of
the timeline for data collection. The cooling period masks the uncertainty in
dates where the amplifier was actually installed and masks potential “burn-in”
related failures.

The problem of fault prediction is here onwards addressed as a
classification problem where, the model reads 13 days of historical data and
predicts if it is Failure data or Good data. If it is predicted as Failure data, then
it is more likely that the device is going to become faulty at least after 4 days
and if it is predicted as Good data, the device is less likely to become faulty in
the next few days. The dataset covers 219 amplifier replacements in a period
of 1.5 years (July 2015 until the end of 2016). However, due to connectivity
issues, we have got data for 134 systems only prior to amplifier replacement,
and data of 154 machines only after amplifier replacement. Summarizing, we
have 134 failure data points and 154 good data points. For each replacement,
16 features (F16) have been defined. Hence, the total data set consists of
(134 [replacements] + 154 [Good]) * 16 [features] * 13 [days data/features]
= 59.9k feature points. The data points are ordered as a single dimensional
array (1D) (see Figure 7.129). The 1D arrays are formed by lexicographical

Figure 7.128 Timeline of gathered categories of data from a single system.
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Figure 7.129 Conversion of features into arrays.

ordering of the above features where F1 D1 denotes first feature recorded at
Day 1.

The neural network used in this research is an Artificial Neural Networks
(ANN), where the input is fed as a single dimensional array. The ANN used
consists of 7 fully connected layers. The initial 6 layers consist of 50 neurons
and a relu activation function and the last layer consists of two neurons and
a softmax activation function. The network consists of two dropouts. The
initial dropout in forward direction drops 25% of the features and the next
dropout eliminates 50% of the features. This helps the network to develop a
generalization that prevents overfitting. Once trained, the output layer of the
model returns a probability of how it is likely that the device corresponding
to the input data fails.

The data is split into training and testing sets at a proportion of 70% of
samples and 30% of samples respectively. The ANN architecture, represented
in Figure 7.130 was built and the training data was used to train it for 20,000
epochs. Figures 7.131 shows the learning curves (accuracy, loss, validation
accuracy, validation loss) for increasing epochs of the ANN architecture.

It was necessary to train for 1500 epochs to attain the target accuracy
of 95% over 1000 epochs. It can also be observed that the learning late
curves are oscillatory in nature. This is because of the dropout which helps to
reach a higher level of generalizability for the model. The resulting validation

Figure 7.130 ANN Architecture.
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Figure 7.131 Learning curves.

accuracy is 67%. Subsequently, the algorithm was fed with data from the
years 2016+2017, covering more power amplifier replacements. The resulting
validation accuracy is 54%; we could not achieve better validation accuracy.
This is understandable since the number of amplifier replacements is still
limited and deep learning architectures generally require thousands to obtain
a generalised model. However, the ability of the deep learning architectures to
perform satisfactorily on the limited data is promising. Additional work will
be carried out to collect more data in order to achieve a validation accuracy
of more than 90%.

7.9.7.12 Physical modeling
This section will reflect on the 10-step method used to come to a RUL
prediction for the X-ray tubes. X-ray tubes are the most expensive parts to
replace of IGT equipment and they are as such a major concern for the service
organization. It is known that X-ray tubes are subject to wear-out, so it can
be expected that they fail after some usage. Because of the major impact (in
terms of downtime and cost) of an X-ray tube replacement, it is important to
understand the failure of X-ray tubes better in order to improve the service to
customers.
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Step 1: Weibull analysis
As a starting point, do a Weibull analysis of the failures of the unit you want
to make a RUL prediction for. The presence of a significant wear-out means
that a RUL prediction is feasible. Next to working on the prediction of the
wear-out, a second activity should be started to eliminate other failure modes
as much as possible.

Step 2: Identify the responsible failure mode
The Weibull plot for the unit only tells whether there are failures due to wear-
out, but not which is the related failure mode. After a candidate failure mode
is found, a Weibull plot for just that failure mode should confirm that this
is indeed the failure mode responsible for wear-out. As a rule of thumb, at
least 80-85% of the failures should be related to wear-out in order for the
prediction to be useful.

Step 3: Gather knowledge about the physics of the failure mode
X-ray tube cathode filaments wear, because they are heated to a high
temperature during an X-ray run to emit sufficient electrons to produce the
desired X-ray dose, but the heat causes the Tungsten, the material they are
made of, to evaporate. Over time, a hot spot forms where heat and evaporation
are exponentially increased until the material melts at the hot spot resulting
in the opening of the filament. Understanding the stress and having a damage
indicator at hand are two prerequisites for finalizing this step and continue
with the next step in the method.

Step 4: Establish the relationship between stress and damage
indicators and an end criterion in controlled experiments
Controlled experiments can be performed in the lab or in the field, but they
usually require extra instrumentation. The controlled experiments will allow
modeling a first order relationship between damage and stress for the unit,
without the interference of secondary influences. These will appear later in
the field, but can be recognized by comparing them with the first order model.

Step 5: Measure variables with a strong relationship to the stress
and damage
Sometimes stress and damage can be measured directly, but often only
indirect methods are available in the field. Make sure that the relation between
the field data and the variables in the wear model are well established and
understood.
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Step 6: Collect, plot, and monitor the data
Once the field data becomes available, they can be collected and plotted. To
be able to predict the amount of time that is left before a failure, you need
to know how much wear is accumulated per time unit. A convenient way
to represent the data is a (Damage/Load/Time) DLT plot. An example of a
DLT-plot is given in Figure 7.132.

In Figure 7.132, the blue curve represents the ln(c-factor) against the
linear wear (damage vs. load). This curve is called the wear curve. The
orange curve represents the linear wear against calendar dates (load vs. time).
It is remarkably straight for this particular DLT plot, indicating this user
on average keeps on using the system in the same way every day over a
long period of time. The blue curve is called the usage curve. At this stage,
it is important to look for anomalies in the data, be able to explain these
anomalies, and see if the failure is actually close when the wear curve starts
to bend.

Step 7: Segment the usage curve
The usage curve in Figure 7.132 shows a relatively straight line for the linear
wear against time plot. There are examples, where the usage curve changes
significantly as can be seen in Figure 7.133.

When the usage changes, the best predictor for the future will also change.
A change in usage depends on human decisions. In our case, it is related to
the number of patients being treated on the system per unit time, the type of
treatments, the availability of staff and all kinds of causes that would make
the use of the system fluctuate. Therefore it is necessary to look for significant
changes in the usage and adjust the prediction when such a significant change
is detected. This can be done and tuned just based on the shape of the usage
curves themselves.

In Figure 7.133, the dashed line represents the prediction of load at a
particular time considering the usage change. In this particular case, the usage
curve was segmented in two segments and the dashed line is based only on
the second segment and obtained by means of linear regression.

Step 8: Collect sufficient wear curves to failure and establish an
end criterion
When sufficient units have actually failed with reasonable certainty that they
failed with the failure mode related to wear-out, the ends of their wear curves
can be used to establish values for end criteria. In step 4, the variable for the
end criterion is selected. In our case, this is the slope of the wear curve. When



7.9 Health Equipment Maintenance 481

 

20
16

 A
ug

 1
8

20
16

 O
ct

 0
7

20
16

 N
ov

 2
6

20
17

 Ja
n 

15

20
17

 M
ar

 0
6

20
17

 A
pr

 2
5

20
17

 Ju
n 

14

20
17

 A
ug

 0
3

20
17

 S
ep

 2
2

20
17

 N
ov

 1
1

-0
.1

1

-0
.1

0

-0
.0

9

-0
.0

8

-0
.0

7

-0
.0

6

-0
.0

5

-0
.0

4

-0
.0

3

-0
.0

2

-0
.0

1

0.
00

0.
00

0.
20

0.
40

0.
60

0.
80

1.
00

1.
20

date

ln(c-)r otcaf

Lin
ea

r w
ea

r

Ex
am

pl
e 

DL
T 

pl
ot

F
ig

ur
e

7.
13

2
E

xa
m

pl
e

D
LT

pl
ot

.



482 Success Stories on Real Pilots

 

20
15

 D
ec

 0
2

20
16

 Ju
n 

19

20
17

 Ja
n 

05

20
17

 Ju
l 2

4

20
18

 F
eb

 0
9

20
18

 A
ug

 2
8

20
19

 M
ar

 1
6

20
19

 O
ct

 0
2

20
20

 A
pr

 1
9

-0
.1

5

-0
.1

4

-0
.1

3

-0
.1

2

-0
.1

1

-0
.1

0

-0
.0

9

-0
.0

8

-0
.0

7

-0
.0

6

-0
.0

5

-0
.0

4

-0
.0

3

-0
.0

2

-0
.0

1

0.
00

0.
00

0.
20

0.
40

0.
60

0.
80

1.
00

1.
20

1.
40

date

ln(c-)r otcaf

Lin
ea

r w
ea

r

Ex
am

pl
e 

DL
T 

pl
ot

 w
ith

 a
 k

in
k 

in
 th

e 
lo

ad
/�

m
e 

cu
rv

e

F
ig

ur
e

7.
13

3
Se

gm
en

tin
g

th
e

us
ag

e
cu

rv
e.



7.9 Health Equipment Maintenance 483

sufficient units have worn out, an average value at which failure happens can
be established. This may not be necessary in all cases, for instance there may
be a limit value already defined (like a minimum profile depth of a car tire).

Step 9: Predict the wear curve progression for curves
approaching failure
Once the end criteria are found, predictions can be made for units
approaching failure.

Step 10: Assess the prediction stability
As time goes by, more data will be available and this will have influence on
the prediction. At a certain moment, the prediction should however become
more or less stable.

7.9.7.13 Maintenance and inventory optimization
Philips Healthcare is interested in developing a cost effective proactive
maintenance strategy, relying on mathematical tools for statistical life-cycle
and reliability analysis. The goal is to come to the optimal planning of
maintenance and related resource planning. This consists of two different
elements:

• Develop maintenance optimization models that can be used to make
a balanced tradeoff between the cost of a failure and the cost of
proactive maintenance, taking the uncertainty in the prediction models
into account;
• Create a decision support system for remote monitoring engineers to

come to the business optimal decision, and to guide them on what to do
in case of imperfect predictions.

In addition to providing a recipe for the remote monitoring engineers to
follow, we expect that the maintenance optimization model will also shed
light on how much can be invested in improving the predictive/proactive
models, i.e., the value of improved predictive/proactive models will be
revealed by comparing the optimal expected costs under different levels of
imperfectness in alert predictions.

7.9.7.14 Model and analysis
This section describes the creation of a mathematical model that supports
remote monitoring engineers in their proactive maintenance decision making.
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The model should support in the decisions that follow on an alert raised by
predictive models. Whenever an alert is seen, a remote monitoring engineer
needs to decide whether to create a case or to reject the alert.

Decision variables
As reported in Table 7.3, there are two decision variables in the model:
a represents the decision to create a maintenance case and y represents
the decision to combine the case with an already scheduled maintenance
activity.

Table 7.3 Decision variables of the model
Decision variable Notation
Initiate maintenance actions a ∈ {0, 1}
Combine with next maintenance activity y ∈ {0, 1}

Model parameters
Table 7.4 summarizes all the parameters used in the model to support the
remote monitoring engineers.

Table 7.4 Parameters used in the model
Parameter Notation
No Facility Systems Engineer on site m ∈ {0, 1}
No open case o ∈ {0, 1}
Customer contract v ∈ {0, 1, . . . , 6}
Outside working hours coverage owh
Costs of downtime per unit time cd
Downtime compensation ccdt ∈ {0, 1}
Customer’s region monitored by RME r ∈ {0, 1}
Expected costs of PdM cPdM

Expected costs of PdM combined with PM c′PdM

Expected costs of CM ccm
Expected costs of diagnostics cdiagnostics

SLA Response time for contract V Trv
Estimated time for diagnostics tdiagnostics

Estimated repair time tr
Time to next Planned Maintenance tsm
RUL X
Time to on-site maintenance Tos

Probability that the alert is true P
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Alert 1. Failure          Maintenance          2. Failure 

 

 

Figure 7.134 Timeline of Events (1: failure occurs before maintenance, 2: maintenance
occurs before failure).

Timeline of events and probabilistic scenarios in the model
The model includes two random variables, X and Tos. These variables
measure the time from the alert arrival to the failure and on-site maintenance,
respectively (see Figure 7.134). When the remote monitoring engineer
decides to create a case, the local service organization schedules the
maintenance activities to resolve the case. Since X is random, we have to
distinguish several scenarios when a case is created (see Table 7.5).

A proactive case is scheduled on Tos when a = 1, y = 0, and Tos < tsm.
We assume that if the realization of Tos is greater than tsm, the LSO makes
the decision to combine the case with the already scheduled maintenance case
on tsm. It makes no sense to execute the case later than this moment because
it will lead to an additional visit and costs. Therefore, a proactive case is
scheduled on tsm when a = 1 and y = 1 or when a = 1, y = 0, and
Tos > tsm.

The equipment can fail before the case is solved. This happens ifX < Tos
when the case is scheduled on Tos or if X < tsm when the case is scheduled
on tsm. The downtime is equal to the response time plus the repair time when
the equipment fails before the case is solved; corrective maintenance (CM)
costs are incurred.

The proactive maintenance case can also prevent a failure. This happens
when X > Tos or X > tsm. The downtime is equal to the repair time and
proactive maintenance costs are incurred. Costs of c′PdM are incurred if the
proactive case is combined with another case, and costs of cPdM are incurred
when the proactive case is not combined with another case.

When no case is created and the equipment fails, CM and diagnostic costs
are incurred because the local service organization did not receive a case. The
problem needs to be diagnosed first because the problem is unknown, when
the customer calls. In this situation, the downtime consists of response time,
time for diagnostics and repair time.

When the remote monitoring engineer decides to create a case, it is always
possible that the alert was false. The local service organization discovers that
the alert was false and costs of cFP are incurred in such a scenario.
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Mathematical formulation of the model
After an alert arrival, the remote monitoring engineer has to make the decision
such that the expected costs and downtime are minimized. We define two
objective functions. The first one aims to minimize the expected costs, and
the second one is used to minimize the expected downtime:

Min E [C] = a · (1− y) · E [Ccase] + y · E [Ccombine]

+ (1− a) · E [CSNAR] + ccdt · E [D] · cd (7.11)

Min E [D] = a · (1− y) · E [Dcase] + y · E [Dcombine]

+ (1− a) · E [DSNAR] (7.12)

s.t.
a ≤ r, o, m, v (7.13)

y ≤ a (7.14)

a, y ∈ {0, 1} (7.15)

Equation (7.4) represents the minimization objective of the expected costs
because of the decisions made by the remote monitoring engineer. E [Ccase]
represents the expected costs of creating and sending a case to the local
service organization (a = 1, y = 0). E [Ccombine] represents the expected
costs of creating a case and suggesting to combine it with an already
scheduled case (a = 1, y = 1). E [CSNAR] represents the expected costs
of SNAR (a = 0). The expected downtime costs are represented by ccdt ·
E [D] · cd and are only incurred when the customer is entitled to downtime
compensation (ccdt = 1).

We can calculate the expected costs of each action by summing the
multiplications of scenario probabilities for that action with the associated
costs. These expected costs expressions for the different actions are given
below:

E [Ccase] = P · (ccm · (Pr (X < Tos, Tos < tsm) + Pr (X < tsm, Tos > tsm) )

+cPdM · Pr (X > Tos, Tos < tsm ) + c
′

PdM

·Pr (X > tsm, Tos > tsm) ) + (1− P ) · cFP (7.16)

E [Ccombine] = P ·
(

(Trv + tr) · Pr (X < tsm) + c
′

PdM · Pr (X > tsm)

+ (1− P ) · cFP )

E [CSNAR] = P · (ccm + cdiagnostics) (7.17)
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Equation (7.5) represents the minimization objective of the expected downtime.
E [Dcase] represents the expected downtime of creating and sending a case to the
local service organization (a = 1, y = 0). E [Dcombine] represents the expected
downtime of creating a case and suggesting to combine it with an already scheduled
case (a = 1, y = 1). E [DSNAR] represents the expected downtime of SNAR
(a = 0). We can calculate the expected downtime of each action in the same way
as the expected costs. The expected downtime expression for each action are given
below:

[E [Dcase] = P · ((Trv + tr) · (Pr (X < Tos, Tos < tsm) + Pr (X < tsm, Tos > tsm) ))

+ tr · (Pr (X > Tos, Tos < tsm ) + Pr (X > tsm, Tos > tsm) ) (7.18)

E [Dcombine] = P · (ccm · Pr (X < tsm) ) + tr · Pr (X > tsm)

E [DSNAR] = P · (Trv + tr + tdiagnostics) (7.19)

Equation (7.6) makes sure that an alert is SNARed if, the customer’s region is not
monitored (r = 0), the customer has no contract (v = 0), the Facility Systems
Engineer is already on-site (m = 0), or there is already a maintenance case
opened for the system (o = 0). Alerts with such characteristics should be SNARed
automatically.

Equation (7.7) enforces that a case can only be combined with an existing case
when the remote monitoring engineer decides to create a case for the alert.

Equation (7.8) ensures that a and y can only take binary values.

7.9.7.15 Results and insights
The model is implemented in a case study for flat detectors, which converts X-ray
into electrical signals. Since we have two objective functions, there is not always
a single solution for the optimization problem. Lower costs can result in higher
downtimes. The remote monitoring engineer can take three different decisions:
(i) SNAR the alert (a = 0), (ii) create a case (a = 1, y = 0), or (iii) create a
case and combine it with an already scheduled case (a = 1, y = 1). The model aims
to evaluate all three options in terms of expected costs and expected downtimes. The
output of Model 1 consists of a summary of each option with the expected costs and
downtime of each option. This gives the remote monitoring engineer support in their
decision making because they can account for the possible consequences of their
decisions.

With the Flat-Detector-specific default values, creating a case is the optimal
decision to make by the remote monitoring engineers. In Figure 7.135, we see that
the optimal action outperforms the other actions in both expected costs and expected
downtime at a specific value of the model parameter P.

Notice that Figure 7.135 is made for a credible alert with P = 0.8. If we use the
same input values but set P to 0.15, we receive the plot in Figure 7.136. It can be
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Figure 7.135 Model output default values for flat detector with P=0.80.

seen that there is no optimal decision to make. No action outperforms all others in
terms of both expected downtime and expected costs. Create a case is the best option
in terms of costs while combining the case is the best option in terms of downtime.

If we vary P from 0 to 1 with steps of 0.01, we receive the plots in Figure 7.137
and Figure 7.138. We observe the existence of a probability threshold for creating a
case.

We next evaluate the influence of the service contracts on the optimal decisions
according to the model. We create three fictitious customers, which we refer to as
Customer A, Customer B and Customer C. Customer A has a contract with the
most extensive entitlements. Customer B has a contract with no coverage options.
Customer C has the most basic service contract.

Figure 7.136 Model output default values for flat detector with P=0.15.
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Figure 7.137 Influence of P on expected costs in flat detector case.

Figure 7.138 Influence of P on expected downtime in flat detector case.

We vary P to find out if different probability thresholds exist for different types
for customer. Figure 7.139 shows the influence of P on the expected costs and
downtime for the different types of customers.

We observe that the expected costs incurred for Customer A are the highest.
This is due to the compensation of downtime received by this type of customer.
The expected downtime of all actions is the lowest for Customer A. The reason
behind this is that shorter on-site response times are offered to customers with
higher contracts. After a customer call, the field service engineer is faster on-site
to conduct maintenance on the failed equipment. In addition, the customer is entitled
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Figure 7.139 Influence of P on expected costs and downtime for different customers.

for maintenance outside operating hours. For Customer B and C, the expected costs
of each action are equal. The value ccdt is the only customer-specific parameter that
influences the expected costs.

7.9.7.16 Visualization and HMI
Two HMIs were created related to the Philips Healthcare use case. One related to
the development of the e-Alert sensor and one to assist the remote monitoring team.
Both are explained in the sections below.
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7.9.7.17 E-Alert portal
The e-Alert sensor provides a web-based user interface to configure sensors and
to configure the control limits. When the healthcare facility allows it, the staff
of the healthcare facility can access the user interface of the e-Alert sensor.
This user interface provides capabilities to view the history of sensor values to
support root cause analysis. Service engineers can also access the user interface
of the e-Alert sensor. The user interface provides capabilities to view the history
of sensor values, to configure the control limits and to update the embedded
software.

Each e-Alert sensor is able to upload its sensor logs and alerts to the Philips
Remote Service Network. A portal (see Figure 7.140) has been developed to gain
access to these logs and alerts for offline data analysis. This enables Philips to
determine operational profiles, specific to the Healthcare Imaging System where the
e-Alert sensor is connected. This information can be used to fine-tune the configured
control limits for that specific Healthcare Imaging System to keep it in optimal
operational conditions.

7.9.7.18 Remote monitoring dashboard
A dashboard to created, to provide an overview of all Health Imaging Systems that
generated an alert for the remote monitoring engineers. On the highest level of the
dashboard an overview of all alerts is presented, as shown in Figure 7.141.

When one of the alerts is selected, a detailed report is presented (see
Figure 7.142). This report contains all details for the related Health Imaging System

Figure 7.140 Portal to gain access to e-Alert sensor data.
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Figure 7.141 Remote monitoring dashboard high level overview.

Figure 7.142 Remote monitoring dashboard detailed report.

like system type, model version, software release, alert history, parameter trends, and
maintenance history. This will support the remote monitoring engineer to be able to
take further action. When further action is required, the remote monitoring engineer
can directly initiate a service work order. Depending on the urgency of the service
action, the engineer can combine it with an already scheduled appointment.
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7.9.7.19 Conclusions
For the Philips Healthcare use-case, quite a lot of effort has been spent on the data
storage platform and the analysis and decision making functionalities of the Mantis
project. Having a large set of historical data already available, made it possible to
make a lot of progress from the start. It also made the cooperation much smoother
with both our main research partners, Philips Research and the Technical University
of Eindhoven, because from an early stage we were able to share data. In our case,
the misconception that only providing data eventually will lead to results is once
again proven true. Without decent domain knowledge, it is virtually impossible to
get usable results. Besides explaining the research partners what all the available data
means, domain knowledge is also needed to review and filter possible outputs. This
means that in the beginning intensive collaboration is required to get the research
partners up-to-speed, followed by frequent updates. This is something that needs to
be taken into consideration.

The Philips Healthcare use case featured a few challenging topics and goals
set at the beginning of the project. Most of them were realized. The data storage
platform is mature and ready to be extended, sensors and intelligent functions have
been designed, and a considerable amount of predictive and proactive models has
been created. All the different aspects combined, resulted in a remote monitoring
capability. We envision that, from 2018 onwards, one in every five system service
events worldwide will be triggered by careful analysis of system data – and will
therefor take place before any major issues arise. This maintenance can also be
planned so there is no disruption to the workflow.
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