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1. Introduction

Chronic pain of moderate to severe intensity occurs in 19% of adult Europeans, seriously affecting the

quality of their social and working lives. Very few are managed by pain specialists and nearly half receive

inadequate pain management(Breivik, Collett et al., 2006). In order to understand and better treat these

patients, understanding of pain processing in the brain is necessary. Until today, this knowledge is very

limited and therefore further research in and focus on brain processing of pain is warranted.

 1.1 Experimental pain

Studies of clinical pain are limited by bias due to cognitive, emotional, and social aspects of the disease.

Therefore, pain is a multi-dimensional, highly individual perception, difficult to quantify and validate in

clinical settings. The great individual differences and affiliated symptoms that especially follow visceral

pain make it difficult to study basic pain manifestations or the effect of pharmacological treatment. Thus,

the effect on e.g., nausea and anxiety may be difficult to distinguish from pain relief in the clinical

settings. When applying experimental pain in healthy volunteers some of these bias are overcome and the

quality and intensity of painful stimuli can be reported reproducibly(Staahl, Reddy et al., 2006).

Therefore, experimental human pain models appear to be better suited to study pain mechanisms.

In standardized experimental pain studies, it is possible to control precisely the localization, intensity,

duration, and modality of the stimulus(Drewes, Gregersen et al., 2003). The evoked sensations can be

assessed with subjective methods quantitatively by using a visual analogue scale (VAS) and qualitatively

(e.g. by using the McGill Pain Questionnaire), and stimulus-response relationships can be investigated.

Objective, physiological responses to pain can be recorded with e.g., cerebral evoked potentials (EP).

1.2 Imaging of pain in the brain

Several studies have indicated a set of cortical and sub-cortical areas processing nociceptive information.

These areas have in turn been referred to as the pain matrix(Brooks and Tracey, 2005;Iannetti and

Mouraux, 2010). Until today, the modalities used to clinically image pain activity in the brain have

typically been functional magnetic resonance imaging (fMRI) and positron emission tomography (PET).

These modalities have the advantage of excellent spatial resolution, meaning that by looking at fMRI or

PET scan, it is possible to say exactly where activity in the brain is occurring. However, the disadvantage

is the temporal resolution on scale of seconds and minutes. Due to this, it is impossible to monitor

sequential activation of the sources. Instead, the scan shows an overall picture of all the sources that are

active, including non-pain specific sources such as cognitive and emotional responses. In contrast to

fMRI and PET, EPs have excellent temporal resolution on millisecond scale. With its time-resolution on

millisecond scale this approach allows distinction between exogenous (pain specific) processing that

approximately takes place within the first 200 ms, and later endogenous (unspecific) brain
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activation(Hobson, Furlong et al., 2005). However, the spatial resolution is poor and it is impossible to

tell where in the brain these potentials are coming from. Several algorithms have been proposed and

implemented in order to model the location and strength of active brain sources underlying the EP signal.

This is known as “inverse modeling”.

1.3 Inverse modeling of evoked potentials

The process of predicting the locations of the sources of EPs measured on the scalp is termed inverse

modeling. Inverse modeling is an ill-posed and underdetermined problem(Koles, 1998). Given a restricted

number of electrodes on the scalp, an infinite number of brain source configurations could account for the

same signal distribution recorded on the scalp. Theoretically speaking, only an infinite number of

electrodes on the scalp would enable for a unique solution of the source location responsible for signal

generation on the scalp. However, by placing certain constraints on the possible solution, i.e. number of

sources and physiologically plausible locations, the inverse problem can be solved. Inverse modeling

algorithms have been usually applied to instantaneous EP data with 4 main disadvantages: 1) the need to

start from a pre-determined hypothesis, at least concerning the number of sources and the brain area

where they are active, 2) the instability of algorithms to effectively model multiple sources, 3) the

interference of background noise, and 4) the difficulty to adequately model deep sources. Factors such as

head modeling errors, physiological noise (blinks, muscle artifacts, etc) and electrical noise affect the

solution(Whittingstall, Stroink et al., 2003). Although a conceivable hypothesis about the source number

can be made on the base of the physiological and anatomical knowledge, it would be much better to have

a tool disentangling the different dominating sources present prior to investigation. For this reason,

several signal decomposition algorithms have been proposed and validated.

1.4 Signal decomposition of evoked potentials

Space-time based signal decompositions have typically been used prior to inverse modeling, such as

Blind Source Separation (BSS). However, these algorithms place some strong assumptions on the data

among which are linearity and some statistical independence of the sources(Durka, Matysiak et al., 2005).

Furthermore, BSS algorithms assume that there are less than or equal number of sources as there are

sensors and they try to estimate the number of sources by data reduction techniques(Durka, Matysiak et

al., 2005). This leads to a risk of overestimating the number of sources with data over-fitting. In contrast

to BSS methods, there is a relatively new signal decomposition method, Multichannel Matching Pursuit

(MMP) where the electroencephalogram (EEG) data is decomposed into a sum of waveforms (usually

termed atoms) chosen from an over-complete dictionary of atoms, each being defined in time, frequency,

and space(Durka, Matysiak et al., 2005). MMP is an iterative algorithm where the first iteration finds the

atom that optimally fits the data, and in subsequent iterations, it finds the atoms which optimally fit the

residual left after the previous result has been subtracted from the data. The user can choose the residuum
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threshold or the number of iterations to indicate when the algorithm should stop iterating. This overcomes

the limitation of calculating the number of components in the data and also MMP avoids the strong

assumptions made by BSS algorithms. Nevertheless, thus far MMP has not been sufficiently validated by

studies of source localization on either simulated or empirical EEG data.

1.5 Automation of multichannel matching pursuit and inverse modeling

Typically, MMP followed by source localization is applied to a single subject at a time. As there can be

many atoms per subject, this approach makes it difficult to study group differences, i.e. group of patients

versus group of healthy controls. One of the methods to study common sources within a group is grand

mean analysis. However, the major shortcoming of this approach is that small differences in brain

activation between a few subjects can contaminate the entire solution. Furthermore, more qualitative

information such as time and frequency of the waveforms of the sources is not taken into consideration.

Another approach is to classify all the differences/similarities between subjects in different groups

visually. This process can be tedious and lead to subjective bias, especially when dealing with datasets of

many subjects. It would be much better to have a tool to automatically process all the data and output the

common features within a group. This method would make it easier to observe any differences or

similarities between groups.

1.6 Aims of this thesis

The overall objectives of this project were to improve the existing source localization methods, to

automate EP signal analysis, and make them more applicable to pain and drug studies. Therefore, the

aims of this thesis were:

    1. For both simulated and empirical data, to compare accuracy between inverse modeling done on

a) instantaneous EPs peak by peak, b) commonly used signal decomposition methods

(independent component analysis (ICA) and second-order blind identification (SOBI)), and

c) MMP.

    2. To test the limitations of MMP as the level of noise and number of sources increase.

    3. To develop a clustering method for MMP atoms such that analysis can be automated and

overview is not lost.

    4. To validate the clustering method on simulated and empirical EP data.

    5. To apply MMP and clustering method to visceral pain data in order to study how the brain

activity due to pain is altered after morphine administration.

    6. To investigate whether there are signs of cortical reorganization on preliminary

rectal evoked potential data in constipated patients with rectal hyposensitivity.
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2. The pain system

According to The World Health Organization, pain is defined as “an unpleasant sensory or emotional

experience associated with actual or potential tissue damage, or described in terms of such damage.”

From this perspective, pain can be seen as awareness which signals the body that if nothing is done, the

body is at risk of getting hurt.

Nociceptive pain occurs when the nociceptors are stimulated by chemical, thermal, or mechanical

stimulation. Nociceptors are nerve endings that react to potentially damaging stimuli by sending signals to

the spinal cord and brain and are located in skin, internal organs, joints, muscles and tendons. There are

two types of nociceptors and these are Aδ-myelinated and C-polymodal. Aδ nociceptors respond to

mechanical stimulation, especially pinching or pinpricks, and conduct at 5-30 m/s. They are responsible

for conducting the “first pain” occurring immediately after the noxious stimulus. In the skin Aδ-fibres are

mainly specialized for detection of dangerous mechanical and thermal stresses and for triggering a rapid

nociceptive response and protective reflexes(Byers and Bonica, 2001). Some Aδ nociceptors also respond

to heat stimuli. C-fibers constitute the greatest number of nociceptors in peripheral nerves. Their

conduction velocity is less than 1 m/s. The C nociceptors respond to mechanical, thermal or chemical

stimuli applied to the skin. C-fibres are responsible for conducting the “second pain” which is the dull,

burning sensation felt after the “first pain”. There are two kinds of nociceptive pain: somatic and visceral.

Somatic pain occurs when skin, muscle, or bone is damaged, whereas visceral pain occurs in the internal

organs. Somatic pain is often regarded as a sharp pain localized in a specific area of injury. Visceral pain,

on the other hand, comes from organs which are not heavily supplied by nociceptors, and therefore the

pain may feel dull and vague and harder to pinpoint. Another peculiarity about visceral pain is the fact

that it is often felt in places distant from the location of the affected organ, i.e. pain in the left arm due to

heart attack.

Neuropathic pain is another entity. According to Treede et al., neuropathic pain is defined as “pain

arising as a direct consequence of a lesion or disease affecting the somatosensory system(Treede, Jensen

et al., 2008).” However, in a large number of patients it may still be impossible to distinguish between

inflammatory and neuropathic pain and therefore a proper definition of neuropathic pain has not yet been

reached. Neuropathic pain is typically chronic as it may persist for months or years after injury and unlike

nociceptive pain, it does not require a stimulation of specific pain receptors(Pazzaglia and Valeriani,

2009). Neuropathic pain can occur when nerves that usually respond to an injury become active for no

reason. With neuropathic pain, the function of the nerves becomes compromised and nerve activity

increases. This activity causes other nerves to become ultra-sensitive, leading to altered responses to felt

sensations, such as allodynia or hyperalgesia. Allodynia refers to stimuli that are not normally painful

becoming painful and hyperalgesia refers to painful stimuli being experienced as more painful than

usual(Guyton and Hall, 2006;Gould, 2007;Hanline, 2007).
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2.1 Processing of pain in the brain

Although involvement of the cerebral cortex in pain processing has been doubted for many decades, in

recent years an extensive cortical network associated with pain processing has been exposed and is

increasingly recognized as playing a major role in the representation and modulation of pain. There is a

growing consensus regarding the crucial cortical areas and the connectivity between them from human

and animal experimental studies (see figure 1). These areas are termed the pain matrix(Iannetti and

Mouraux, 2010) and most often include: primary somatosensory cortex (SI), secondary somatosensory

cortex (SII), the anterior cingulate cortex (ACC), and the insular cortex. The involvement of each area’s

pain processing is described in the following subsections.

Figure 1.A drawing of the subcortical and cortical structures, which are activated in response to pain.

Abbreviations: DRN: dorsal reticular nucleus; RVM: rostroventral medulla; PAG: periaqueductal grey;

PB: parabrachial nucleus of the dorsolateral pons; AMYG: amygdale; HT: hypothalamus; ACC: anterior

cingulate cortex; PCC: posterior cingulate cortex; PPC: posterior parietal complex; SI + SII: primary and

secondary somatosensory cortices respectively; MI: motor cortex; SMA: supplementary motor area and

PFC: prefrontal cortex; Adapted and modified from(Price, 2000).

2.1.1 Primary somatosensory cortex

Although, the role of SI in pain processing is controversial and has long been disputed, recent anatomical,

neurophysiological, and imaging data confirm the role of SI in pain processing. Overall, these findings

point to a specific role of SI in sensory-discriminative functions of pain perception, such as spatial
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discrimination and intensity coding. Electrophysiologically, single cell recordings in rats, and

anesthetized and awake monkeys showed neurons in SI that responded to noxious stimuli(Lamour, Willer

et al., 1983;Kenshalo and Isensee, 1983;Kenshalo, Chudler et al., 1988;Chudler, Anton et al., 1990). Most

of these nociceptive SI neurons were arranged somatotopically and had limited receptive fields.  The

activity of these neurons correlated with duration, intensity of the stimulus, and intensity of stimulus

perception. PET, fMRI, and MEG/EEG studies in humans have provided evidence for contribution of SI

in pain processing(Tarkka and Treede, 1993;Casey, Minoshima et al., 1994;Andersson, Lilja et al.,

1997;Derbyshire, Jones et al., 1997;Iadarola, Berman et al., 1998;Ploner, Schmitz et al., 1999). A number

of studies have reported the somatotopic arrangement of pain in SI to be along the central sulcus which

strongly suggests that this region is involved in localization of painful stimuli on the body surface(Tarkka

and Treede, 1993;Schnitzler and Ploner, 2000). Furthermore, a case report demonstrated that localization

of painful stimuli may be greatly impaired when SI is damaged(Ploner, Freund et al., 1999). Other

imaging data showed that activity of SI correlates with the level of pain sensation but not with the level of

pain unpleasantness. However, regardless of the plausible role of SI in pain processing, a significant

amount of data suggests SI may also serve to modulate tactile perception(Ploner, Schmitz et al.,

1999;Bushnell, Duncan et al., 1999). Therefore, SI may be involved in perception and modulation of both

painful and nonpainful somatosensory stimuli.

2.1.2 Secondary somatosensory cortex

Neurophysiologic and functional imaging data indicate participation of SII in human pain processing.

Anatomic studies indicate that SII receives nociceptive projections from lateral thalamic nuclei which

originate predominantly from the ventral posterior inferior thalamic nucleus(Stevens, London et al.,

1993). Contrary to most SI cells, nociceptive neurons in SII have mostly large, bilateral receptive

fields(Dong, Salonen et al., 1989;Dong, Chudler et al., 1994) and hence SII is activated bilaterally during

painful stimulation in the periphery. A number of PET, fMRI, MEG, and EEG pain studies have

demonstrated involvement of SII(Hari, Kaukoranta et al., 1983;Huttunen, Kobal et al., 1986;Talbot,

Marrett et al., 1991;Tarkka and Treede, 1993;Coghill, Talbot et al., 1994;Casey, Minoshima et al.,

1994;Kakigi, Koyama et al., 1995;Bromm and Chen, 1995;Spiegel, Hansen et al., 1996;Hari, Portin et al.,

1997;Derbyshire, Jones et al., 1997;Davis, Kwan et al., 1998;Iadarola, Berman et al., 1998;Coghill, Sang

et al., 1999;Ploner, Schmitz et al., 1999;Ploner, Schmitz et al., 2000;Torquati, Pizzella et al.,

2002;Brooks, Nurmikko et al., 2002;Fitzek, Fitzek et al., 2004;Ferretti, Del Gratta et al., 2004;Drewes,

Dimcevski et al., 2006). Generally, activations are observed bilaterally in the upper bank of the Sylvian

fissure(Schnitzler and Ploner, 2000;Valeriani, Le Pera et al., 2001). Temporally, MEG recordings showed

nearly simultaneous activity of SI and SII to selective nociceptive stimuli indicating parallel activation of

these areas(Ploner, Schmitz et al., 1999). In contrast to this, it has been shown that after painless tactile

stimuli, there was sequential activity of SI followed by SII(Hari, Karhu et al., 1993;Schnitzler, Volkmann
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et al., 1999;Ploner, Schmitz et al., 2000). These temporal activation patterns suggest essentially different

processing in humans for tactile and nociceptive information(Schnitzler and Ploner, 2000). Furthermore,

the temporal activation pattern of SI and SII strongly supports direct thalamocortical distribution of

nociceptive information to SII(Schnitzler and Ploner, 2000). SII projects via the insula to the temporal

lobe limbic structures(Shi and Cassell, 1998a). These corticolimbic projections have been proposed to

subserve tactile learning and memory such as roughness discrimination and object size

detection(Schnitzler and Ploner, 2000).

2.1.3 Insula

Numerous functional imaging studies indicate participation of insula in human pain processing and it is

the most frequently activated structure in fMRI studies of pain(Apkarian, Bushnell et al., 2005).  Insula

appears to receive information via a direct thalamo-insular connection and can be thought of as a site for

sensory and affective integration. Thalamo-cortical connectivity as well as results from physiologic

studies imply that the posterior parts of the insula are mainly involved in auditory, visual, and

somatosensory functions, whereas the anterior parts of the insula are predominantly involved in olfactory,

gustatory, and viscero-autonomic functions(Augustine, 1996). In addition, the insula receives afferents

from SII and projects to the amygdala and hippocampal formation, and has thus been proposed to

subserve tactile and pain related learning and memory(Lenz, Gracely et al., 1997;Shi and Cassell,

1998a;Shi and Cassell, 1998b). The insula may integrate pain-related input from SII and the thalamus

with contextual information from other modalities before relaying this information to the temporal lobe

limbic structures(Schnitzler and Ploner, 2000). In visceral EP studies, the insula has also been shown to

be involved in pain processing(Drewes, Dimcevski et al., 2006;Dimcevski, Sami et al., 2007).

2.1.4 Anterior cingulate cortex / pre-frontal cortex

The ACC mainly receives extensive projections from the mediodorsal thalamic nucleus and broadly

connects with relevant regions of the descending modulation system, including PAG and

amygdala(Ploner and Schnitzler, 2004;Wang and Shyu, 2004;Xie, Huo et al., 2009). Both visceral and

cutenous specific nociceptive neurons have frequently been found in the ACC of rabbit, suggesting that

the ACC is associated with both visceral and somatic pain(Sikes, Vogt et al., 2008). Further studies

revealed that ACC nociceptive neurons are involved in attention to pain and escape from pain but not in

sensation of pain(Iwata, Kamo et al., 2005). Most of brain imaging studies in humans have reported

activation of ACC(Rainville, Duncan et al., 1997;Laurent, Peyron et al., 2000;Mohr, Binkofski et al.,

2005). Several studies suggest that the ACC is involved in encoding the level of certainty of expected

painful stimuli(Mohr, Binkofski et al., 2005). Expectation of reduced pain perception due to placebo

medication is associated with an altered activity in the anterior ACC(Petrovic, Kalso et al., 2002;Wager,

Rilling et al., 2004). ACC should not be considered a mere pain center as it is activated by other various
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cognitive and attentional tasks(Petersen, Fox et al., 1988;Corbetta, Miezin et al., 1991;Devinsky, Morrell

et al., 1995). Consequently, pain-related activations may correspond to a non-pain specific effect.

Although, direct comparison of pain and attention related activations showed that they do not spatially

correspond to each other(Davis, Taylor et al., 1997;Derbyshire, Vogt et al., 1998); meaning that pain-

related activations of ACC are not solely due to attention effects. This, in addition to the proximity of

nociceptive, motor, and cognitive regions of the ACC suggests possible local interconnections that may

allow the output of the ACC pain area to command immediate behavioral reactions(Schnitzler and Ploner,

2000).

Activation of the prefrontal cortex has also been observed in response to both somatic and visceral

sensation. It interacts with the ACC and is believed to be responsible for cognitive evaluation, self-

awareness, attention, and behavioral control(Bingel and Tracey, 2008). Pre-frontal cortex has been

suggested as an important region in placebo analgesia(Petrovic, Kalso et al., 2002;Bingel and Tracey,

2008;Krummenacher, Candia et al., 2010). The rostral ACC/prefrontal cortex also contain a high

concentration of opioid receptors and have been suggested as an important region in opioid

analgesia(Petrovic, Kalso et al., 2002). In III, we found that centre of activity of brain sources due to

electrical pain stimulation of esophagus shifts toward the rostral ACC/pre-frontal cortex after morphine

administration.
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3. Electroencephalogram and evoked potentials

An EP is an electrical potential recorded from the nervous system following a presentation of a stimulus,

such as pain on surface or viscera. EP amplitudes tend to be low as compared to amplitudes of

spontaneous EEG activity. In order to decode the evoked potentials from the background EEG activity

and noise, signal averaging is necessary. Provided enough of recorded trials, the evoked potentials

become bigger in amplitude and therefore visible and the random background activity cancels out (see

figure 2). Then, the EP latencies and amplitudes of the peaks can be analyzed by visual inspection.

Recently, a number of methods have been proposed in order to automate EP peak detection. We have also

presented such a method for segmenting EPs into functional micro-states(Hennings, Lelic et al., 2009).

The main advantage of using EPs to study processing of pain in the brain is its excellent time resolution

(millisecond scale). Since exogenous response to pain takes place within the first ~=200ms following the

stimulus, EPs are an excellent tool to monitor sequential brain activity due to pain. A disadvantage of EPs

is the poor spatial resolution. The signal travels from the brain source to the scalp via volume conduction

through several tissues above the brain and therefore by the time it arrives to the scalp it is distorted. On

the contrary to EPs, fMRI and PET have excellent spatial resolution and until today they are the main

imaging modalities used to understand brain’s processing of pain. However, fMRI and PET have

insufficient time resolution (on scales of seconds and minutes). Therefore, a lot of brain activity seen with

these imaging methods is not pain specific and it is difficult to separate the pain specific activity from

non-specific, i.e. emotional and cognitive responses. We have published a review about different imaging

methods discussed in this thesis (i.e. fMRI, PET, EPs) and their advantages and limitations(Sharma, Lelic

et al., 2009). We have also discussed the advantages of EP over imaging modalities such as fMRI and

PET in a review regarding modeling of brain activity to gastrointestinal pain(Liao, Lelic et al., 2008).

Ideally, a combination of EP’s time resolution and fMRI and PET spatial resolution should be achieved

(see figure 3). This can be done by detecting which brain sources are generating the EPs recorded on the

scalp. This is known as the EEG inverse problem which is discussed in chapter 4.
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Figure 2. An example of an evoked potential signal. To the left of the figure: raw EEG traces. Each 1’

represents the time point when the stimulus was presented. This data can be epoched at each stimulus

point for a certain number of milliseconds (i.e. 150ms) and then these epochs can be averaged in order to

obtain the averaged data (EPs) presented at the upper right of the figure. The figure represents averages

from 62 scalp electrodes. Data from one of the electrodes was zoomed in and presented at the bottom

right of the figure for illustration. Now it is possible to see brain responses due to stimulus as peaks in

time. The spike-like peak before N1 is the stimulus artifact and the trace before is baseline EEG before

presentation of the stimulus.

1’ 1’ 1’ 1’ 1’ 1’ 1’ 1’ 1’ 1’ 1’ 1’ N1

P1

N2

P2

N3

P3
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Figure 3. Illustration of relative temporal and spatial resolution of EEG, fMRI and PET. Left: Current

resolution properties; it is seen that the temporal resolution of EEG is high while spatial resolution is low.

Contrary, spatial resolution of PET and fMRI is high, whereas temporal resolution is low. Right: If the

EEG inverse problem is solved, high spatial resolution can be achieved with EEG while the temporal

resolution is also kept high.

3.1 Generators of evoked potentials

Differences of electrical potentials recorded on the scalp are caused by summed postsynaptic graded

potentials from pyramidal cells that create current dipoles between the soma (body of the neuron) and

apical dendrites, which branch from neurons(Sanei and Chambers, 2007). Approximately, 85% of all

cortical neurons are these pyramidal cells. Apart from having more or less synchronous activity, the

neurons need be regularly arranged to have a measurable scalp EEG signal. The spatial properties of the

neurons must be so that they amplify each other’s extracellular potential fields. The neighboring

pyramidal cells are organized so that the axes of their dendrite tree are parallel with each other and

normal to the cortical surface. The factors that influence the size, shape, and duration of EEG signals are:

1) the distance of the recording electrode from the current generator, 2) the duration of the postsynaptic

potentials, 3) the number of synchronously activated postsynaptic potentials, and 4) the anatomical

orientation of the layer of pyramidal cells generating the current(Schaul, 1998).

The human head consists of different layers including the scalp, skull, and brain. The skull attenuates

the signals approximately a hundred times more than the soft tissue. However, most of the noise is

generated either within the brain or over the scalp and therefore only large populations of active neurons

can generate enough potential to be recordable on the scalp(Sanei and Chambers, 2007). These groups of

synchronously active neurons can be mathematically modeled by current dipoles. A dipole is an element

with two opposing poles (i.e. a battery). Positive current is absorbed at one end of the pole (the sink) and

emanates from the other end (the source), thus leaving the brain electrically neutral (figure 4).
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Figure 4.  Generation of extracellular voltage fields from graded synaptic activity (adapted from (Martin,

1991)). Each synapse acts like a battery driving current in a small loop and having high internal

impedance, so its current strength does not vary with external load. At the top left, the trace shows a

negative wave that corresponds to a current sink and at the top right, the trace shows a positive wave that

corresponds to a current charge. EEG fields are primarily generated by the large, vertically oriented

pyramidal neurons located in cortical layers III, V, and VI.

The electrical field generated from convoluted layers of pyramidal neurons is referred to as an open

field. The field potential around an open field decays inversely to the distance from the generator and can

be viewed from almost any distance in a volume conductor. There are structures in the central nervous

system which are not aligned as dipoles and are referred to as closed fields. There is a lot of debate in the

research community regarding structures in thalamus generating closed field potentials and not being

large enough to be detected on the scalp(Schaul, 1998). However, a number of studies have showed

reproducible results regarding EPs generated by the deep structures, i.e. the thalamus source of P14 in

SEPs(Buchner and Scherg, 1991;Buchner, Fuchs et al., 1994), and we showed a brain stem source of EPs

around 7-8 ms in BAEPs (II).

3.2 Frequency bands in the EEG

The EEG signal can be divided into 5 frequency bands: Delta (up to 4Hz), Theta (4-8 Hz), Alpha (8-12

Hz), Beta (12-30 Hz), and Gamma (above 30 Hz).  Each of these frequency bands is associated with a

certain brain function, as described below(Sanei and Chambers, 2007):
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 Delta: Normally associated with deep sleep and may be present in the waking state; high

amplitude waves.

 Theta: The waves occur as consciousness slips into drowsiness; a theta wave is often accompanied

by other frequencies and seems to be related to the level of arousal; larger contingents of theta

wave activity in the waking adult are abnormal and are caused by various pathological conditions.

 Alpha: Normally associated with relaxed state, closing the eyes; found in posterior regions of head

and usually appears over occipital regions of the brain, both sides, higher in amplitude on

dominant side, central sites at rest.

 Beta: Associated with alert state, active, busy, or anxious thinking, active concentration; found in

both sides, symmetrical distribution, most evident frontally; low amplitude waves.

 Gamma: Low in amplitude and their occurrence is rare. Associated with cross-modal sensory

processing (i.e. perception that combines two different senses, for example sound and vision); also

shown during short term memory matching of recognized objects, sounds, or tactile sensations.

 Higher than normal EEG (200-300 Hz): Have been found in cerebral structures of animals, but

they have not played any role in clinical neurophysiology.

3.3 Noise in EEG measurements

Biological or electrical noise can contribute to EEG signals. As far as EPs are concerned, the true signal is

only that part of EEG which is generated as a response to the given stimulus, all other brain generated

activity is considered as noise. Biological noise can also come from eye movement and blinking. These

eye artifacts have considerably higher amplitude than the EEG activity and can be seen in the frontal

electrodes. Electrical activity from heart and muscle can also generate artifacts in EEG recordings.

Activity from the muscles produce the most severe bioelectric noise  because of its frequency spectrum

and unlike the activity from the eye and heart, it is impossible to measure activity from the muscle

independently from the EEG to be used for noise cancellation. Another main noise contributor to the EEG

is the 50Hz noise generated by the power lines. In II, we have shown that brain source localization in

combination with MMP is robust due to noise.
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4. Inverse modeling of evoked potentials

During the last few decades, the researchers in neuroscience community have been very active in trying to

find the underlying sources which generate the EEG. This process consists of solving the inverse and

forward problems. The forward problem starts from electrical source configuration representing active

neurons in the head. Then the potentials at the scalp electrodes are calculated for this configuration. If the

configuration and distribution of sources inside the brain are known at every time instant and the

conductive properties of the tissues are known everywhere within the volume of the head, the forward

problem is straightforward to solve. The inverse problem tries to do the opposite and find the generating

EEG sources from the EEG signal at the scalp electrodes alone (figure 5). On the contrary to the forward

problem, the inverse problem is not straight forward to solve. The inverse problem, by definition, has no

unique solution. Different source configurations can result in the same distribution of electromagnetic

field on the scalp surface. As mentioned earlier, only an infinite number of scalp electrodes would enable

a unique determination of the locations of the generating sources. However, if physiologically and

physically valid á priori constraints are made and if it is recognized that only one source configuration can

be correct, the generating sources can be estimated. The constraints can consist of the number, type, and

location of the sources(Malmivuo and Plonsey, 1995;Lagerlund and Worrell, 2005). For example, sources

cannot be located in the skull or in the ventricles of the brain(Koles, 1998). This constraint alone will

eliminate many of the source configurations that can account for the measurements. The selection of

constraints to be placed on the inverse solution is a critical step because an incorrect assortment of these

constraints may give a solution which does not provide any physiologically meaningful information about

the generators(Michel, Murray et al., 2004;Lagerlund and Worrell, 2005).

There are several approaches to solving the inverse problem and some of the most commonly used

methods are summarized in table 1. The inverse models are classified into overdetermined (dipolar)

models and underdetermined (current density) source models.
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Figure 5. Definition of the forward and the inverse problem. The forward problem constitutes of the

signal going from the source, via volume conduction to the scalp where the EEG is recorded. The little

circles on top of the head in the center of the figure represent the recording electrodes. The inverse

problem constitutes of finding the generating source given the EEG signal alone.

Dipolar models: The basic á priori assumption underlining the dipolar models is that a small number of

brain sources can sufficiently describe the signal recorded on the scalp. The best location of these sources

is found by computing the surface electric map generated by these sources using a certain forward model

and comparing it with the actual signal recorded at the scalp (figure 6). This comparison is usually made

by calculating the squared error between two maps and the idea is to minimize this error. A general risk

of these methods is that they can get trapped in an undesirable local minima, resulting in the algorithm

accepting a certain location because moving in any direction increases the error of the fit(Michel, Murray

et al., 2004). Another shortcoming of these types of algorithms is, the more sources there are, the more

unstable the algorithm becomes. Mosher et al. stated that decoupling estimation of linear and non-linear

parameters of the sources can reduce the complexity and help in identifying the global minimum in

multiple source modeling(Mosher, Lewis et al., 1992). However, it is wrong to say that the

mathematically global minimum is the correct solution. Among all possible inverse solutions of the data,

the global minimum is only slightly more likely to be the best solution. Therefore, it is critical to combine

the neurophysiological knowledge with the mathematically provided inverse solution. In order to assist

with this, Sherg et al. proposed a spatiotemporal multiple source analysis technique (implemented in the

commercial software BESA)(Scherg, Bast et al., 1999). We used this method in a chronic pancreatitis

study in order to investigate cerebral pain processing in patients suffering from pain due to chronic

pancreatitis (see figure 7)(Olesen, Frøkjær et al., 2010). This method fixes the dipole locations over a

given time interval and then uses the whole block of data in the least squares fit. The fitting then results in

time varying amplitudes of these sources. The critical issue in this method is to assume the correct

number of sources. Two proposed approaches by Sherg and colleagues are: analyze the entire period at
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once by increasing the number of sources until the signal unexplained by the sources is minimal or

analyze the time period sequentially by adding new dipoles for each time period until the signal

unexplained by the sources is minimized. Solutions of this method are very much based on the user’s

physiological knowledge and assumptions. Several studies have proposed to estimate the number of

generating sources based on studies using other imaging methods such as fMRI and PET(Michel, Murray

et al., 2004). However, this approach may not be the most favorable as mismatch between the fMRI/PET

and EEG measures can be expected for several reasons; for example, fMRI/PET can see the ‘close field’

areas which EEG is blind to, and EEG is sensitive to short-lasting neuronal activity whereas this activity

may not be modeled by fMRI because they don’t reach the significance level due to thresholding of

fMRI. An alternative to defining the number of sources is to use the available mathematical approaches

that aim to identify the number of sources of time period automatically. This is what we did by using

MMP in I, II, and III. Other studies have used a method called multiple signal classification (MUSIC)

which is based on Eigen value decomposition of data to identify the underlying number of sources of the

time-period of EEG data subjected to MUSIC source analysis. These underlying signals after Eigen value

decomposition are the so called signal space, and then the entire brain volume is scanned for those source

locations that contribute to the signal space. Additional spatiotemporal decomposition approaches such as

ICA and SOBI have been proposed (see chapter 5). In I and chapter 5 of this thesis we discuss why these

methods are inferior to MMP.

Figure 6. A simplified description of dipolar source modeling. The algorithm finds the source by scanning

the brain volume for the source which generates the surface potential with minimal difference from the

recorded potentials on the scalp. In this oversimplified example, it took 7 iterations to find the best

source.
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Figure 7. An example from a study done in BESA. This result is from EPs due to pain induced in the

rectum in a chronic pancreatitis patient. Left: EP data from all channels. Bottom center: Waveforms of the

5 sources shown to the right of the figure. Top center: grand field power explained by the sources. Top

right of the figure: the chosen head model and radius/thickness and conductivity values of each layer.

Middle right: Locations of the sources, blue: bilateral insula, green: bilateral SII, brown: cingulate.

Bottom right: Brain sources on this individual’s MRI scan.

Current density source models: The current density solutions yield blurred source images in contrast to

over-focalized point sources as derived by dipole methods. An example of a current density solution is

presented in figure 8. The main advantage of current density models over dipolar models is that no á

priori assumption about the number of sources is needed. These source models are based on

reconstruction of brain electric activity in each point of the 3d grid of solution points, the number of

points being much larger than the number of measurement points on the scalp. Each of these solution

points can be thought of as current dipoles with fixed positions and varying strength and orientations. The

task is to find a unique configuration of activity at each of the points which would explain the

measurements recorded on the scalp. However, an infinite number of distributions of current sources

within the 3D solution point grid can lead to the same scalp potential map, making this inverse problem

highly underdetermined. This means that, some constraints about nature of the source have to be made.

In the existing implementations and proposed methods, these constraints are sometimes purely

mathematical and sometimes physiological. These constraints are only valid if source distributions

fulfilling them are more likely to occur than any other source distribution(Michel, Murray et al., 2004).

Regulation parameters are usually introduced to these source solutions to account for the noise in the data

and if this parameter is properly defined, then the unexplained part of the data by the inverse solution

should correspond to noise. Furthermore, this regulation parameter gives stability to the solution, i.e.

small variability in the data should not lead to large variability in the source configuration.
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Figure 8. Source localization using a current density method called LORETA as implemented in the

CURRY analysis software. The volunteer studied in this figure was stimulated at the pain threshold 30

times at 5Hz in the esophagus while EEG was recorded. Bottom of the figure represents the evoked

potential signal of 62 electrodes superimposed on each other. The vertical red line represents the peak

under analysis. Top of the figure: LORETA solution around cingulate cortex.



Method Principles Discussion

BESA
Brain electric source
analysis

Fixes the dipole locations over a given time
interval and then uses the whole block of data in
the least squares fit. The fitting then results in time
varying modulation of amplitude of each of these
sources.

The technique is very sensitive to the initial guess of the number of dipoles, and therefore it is highly
dependent on the level of user expertise. In II and III, we used this method to model the MMP atoms. Since
each atom has a single topography describing them, they can usually be modeled by a single dipole and
therefore the problem of estimating the number of sources is overcome.

MUSIC
Multiple signal
classification

Decomposes the data to identify the underlying
components (signal space) in the time series. The
signal-space is scanned for the optimal number of
dipoles. Once they are found, the time course of
each individual dipole is determined.

This method aims to identify the number of underlying sources automatically. Some of the shortcomings of
the original MUSIC with respect to correlated sources in the presence of noise have led to improvements of
the original algorithm (i.e. R-MUSIC(Mosher and Leahy, 1998) and RAP-MUSIC(Mosher and Leahy,
1999)). We used R-MUSIC in I in order to model the MMP atoms.

Minimum norm This method assumes that the 3D current
distribution should have a minimum overall
intensity(Hamalainen and Ilmoniemi, 1994). It
gives a unique solution in the sense that only one
combination of sources can at the same time have
the lowest overall intensity and exactly fit the
scalp data.

The restriction that the overall intensity of the distribution should be minimal is not necessarily
physiologically valid. This method favors weak and localized activation patterns. Therefore, this algorithm
favors superficial sources because less activity is needed in order to achieve a certain scalp distribution as
compared to deep sources. Furthermore, deep sources are incorrectly projected to the surface which can
lead to erroneous solutions. Different weighting algorithms have been implemented in order to overcome
the drawback of favoring superficial sources (i.e. weighted minimum norm)(Greenblatt, 1993;Gorodnitsky,
George et al., 1995;de Peralta-Menendez and Gonzalez-Andino, 1998). However, it must be kept in mind
that these approaches are purely mathematical without any physiological justifications for the weights.

LORETA
Low-resolution brain
electromagnetic
tomography

This method selects the solution with a smooth
spatial distribution by minimizing the Laplacian of
the weighted sources, a measure of spatial
roughness. The physiological reasoning behind
this constraint is that the activity in neurons in
neighboring patches of cortex is correlated(Michel,
Murray et al., 2004).

While the assumption that the activity in neurons in neighboring patches of cortex is correlated is correct,
the distance between the solution points in 3D grid and the limited spatial resolution of EEG lead to a
spatial scale where this assumption is no longer reasonable. Functionally distinct areas can be anatomically
very close. As a result,  LORETA provides ‘over-smoothed’ solutions which can include two
hemispspheres or different lobes(Fuchs, Wagner et al., 1999;Menendez and Andino, 2000;Trujillo-Barreto,
ubert-Vazquez et al., 2004).

Beamformer
approaches

Beamformer approaches aim to estimate the
activity at one brain site by minimizing the
interference of other possible simultaneously
active sources(Michel, Murray et al., 2004). The
whole brain volume is scanned and the neural
activity index is calculated, which describes the
activity at a certain location. The sources are
assumed to be located at the locations of highest
activity index.

Beamformer approaches operate on raw data, instead of averaged data, and therefore induced (and not only
evoked) activity can be studied. Beamformers do not need á priori assumption about the number of sources.
However, the disadvantage is that these approaches are blind to correlated sources.

Table 1. Description of some of the more commonly used inverse models and their advantages and disadvantages. Dipolar models MUSIC and BESA

were used in I, II, and III.
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5. Signal decomposition

In order to overcome the mentioned disadvantages of modeling of instantaneous EP data, several

signal decomposition methods have been proposed and implemented. One of the most commonly

decomposition types applied to EEG is BSS.  Another relatively new decomposition approach is the

already mentioned MMP method. Both of these approaches are discussed and compared in this

chapter.

5.1 Blind source separation

BSS is an approach to estimate and recover the source signals using only the information of their

mixtures observed at the recording channels (see figure 9). Blind source separation relies on the

assumption that the source signals do not correlate with each other. For example, the signals may be

mutually statistically independent or de-correlated. The two most commonly used BSS methods in

EEG analysis are ICA and SOBI.

Figure 9. The BSS concept (adapted from (Sanei and Chambers, 2007)). The sources within the brain

labeled with S are the generating EEG sources, the black dots labeled with E represent the recording

electrodes, and the outputs after the BSS box labeled with S are the estimated sources of signals

recorded at the electrodes.

5.1.1 Independent component analysis

ICA is a special case of BSS which is based on the idea of separating a set of components from a

signal that is a linear combination of these components, with very little or no knowledge of the

component signals. The ICA model can be represented as X=WU, where X is the observed EEG data

and both W and U are unknown. Assuming that U is a matrix containing the original components
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which are statistically independent, the goal of ICA is to find the mixing matrix W (see figure 10).

There are several ways to estimate the mixing matrix W. The infomax ICA algorithm which we used

in I is based on maximizing the output entropy(Makeig, Bell et al., 1996). Then W-1 is multiplied with

the observed signal in order to arrive at the solution for matrix U. The rows of the matrix U are the

component activations and the columns are the time points of the input data. The columns of W-1

contain the relative projection strengths of each component to each scalp electrode. These projection

strengths give the scalp topography of each component and provide evidence for the component’s

physiological origins, i.e. eye artifacts project to the top, muscle artifacts project to temporal sites,

etc(Jung, Makeig et al., 2000). The resulting components are maximally temporally independent and

spatially fixed.

Figure 10. The idea behind Independent component analysis. Each of the sensors ei (i.e. EEG

channels) pick up signals from all of the sources, si. The goal of ICA is to find the un-mixing matrix

W-1 and estimate the original sources, ui, contributing to the signal picked up by the sensors.

5.1.2 Second order blind identification

SOBI is based on a similar principle as ICA, and uses the same model: X=WU. The main difference

between SOBI and ICA lies in how they interpret the data. SOBI exploits second order statistics, while

ICA exploits higher order statistics. Higher order statistics exploit statistical independence. This

independence is measured by a function of higher order statistics. The restriction is that at most one

source can have Gaussian density, because if two sources are Gaussian, it is impossible to distinguish

them by using higher order statistics. Second order statistics assume that the sources have different

autocorrelation functions. Therefore, such methods are unable to separate processes whose correlations

are the same, even when their distributions are different(Even and Moisan, 2005).  SOBI exploits the

time coherence of the source signals to decompose the mixture of sources. SOBI finds W by

minimizing the sum-squared cross-correlations between the components. But, instead of only

minimizing the correlation at the same time instant t, SOBI considers cross-correlations at multiple

time delays, i.e. between one component at time t and another component at time t +  where   is a

time delay(Tang, Liu et al., 2005;Tang, Sutherland et al., 2005). Thus, SOBI takes into account that
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one source may affect another at the same time instant or after some temporal delay. These

correlations are sensitive to temporal characteristics of the EEG time-series and therefore the temporal

information contained in the EEG affects the SOBI results. Therefore, unlike ICA, SOBI it is sensitive

to shuffling of data points(Tang, Sutherland et al., 2005).

5.2 Multichannel matching pursuit

MMP is an adaptive and iterative algorithm. It is a generalization of the Matching Pursuit (MP)

algorithm(Mallat and Zhang, 1993) for multichannel signals. MP algorithm creates approximations of

single-channel signals using a relatively small number of simple components (called atoms) chosen

from a very redundant set (called dictionary). Typical components are scaled, translated and modulated

Gauss functions and are called Gabor atoms. A very important advantage of such Gabor atoms is their

optimal time-frequency localization. The atoms for the approximations are chosen iteratively and

adaptively. In the first iteration, the MP algorithm searches the dictionary for a Gabor atom correlated

best with the signal under analysis. Next, this atom is subtracted from the signal. This creates the first

residuum of the signal. In the second iteration, the MP algorithm searches for a Gabor atom that

correlates best with the residuum. By subtracting the atom from the previously computed residuum, the

second order residuum is created. This procedure of finding best correlated atoms with the consecutive

residues is repeated until the energy of the last computed residuum is below a chosen limit or a number

of desired iterations is reached. The result of the MP algorithm is a set of atoms, which summed

approximate the signal under analysis. Thanks to the big redundancy of the dictionary, it is possible to

create concise approximations with very small number of atoms. The MMP extension of the MP

algorithm for multichannel data was presented by Durka(Durka, Matysiak et al., 2005). Briefly, the

MMP algorithm searches the dictionary of Gabor atoms for an atom that is correlated best

simultaneously with all measurement channels. The sum of the correlation coefficients of a Gabor

atom with all data channels is used as a measurement of the global fit of the atom to spatially

distributed data. The correlation coefficients define the topographic strength of the Gabor atom in all

channels. The Gabor atom together with the list of the correlation coefficients can be treated as a

spatio-temporal MMP atom. Such weighted Gabor atom is subtracted from the spatio-temporal data.

This creates a spatio-temporal residuum of the data. The next steps follow the MP principle of

approximating the consecutive residues. Figure 11 presents MMP decomposition of an artificial

multichannel test data containing 4 different spatio-temporal components. The time-frequency

properties of the chosen MMP atoms are defined by their base Gabor atoms and the spatial properties

are defined by their correlation coefficients. Gabor atoms are completely described by only a few

parameters. Thus, the MMP algorithm decomposes multichannel data into simple and parameterized

MMP atoms. The chosen atoms are independent from each other in the approximation. The algorithm
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keeps the phase constant across all channels of MMP atoms. Differences in phase across channels may

reveal the direction of information flow between channels. Nonetheless, this flow is credited to a

particular single structure. Since this algorithm is meant as a pre-processing step for inverse solutions,

it is valid to keep these phases constant and assume that each atom corresponds to the same activity in

all the channels(Durka, Matysiak et al., 2005).

Figure 11. Demonstration of how MMP works. The original signal is shown in the top right corner.

Rows 1-4 show the decomposition of the signal. Each row represents one iteration of the MMP

algorithm. The atoms column contains the four atoms chosen from the library of atoms. The

Approximation column (used for reconstruction purposes) shows the signal approximation when the

consecutive atoms are added to each other (e.g., the atoms in line 1 and 2 are added to give the

approximation in line 2). Residuum shows the residuum of the signal left after each of the consecutive

atoms has been subtracted from it.

5.3 Comparison of MMP to ICA and SOBI and of signal decomposition to raw EP analysis

Both ICA and SOBI are based on statistical analysis of multichannel data. The ICA and SOBI

components are time waveforms and factors representing their topographic distribution over the

measurement sensors. The MMP atoms are similar to ICA and SOBI components, because MMP

atoms can also be seen as waveforms with factors representing spatial distribution. However, the MMP

method is not based on statistical analysis and therefore it does not impose any statistical constraints

on the data. The MMP atoms chosen for approximation of the data under analysis do not have to be

independent. The ICA and SOBI methods tend often to mix activities with different frequencies into a

single component. Moreover, they do not provide direct information about the time-frequency

distribution of the components. The MMP atoms are mono-frequency components. Single MMP atoms
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are completely independent from each other and therefore MMP is able to separate source

distributions, which are overlapping in spatial, temporal or frequency domains. Furthermore, MMP

provides precise description of time-frequency properties of each atom. Moreover, ICA and SOBI

methods are not able to extract the actual number of different sources in the mixed multichannel data.

They are able to extract maximally as many components as there are data channels. The real number of

signal sources is generally unknown and MMP does not have any constraints on the number of

separated components.

Figure 12. Simulation of EP data (adapted from I); a) placement of six sources in the brain volume:

thalamus (dipole 1), SI (dipole 2), bilateral SII (dipoles 3 and 4), pre-motor, insula, and anterior

cingulate cortex; b) the simulated waveforms of the brain sources in a); c) the resulting EP after the

simulated waveforms were added together and noise with power spectrum of human EEG was added

to the sum. The vertical lines mark the time course of the visually extracted peaks. Each number

corresponds to a single peak. This evoked potential data was subjected to source localization of each

peak and to decomposition by ICA, SOBI, and MMP and source localization of the resulting

atoms/components.

In I, we compared the accuracy of MMP decomposition to accuracy of ICA and SOBI

decomposition on simulated EP data (see figure 12). We simulated EP data with six dominant brain

sources corresponding to the pain matrix (thalamus, SI, bilateral SII, insula, ACC, and pre-motor area).

Therefore, this data included both superficial and deep sources and it included waveforms which

overlapped in time as seen in the figure. Background noise with power spectrum of human EEG was

also added where SNR in dB was defined as, SNR=20*log10(Signal / Noise). We found that MMP
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was superior to ICA and SOBI, especially regarding deep and simultaneously active sources. We also

compared the source localization of atoms and components to source localization of instantaneous EP

data. Source localization of decomposed data was superior to source localization of instantaneous EP

data especially regarding the simultaneously active sources.  Source localization of MMP atoms was

superior to source localization of ICA and SOBI components.  Only the superficial sources were

correctly recovered in time and location when doing source localization in combination with

ICA/SOBI. All the sources were recovered correctly with source localization in combination with

MMP (see figure 13 and table 2).  Because one particular dataset can be a special case where MMP

just happens to be more sensitive to than ICA or SOBI, 20 additional datasets with six dominant

sources randomly placed in the brain volume were simulated. We found that source localization in

combination with MMP localized 95.9% of the sources <25mm away from the simulated sources and

these resulting sources had waveforms which corresponded to the simulations. Whereas, source

localization in combination with ICA localized 22.5% of the sources < 25mm away from the simulated

sources and source localization in combination with SOBI localized 28.4% of the sources < 25mm

away from the simulated sources. Only the waveforms that corresponded to the simulated waveforms

were analyzed.
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Figure 13. Decomposition results of simulated data (adapted from I). First row represents the original

simulations. Second row represents the ICA retrieved components; only four of the simulated

components were found correctly, the components 2, 3, 4, and 5 in the first row. Third row represents

the SOBI retrieved components; only four of the simulated components were found correctly, the

components 2,3,4, and 5 in the first row. Last row represents the MMP retrieved components; all the

simulated components were found correctly.

The simulation results were validated on empirical somatosensory EP (SEP) data due to median

nerve stimulation. This stimulation paradigm was chosen due to the large consensus in the literature

regarding the brain generators of median nerve SEPs. Just as the simulated data, these data were

subjected to conventional peak-by-peak source analysis, source analysis on ICA and SOBI

components, and source analysis on MMP atoms (figure 14).  As can be seen in the figure, ICA and

SOBI found three components that were well defined in time with peaks where expected and MMP

found five. However, ICA and SOBI components were not as well defined in time as MMP atoms and

seem to be composed of several frequencies.
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Thal: 7-24
SI: 17-118

SII: 47-84
 Pre-motor: 83-110

Insula: 88-131

Simulation
Source
localization and
time interval
(ms)

ACC: 113-137
Raw data
Localization
and distance
(mm)

7 22
61

26
27
62

53
10
57
81

16
34
54

13
28
34

68
27
71

59
20
42

52
21

13
13
15

ICA
Localization
and distance
(mm) 27

32
13
13

SOBI
Localization
and distance
(mm) 12

 8
11

8
14

14
20

MMP
Localization
and distance
(mm)

9

Table 2. Dipole localization results of the raw simulated data and of decomposed simulated data

(adapted from I). The first row of the table represents the simulated dipoles. They are color coded

according to their location.  The length of the color bars indicates the activation time interval of the

sources (which is also shown as the numbers representing the ms of activity). In the second row,

numbers represent the distance in mm between the calculated dipole for each peak using DIPFIT on

the raw data (the 9 numbers in figure 13) and each of the simulated dipoles that were active during that

time course. For the raw data there are often many dipoles for each component and the color code

depicts the location of the dipole (defined in the simulation row). The third, fourth, and fifth rows

represent the anatomical area of the calculated dipole and the distance between the calculated dipole

for each of the decomposed components/atoms and the simulated dipole. Abbreviations: Independent

Component Analysis (ICA), Second Order Blind Identification (SOBI), Multichannel Matching

Pursuit (MMP), Thalamus (Thal), Primary Somatosensory Cortex (SI), Secondary Somatosensory

Cortex (SII), Pre-motor (PM), Anterior Cingulate Cortex (ACC).
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Figure 14. Decomposed median nerve data in one subject (adapted from I). The first row represents the

recorded EPs. The peaks that were subjected to inverse modeling are marked by vertical lines. The

second row represents the ICA decomposition of the EPs shown in the first row. The third row

represents the SOBI decomposition of the EPs shown in the first row. The last row shows the MMP

decomposition of the EPs shown in the first row. For all three decomposition methods, the

components/atoms that were best defined in time and that had peaks where expected in time are

shown.

The detailed discussion of results is found in I. Shortly, decomposing the EPs prior to inverse

modeling was superior to inverse modeling on instantaneous EP data. When data were decomposed

prior to inverse modeling, it was possible to retrieve simultaneously active dipoles without making any

assumptions. The localization of the sources found with localization of decomposed components/atoms

corresponds well with the expected brain areas known to be involved in somatosensory

processing(Karhu, Hari et al., 1992;Scherg and Buchner, 1993;Spiegel, Tintera et al., 1999;Waberski,

Buchner et al., 1999;Valeriani, Le Pera et al., 2000;Valeriani, Le Pera et al., 2001;Arthurs and

Boniface, 2003;Thees, Blankenburg et al., 2003;Barba, Valeriani et al., 2005). Although, source

localization of MMP atoms found the deeper sources such as the deep subthalamic source at 16ms

which was not possible to retrieve with ICA or SOBI. Furthermore, in ICA and SOBI solutions, the
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activity seemed rather spread with some visible peaks in several components and finding criterion for

component selection from the observed components was not a simple task. Hence, in most cases, it

was not apparent which components should be selected just from their event related potentials. By

looking at  MMP components, on the other hand, it is very easy to choose the most relevant atoms that

represent the stimulus triggered activity which deviates from the baseline and background activity

because in these atoms the baseline is flat. The atoms corresponding to background (noise) activity are

also easily differentiated from the rest of the atoms because they show activity over the entire time

interval.

5.4 Limitations of MMP

In the examples presented in the previous section, it was made clear that MMP is superior to ICA and

SOBI. However, how far can MMP be pushed? What is the number of sources it can handle? What is

the level of noise? This was investigated in II and these questions are answered in this section.

In order to study MMP accuracy as the number of brain sources increases, four different datasets

were created. The datasets were divided into simulations of 5, 10, 15, and 20 brain sources. Each of the

four datasets included 20 simulations which are described in detail in II. In order to study the accuracy

of MMP as the noise level increases, 10 different noise levels were added to the simulations of the four

previously created datasets: signal to noise ratios (SNRs) of 20, 16, 14, 10, 6, 2, 1, 0.8, 0.4, and 0.1.

In order to investigate how the accuracy of MMP algorithm is altered with increased number of

sources or increased level of noise, all the simulations were decomposed. Then, each of the

decomposed atoms was compared to the simulated atoms by using angular separation(Duda, Hart et

al., 2001;Teknomo, 2006). If the angular separation between two atoms was   0.85, the two atoms

were deemed as similar.

Figure 15 represents the MMP accuracy results due to increasing number of sources and increasing

noise level. Details regarding the results are discussed in II. Briefly, the reasons for the decreased

accuracy of source localization due to increased number of sources, as seen in figure 15, are increased

complexity, more simultaneously active sources, and more possibilities for the source waveforms to be

the same in time, frequency, and phase. It is well known that increased number of sources implies

lower stability of inverse solutions(Achim, 1995) and if the complexity of source distribution is too

high, the dipole localization can be abandoned for not providing a realistic estimate of the EEG

sources(Nunez and Srinivasan, 2006). However, even with this limitation, the MMP method is

superior to other more conventional methods regarding the number of simultaneously active sources as

demonstrated in I.

Additionally, as seen in figure 15, MMP and source localization of MMP atoms is robust to noise.

This gives another advantage to source localization in combination with MMP.
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Figure 15. Accuracy of the MMP algorithm (adapted from II). Top left: Accuracy of the MMP atoms’

waveforms as the number of brain sources increases. The figure represents the mean and standard

deviation of the percent of simulated atoms correctly found after MMP decomposition with 5, 10, 15,

and 20 simulated brain sources. Bottom left: brain source localization accuracy of the MMP atoms

which had waveforms that corresponded to the simulated brain sources. The figure represents the mean

and standard deviation of Euclidean distances between the calculated and simulated brain sources

corresponding to simulations with 5, 10, 15, and 20 simulated brain sources. Top right: MMP

waveform accuracy as the noise level increases for different number of simulated sources. Bottom

right: brain source localization accuracy of the MMP atoms as the noise level increases for different

number of simulated sources. The results are ordered from the lowest number of simulated brain

sources to the highest.



37

6. Clustering of multichannel matching pursuit atoms

Typically, MMP followed by source localization is applied to a single subject at a time. This approach

makes it difficult to study group differences, i.e. group of patients versus group of healthy controls. As

discussed in II, one of the methods to study common sources within a group is grand mean analysis.

However, the major shortcoming of this approach is that small differences in brain activation between

a few subjects can contaminate the entire solution. Also, grand mean analysis does not allow one to

study small differences between individuals and gives a solution that may or may not be representative

of the entire population. In order to demonstrate this shortcoming of grand mean analysis, EP data

were simulated for ten subjects with 5 dominant sources each (see figure 16). Eight of the subjects

contained the exact same sources (both in location and time waveform) and two of the subjects had the

same first four sources as the other eight subjects but the fifth source was altered in waveform and

location. When taking the grand mean of these 10 subjects (figure 17), a waveform very similar to that

of the first 8 subjects is obtained. This is because there are 8 subjects that have the fifth source with a

waveform in phase with each other and therefore as these waveforms are averaged, they become

bigger in amplitudes and the two different waveforms of subjects 9 and 10 disappear (same principle

as when calculating the EPs). Consequently, when this grand mean is decomposed, as seen in figure

17, the atoms retrieved by the decomposition resemble the atoms simulated for subjects 1-8. This

method of analysis can lead us to think that these 5 sources are the dominant ones in all the subjects.

However, as we can see from figure 17, this is not the case. Therefore, a better method is needed to

study similarities/differences between subjects. Another approach is to classify all the

differences/similarities between subjects in different groups visually. This process can be tedious and

lead to subjective bias, especially when dealing with datasets of many subjects. It would be much

better to have a tool to automatically process all the data and output the common features within a

group. This method would make it easier to observe any differences or similarities between groups. In

II, we proposed a modified K-means clustering procedure to be applied to MMP atoms in a group of

subjects in order to automatically study differences/similarities of subjects within a group.
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Figure 16. Simulation of evoked potentials in 10 subjects. Top of the figure shows 5 dominant sources

in 8 identical simulated subjects: on top are the waveforms and on the bottom are the corresponding

sources. To the right of the figure is the evoked potential once these five waveforms are added

together. In the middle of the figure is the 9th simulated subject whose first 4 sources are identical to

the previous 8 simulated subjects but the 5th source is different in waveform and location. Bottom of

the figure shows the 10th simulated subject whose first 4 sources are identical to the previous 9

simulated subjects but the 5th source is different in waveform and location.
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Figure 17. Grand mean analysis of the simulated evoked potentials presented in figure 16: a) grand

mean evoked potentials of the simulated 10 subjects. It can be seen that the grand mean very closely

resembles the simulated waveform of the first 8 subjects; b) decomposed grand mean. This figure only

shows the five atoms that resembled the simulated atoms; c) source localization of the atoms shown in

b).

This clustering procedure was applied to the simulated data presented in figure 16 and the results

shown in figure 18 were obtained. This time, unlike with the grand mean results in figure 17, it is

possible to see that subjects 9 and 10 did not have the 5th atom similar to the rest of the subjects.

The clustering procedure was also successfully applied to SEPs at median nerve and brainstem

auditory EPs (BAEP) in II, where the early primary somatosensory cortex activity at 20ms was studied

and successfully retrieved for SEPs and the early brainstem activity at 7ms was studied and

successfully retrieved for BAEPs.
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Figure 18. The five clusters representing simulations presented in figure 16. Each of the 5 plots

represents a single cluster. In each plot, there are 10 time-frequency subplots representing each subject.

The first 4 clusters include atoms from all 10 subjects and the 5th cluster includes atoms from only 8

subjects meaning that the last 2 subjects did not have this atom in their data.

6.1 Limitations of the proposed clustering method

The clustering method proposed in II works well when the time of activity between subjects is similar

(i.e. at most a few milliseconds apart). This may not be the case for later "cognitive" potentials like the

P300(Nieuwenhuis, Aston-Jones et al., 2005) or N400(Van Petten and Luka, 2006). The identity and

time course of activation of such complex event-related potential phenomena may vary greatly across

individuals(Moores, Clark et al., 2003). In these cases, the algorithm may be less suitable. This method

is mostly suitable for the cases where sources and waveforms between subjects are expected to be

similar in time and location, such as in SEPs, visceral EPs, BAEPs, etc.

Since this thesis is concentrated around finding a method for studying of exogenous pain evoked

potentials, the clustering method proposed here is very suitable.
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7. Bringing it all together: application of multichannel matching pursuit

and clustering to pain evoked potentials

The purpose of chapters 1-6 was to discuss shortcomings/advantages of different brain imaging

modalities and to give a novel method to be used in the future pain studies to study sequential brain

activity due to pain. It was shown that MMP in combination with clustering works well on simulated

data and on certain sensory EPs (somatosensory and brainstem auditory). Until this point, in I and II,

it was only shown that the method works. However, the question still remains: can these methods be

used on biological data that is far more complex than SEPs or BAEPs?  In III, we applied the MMP

and clustering to EPs due to painful electrical stimulation in the oesophagus before/after

placebo/morphine administration (see figure 19). This data was interesting to study with the proposed

methods because morphine is the gold standard for treating moderate to severe pain and it is well

known that it exerts its primary effect in the central nervous system(Dickenson and Lebars,

1987;Chou, 2009). However, the details of how morphine exerts its effects on the human brain are not

well known. Previous human studies have typically looked at PET/fMRI activity in the brain after the

placebo/opioid administration. However, as discussed in previous chapters, major disadvantages to

these imaging modalities exist, the main one being the inability to follow how the brain activity

changes in time on millisecond scale. Previously, recordings with only a few EEG electrodes (≤ 8),

typically placed in fronto-central area on the scalp, have mainly been used for determining the

analgesic response of opioids(Rohdewald, Granitzki et al., 1988;Kobal, Hummel et al., 1990;Scott,

Cooke et al., 1991;Hummel, Hummel et al., 1994;Petersen-Felix, Arendt-Nielsen et al., 1996;Suri,

Kaltenbach et al., 1996;Thurauf, Fleischer et al., 1996;Lotsch, Kobal et al., 1997;Quante, Scharein et

al., 2004;Chizh, Priestley et al., 2009;Truini, Panuccio et al., 2010) but their results of latencies and

amplitudes have shown contradicting values(Banoup, Tetzlaff et al., 2003;Schmidt, Scharein et al.,

2007). To our knowledge, only one group did a multichannel EEG (128 channels) study in

combination with opioids(Schmidt, Scharein et al., 2007). However, their analysis was limited to

latency, amplitude, and topography analysis and therefore still missing the information about

alteration of the brain activity due to the drug.
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Figure 19. The basic idea of the opioid EP study (adapted from III). The figure shows EPs from 62

channels superimposed on each other due to pain stimulation in esophagus in one subject. Left of the

figure are the EPs taken on the day placebo was given and to the right of the figure are EPs taken on

the day morphine was given. Top left: EPs before placebo administration. Bottom left: EPs 90

minutes after placebo administration. Top right: EPs before morphine administration. Bottom right:

EPs 90 minutes after morphine administration. It was investigated whether there was a change in EPs

from before placebo administration to 90 minutes after placebo administration and whether there was

a change in EPs from before morphine administration to 90 minutes after morphine administration.

In III, which was a cross-over, double-blinded, placebo controlled study, the methods proposed in I

and II were applied as follows:

1. MMP was run on each subject’s data.

2. For each subject, atoms with similar time-frequency distributions between baseline and

placebo were clustered together. This was done in order to assess how frequency contents

changed from baseline to placebo administration in each EEG frequency band.

3. For each subject, atoms with similar time-frequency distributions between baseline and

morphine were clustered together. This was done in order to assess how frequency contents

changed from baseline to drug administration in each EEG frequency band.

4. Inverse modeling was done on each of the atoms in each cluster in order to assess how brain

activity was altered due to placebo/morphine and in which frequency band these changes

occurred. The interest was to observe how the brain activity was altered when given two very

similar atoms between baseline/placebo or baseline/morphine

We found that the power in EEG delta band decreased due to both placebo and morphine within the

first 300 ms and power in beta frequency band decreased only due to morphine after 300 ms (see

figures 20 and 21). We found that a trend within the first 300 milliseconds in delta activity was very



43

apparent as the dipole moved to the frontal left in all subjects after morphine administration. Dipoles

due to placebo were reproducible and similar in the two sessions (figures 22 and 23). This finding is

very interesting because it is well known that the frontal area of the brain has high density of opioid

receptors(Maarrawi, Peyron et al., 2007). Furthermore, it has been shown that stimulation of animal

lateral frontal cortex induces analgesia(Oleson, Kirkpatrick et al., 1980;Zhang, Tang et al., 1997).

Hence, the fact that we found that the dominant brain activity shifts frontally after administration of

morphine is not surprising as it likely reflects activation of the rostral ACC/prefrontal cortex which

contain a high concentration of opioid receptors(Willoch, Tolle et al., 1999) and have been suggested

as an important region in opioid analgesia(Firestone, Gyulai et al., 1996;Casey, Svensson et al.,

2000;Wagner, Willoch et al., 2001;Petrovic, Kalso et al., 2002). Although, the finding is not

surprising, and one can say expected, it was now for the first time that we were able to say during

which time this shift of activity toward the frontal cortex occurs and moreover in which frequency

band: delta, which is known to be the most sensitive for objectifying changes in pain related

EPs(Quante, Scharein et al., 2004).
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Figure 20. Change in power in delta frequency band (0.5-4Hz) between 100-200 milliseconds and

200-300 milliseconds in all subjects. The decrease in power was significant during these time

intervals for placebo and morphine.

Figure 21. Change in power in beta frequency band (12-30Hz) in all subjects during the following

time intervals: 300-400ms, 400-500ms, 500-600ms, and 600-700ms. The decrease in power was

significant between 300 and 700 milliseconds for morphine only.
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Figure 22. Dipolar source modeling of MMP atoms with delta activity between 100 and 200

milliseconds (adapted from III);   placebo baseline (green), 90 minutes after placebo administration

(blue), morphine baseline (red), and 90 minutes after morphine administration (pink). The results

presented in this figure are averages of all subjects’ dipoles, although the analysis was done on

individuals. Placebo dipoles were reproducible at all coordinates. Dipoles moved frontally and to the

left due to morphine.

Figure 23. Dipolar source modeling of MMP atoms with delta activity between 200 and 300

milliseconds (adapted from III);  placebo baseline (green), 90 minutes after placebo administration

(blue),  morphine baseline (red), and 90 minutes after morphine administration (pink). The results

presented in this figure are averages of all subjects’ dipoles, although the analysis was done on

individuals. Placebo dipoles were reproducible in all coordinates. Dipoles moved frontally and to the

left due to morphine.
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8. Rectal evoked potentials in constipated patients with rectal
hyposensitivity (ongoing study)

Impaired rectal sensation (rectal hyposensitivity (RH)) describes a diminished perception of rectal

distension(Wingate, Hongo et al., 2002;Gladman, Lunniss et al., 2006) and is present in one quarter of

patients with chronic intractable constipation. The mechanisms contributing to its development are not

fully understood. RH may be due to: a) impaired afferent pathway function and/or b) the presence of

abnormal rectal wall properties(Gladman, Dvorkin et al., 2005), where it may not necessarily reflect

impairment of the afferent nerve pathway. RH as a result of impaired afferent pathway dysfunction

may result from disruption at any of the following levels(Gladman, Lunniss et al., 2006): 1) receptor,

2) afferent nerve, or 3) central nervous system. A study done by Gladman et al.(Gladman, Lunniss et

al., 2006) showed that 53% of the patients they investigated had normal rectal compliance, adaptation,

and tone. These observations support the assumption that the elevation of sensory threshold are not

related to alterations in rectal wall properties, but are likely to reflect impairment of afferent nerve

function. Cortical representation has never been evaluated in patients with RH and constipation in

order to determine whether there is an alteration of central response to stimuli in the rectum. This study

aims to demonstrate: 1) feasibility of EPs as a tool to evaluate the integrity of sensory innervations in

patients with constipation and RH in comparison to healthy controls, and 2) whether there is cortical

reorganization after rectal stimulation in these patients.

Rectal EPs were recorded from 64 surface scalp electrodes in 17 patients and 8 healthy volunteers

(ongoing) in response to electrical stimulation of the rectum at 10cm from the anal verge using a

specialized bipolar stimulating electrode (4 sets of 50 stimulations, 0.2 Hz frequency, 0.2ms pulse

width). Stimuli were delivered at reported pain threshold (VAS=5). Additionally, the sensation

threshold (VAS=1) was taken. In order to test for peripheral neuropathy, two series of SEPs after

stimulation at median nerve (2 sets of 500 stimulations, 2Hz frequency, 0.2 ms pulse width) were

recorded. Additionally, perception thresholds were taken for stimulation at median nerve. All the

experiments were carried out at the neurophysiology lab at GI Physiology Unit, Royal London

Hospital. Data were analyzed accordingly: 1) sensation thresholds were compared between healthy

controls and patients for both median nerve and rectum. 2) Amplitudes and latencies of median nerve

SEPs were compared. All of the recording electrodes, superimposed on each other, were looked at and

the overall latency and amplitude of each peak were recorded. We looked for the first 7 peaks due to

median nerve stimulation which are agreed upon in the literature(Valeriani, Le Pera et al., 2000). 3)

SEP topographies were compared for each SEP peak in order to assert that distribution of EEG activity

was similar between the two subject groups. 4) Amplitudes and latencies of rectal EPs were compared.

The amplitudes and latencies at central (Cz), frontal (FPz), and temporal (T7 and T8) sites were

studied. 5) Topographies of rectal EPs were compared.
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This was the preliminary analysis of the data. If there are changes in these EP parameters, there are

likely changes regarding the generating sources, which will be the final step for analysis of this data.

The sensation thresholds for median nerve were 2.3±0.45 for healthy controls and 2.4±0.67 for RH

and constipated patients (P=0.5). The thumb twitching thresholds were 7.4±1.33 for healthy controls

and 6.25±2.58 for the patients (P=0.7). Therefore, there were no significant changes between the

healthy controls and the patients for either sensory or motor thresholds. Table 3 shows mean±SD of

amplitudes and latencies for median nerve. Furthermore, it shows the P-values for comparisons

between healthy controls and patients of each peak’s latency and amplitude. All the expected EP peaks

due to median nerve stimulation were identified in both groups and there were no significant

differences between their latencies and amplitudes. The grand mean topographies for each peak are

shown in figure 24 and as can be seen that topographies between healthy controls and patients are very

similar.

P14 N20 P25 N35 P45 N65 P90

Healthy 13.5±0.9 19.7±1.3 26±1.1 35.7±1.1 45.4±3.3 65.1±1.3 95.2±5.3

Patient 13.5±0.7 19.2±0.6 25.1±0.8 34.1±1.6 45.5±1.8 65±2.5 91±6.1Latency

P-value 0.5 0.2 0.4 0.8 0.4 0.8 0.5

Healthy 1.3±1.3 1.8±1.3 2.0±3.6 2.1±2.2 2.8±2.4 2.4±2.0 1.8±1.1

Patient 1.0±0.4 1.7±0.6 1.8±1.9 2.3±1.8 2.6±1.0 1.8±3.3 1.9±0.8Amplitude

P-value 0.1 1.0 0.8 0.8 0.7 0.6 0.5

Table 3. Mean±SD values for latencies and amplitudes of the somatosensory evoked potential peaks.

The P-values show that there are no significant differences in amplitudes of latencies between healthy

controls and patients.
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Figure 24. Median nerve topographies at each EP peak for median nerve stimulation for healthy

controls and patients. This figure represents the grand mean of all subjects in each group. However,

analysis was done on individuals and the individuals fit this model. HV: healthy volunteers, CP:

constipated patients.

The sensation thresholds in the rectum were 11±9.09mA for healthy volunteers and 29±20,87mA for

RH and constipated patients (P=0.02). The VAS 5 thresholds were 37,5±18,60mA for healthy

volunteers and 69±21.74mA for RH and constipated patients (P=0.02). Figure 25 shows grand mean

plots of patients versus healthy controls for three electrodes (central (Cz), frontal (FPz), and temporal

(T7)). There were no significant differences between amplitudes and latencies in central and temporal

electrodes (all P0.2). There were no significant changes in the latency and amplitude of frontal N1

(all P0.2). However, the amplitude of frontal P1 tended to increase in patients (P=0.06). We will

likely get a better idea whether this is a significant change or just a trend after performing this

experiment in more healthy volunteers. The grand mean topographies of healthy volunteers and

patients are shown in figure 26 for N1 and P1. Although, the topographies are similar between healthy

controls and patients, the activity in N1 topography seemed to be more spread out over the scalp in

patients, while the negativity seemed to dominate very centrally in healthy volunteers.

14ms 20ms 25ms 30ms 45ms 65ms 90ms

         HV

        CP
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Figure 25. Grand mean averages of the brain evoked potentials from the central (Cz-electrode), frontal

(Fz-electrode), and temporal (T7-electrode) regions evoked from painful electrical stimulation in the

rectum in rectal hyposensitive constipated patients and healthy volunteers. The early components (N1

and P1) are labelled.
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Figure 26. Topographic maps of grand means of N1 and P1 to painful electrical stimulation of the

rectum in healthy volunteers and in rectal hyposensitive constipated patients. This figure represents

the grand mean of each group. HV: healthy volunteers, CP: constipated patients.

These preliminary results could implicate cortical reorganization in RH and constipated patients.

However, once the rest of the data for healthy controls is obtained, it is crucial that MMP and source

localization analysis be done on individual level because, as previous studies implied, central

reorganization could only be present in some types of these patients. If it is the case, in our data, that

some of the patients have cortical reorganization, it should be investigated whether there is correlation

between these patients and some other data parameters, such as rectum size.

      HV

    CP

N1 P1



51

9. Conclusions and future perspectives

This chapter summarizes the conclusions, point by point, of this PhD project.

1. MMP done in combination with inverse modeling is an adequate way to non-invasively estimate

brain activity to external stimuli. It is superior to other more conventional decomposition

methods such as ICA and SOBI, especially regarding deep and simultaneously active sources.

2. MMP is robust to noise and to limited number of sources (< 10). Even with this limitation,

      source localization of MMP atoms is superior to source localization of ICA components,

      SOBI components, or EP peaks.

3. A clustering method was developed in order to automate MMP analysis and more efficiently

study differences and similarities between groups.

    4. The clustering method proved to be an efficient way to study brain activation sequence and

time-frequency distributions of their waveforms within subject groups on simulated data and

          on SEPs and BAEPs.

    5. By applying MMP and clustering to esophageal EP data, it was shown that brain activity

      moves frontally due to morphine in the first 300 milliseconds after the stimulus. Although, it

is well known that activity in the frontal cortex is increased due to morphine, we were able to

show during which time interval this shift occurs and in which frequency band. Therefore, the

 proposed methods were successfully applied to visceral pain evoked potential data and may

increase our knowledge on basic mechanisms of how analgesics modify the brain’s

      processing of pain, and provide measures which could be used as powerful biomarkers of

analgesia in experimental pain models.

    6. Preliminary rectal EP data showed that there may be evidence of central reorganization in

          constipated patients with RH. However, MMP and source localization need

to be applied to the data in order to study how brain activity is altered due to pain in these

patients.

9.1 Future Perspectives

MMP and clustering should be used in the future to study differences in brain activity between

different groups of subjects, i.e. patients versus healthy controls or in intervention studies investigating

e.g., the effect of drugs active on brain activity. Moreover, MMP shall be improved to study single

trials instead of the averaged EPs as a lot of time-frequency information is lost in the averaging

process.

The patient groups for which the method is intended to be used in the near future are: chronic

pancreatitis patients, constipated patients with RH, and diabetes patients in order to study how these

patients’ brains process pain differently from healthy controls. Furthermore, the methods will be
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applied to a new opioid study where 40 healthy volunteers will participate as compared to 12 in study

III, to gain a better understanding of how the opioids act on the brain.

All of this combined will eventually lead to the human visceral pain model with brain activation

sequence on millisecond scale.
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Danish Summary

For at kunne forstå og forbedre smertebehandlingen af patienter, er det nødvendigt at have en

forståelse for hjernens bearbejdning af smerter. Størstedelen af vores viden om hjernens bearbejdning

af smerter og smertefulde stimuli, er opnået gennem billeddannende studier som f.eks. fMRI og PET

skanninger. Den største ulempe ved disse metoder er, at den tidsmæssige opløsning er dårlig. På få

millisekunder når de smertedannende signaler fra periferien til hjernen, og det er derfor nødvendigt at

anvende metoder med en højere tidsmæssig opløsning end de traditionelle. Evokerede potentialer (EP),

som optages via elektroder sat på hovedbunden, måler hjernens aktivitet på en tidsskala hvor enheden

er millisekunder, men i modsætning til fMRI og PET har EP ringere rummelig opløsning. Man kan

dog ud fra de optagede EP og ved brug af matematiske metoder, beregne hvilke hjernecentre der er

aktive under smertefulde stimuli. Dette kaldes ”invers modellering” og anvendes typisk på

kontinuerlige EP. Metoden er dog forbundet med en del mangler inklusiv instabilitet ved modellering

af især flere og dybe aktive hjernecentre. Ydermere, vil interferens af baggrundsstøj forhindre den

optimale beregning af de underliggende aktive hjernecentre.

   Denne afhandling, foreslår derfor, i et forsøg på at overvinde manglerne ved de traditionelt anvendte

metoder, at de evokerede potentialer dekomposeres, inden anvendelse af matematiske metoder til brug

ved invers modellering. Afhandlingen foreslår anvendelse af Multichannel matching pursuit (MMP)

som dekomposerings metode. Denne metode har vist sig overlegen i forhold til mere udbredt anvendte

dekomposerings metoder som f.eks. independent component analysis (ICA) og second order blind

identification (SOBI). MMP har tilmed vist sig overlegen i forhold til anvendelsen af øjeblikkelige EP

analyser. Afhandlingen foreslår tilmed en cluster analyse, som også er overlegen i forhold til

kontinuerlige EP analyser. Cluster analysen er implementeret og valideret på både simulerede og

empiriske somatosensoriske samt og lyd-evokerede potentialer fra hjernestammen. Endeligt er de

foreslåede metoder appliceret på EP baseret på viscerale smertestimuleringer for blandt andet at kunne

studere morfins effekt i hjernen. De foreslåede metoder har vist sig at være effektive og valide i

smertestudier, som involverer evokerede potentialer.
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