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Abstract 
   
 
 
Drug- and gene delivery to the brain is highly restricted by the vascular barriers of 
the brain, denoted by the blood-brain barrier (BBB) and the blood-cerebrospinal 
fluid (CSF) barriers. Among these barriers, BBB is the main limiting factor. It is 
composed by the brain capillary endothelial cells (BCECs). The BCECs barrier 
function is supported by astrocytes, pericytes and neurons to form the blood-brain 
barrier. BCECs are very tightly connected to each other by tight junctions. Apart 
from the essential substrates needed to nourish the brain, small and/or lipophilic 
molecules are free to diffuse into the brain. However most pharmacologically 
active drugs and gene fragments are too large to enter the brain. Various kinds of 
drug-carriers have been constructed for delivery of large substances to the brain. 
Such drug-carriers have to be able to successfully carry their cargo through the 
BCECs and into the brain. For testing the ability of drug-carriers to deliver their 
cargo into the brain, investigators have constructed different in vitro BBB models, 
consisting of BCECs that express the main characteristics of the BBB in vivo. 

In the first part of the thesis the ability of two drug-carriers, pullulan-
spermine and SPIOs, to mediate transfection of BCECs or transcellular transport 
through BCECs in vitro was studied.  

Pullulan-spermine is a polymeric complex consisting of the 
polysaccharide, pullulan and the polyamine, spermine. Pullulan-spermine formed a 
cationic complex shown to be able to bind plasmid DNA electrostatically. 
Pullulan-spermine was conjugated with plasmid DNA encoding a red fluorescent 
protein, Hc-Red-1 C1, or human growth hormone 1 (hGH1). Pullulan-spermine 
complexed with Hc-Red-1 C1 cDNA led to the formation of a red fluorescent 
signal in human brain microvascular endothelial cells (HBMECs). Furthermore, 
pullulan-spermine complexed with hGH1 cDNA was not only able to transfect 
HBMECs but also led to secretion of the hGH1 into the culture media. Pullulan-
spermine-cDNA complexes could transfect non-dividing cells although the rate of 
transgene cells was higher in dividing cells. This indicated that the DNA is not 
only entering the cell nucleus under mitosis. Unfortunately, pullulan-spermine 
complexes proved incapable of transfecting HBMECs in the presence of serum in 
the growth media and additional studies are needed to enable its use for in vivo 
transfection.  

Another potential drug-carrier, fluorescent iron oxide nanoparticles were 
also shown to enter HBMECs upon incubation. These nanoparticles were also able 
to pass though the HBMECs forming a BBB in a static in vitro BBB model. 
Furthermore, their passage was increased by the aid of an external magnetic field 
created by placing the cell culture plates with the SPIOs on a plate magnet. Two 
vitality tests showed no significant change in BCEC vitality after addition of 
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SPIOs or by dragging the nanoparticles through the BCECs in the presence of the 
external electric field. 

The results of the drug-carrier studies indicate that it is possible to deliver 
plasmid cDNA into BCECs and transfect these cells leading to their secretion of 
encoded protein into the extracellular space. Moreover, SPIOs are potentially 
potent carriers of attachable molecules trough cultured BCECs in vitro, which may 
have high potential for drug-delivery to the brain in vivo.  

In the second part of the thesis, two in vitro BBB models, a static and a 
dynamic model was investigated and compared. The static model consisting of 
microporous membrane inserts in which immortalized BCECs is cultured. The 
model induces many characteristics of the BBB in vivo, but lacks the tightness 
induction factor of shear stress. Different experiments were performed with this 
static model to monitor BBB integrity. Barrier formation by the BCECs was 
monitored by measuring transendothelial electric resistance (TEER) and the BCEC 
monolayer was stained positive for zonula occludens 1 (ZO-1) a tight junction 
protein. It was mainly found that the tightness of the BCECs was strengthened by 
contact co-culture of the BCECs with astrocytes and addition of hydrocortisone to 
the media. The dynamic in vitro BBB model however, did not lead to any reliable 
results in this study and further investigation of barrier formation in this model was 
not pursued. In consequence a comparison between the static and dynamic in vitro 
models was not possible, but it could be concluded that the static model seems to 
be the most reliable model.      
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Resumé på dansk  
 
 
 
 
Gen og medikament levering til hjernen har vist sig at være svært hæmmet af 
barriererne i hjernen, herunder hovedsageligt blod-hjerne barrieren (BBB). BBB 
formes af hjerne kapillær endothel celler (BCECs). BCECs er omgivet af 
astrocytter, pericytter og neuroner, der også menes at støtte BCECs barriere 
funktioner. BCECs danner tætte forbindelser mellem hinanden, kaldet “tight-
junctions” og derved forhindres passage mellem cellerne. Bortset fra de essentielle 
næringsstoffer hjernen har brug for er det kun små og/eller fedtopløselige 
molekyler, der kan passere BBB. Gener og medikamenter er ofte store og 
vandopløselige og kan derfor ikke passere gennem BBB. Derfor er der brug for en 
leverings strategi af store molekyler til hjernen. Forskellige “drug carriers” er 
blevet udviklet til dette formål. Drug carriers bør være i stand til at levere deres last 
gennem BCECs og videre ind i hjernen. Til at teste en drug carriers evne bruger 
man ofte en in vitro BBB model. Disse modeller består af BCECs dyrket i kultur, 
der danner en barriere med de karakteristika BBB udviser in vivo.  
 I den første del af denne tese blev to potentielle drug-carriers undersøgt 
for deres evner til enten at passere BBB og ind i hjernen eller at levere gener ind i 
BCECs. 

Den første carrier er et polymerisk kompleks bestående af en 
polysakkarid, pullulan og en polyaminosyre, spermine. Pullulan-spermine danner 
tilsammen et kationisk kompleks der kan binde negativt ladet plasmid DNA 
elektrostatisk. I dette studie blev pullulan-spermine konjugeret med plasmid DNA 
kodende for en rød fluorescerende markør Hc-Red C1 og humant vækst hormon 1 
(hGH1). Pullulan-spermine-pHc-Red-1 C1 komplekser havde evnen til at forme 
transgene rød fluorescerende humane hjerne endothel celler (HBMECs) i 
monokultur. Endvidere kunne pullulan-spermine-pGH1 komplekser transfectere 
HBMECs og proteinet som det plasmide DNA kodede for, hGH1, kunne detekteres 
i cellerne og i celle kultur mediet, hvilket indikerede at HBMECs havde udskilt 
dette protein. Pullulan-spermine viste sig desværre at være uforenelig med serum, 
hvilket forhindrer brug af denne carrier in vivo. Derudover blev det fundet at celler 
der ikke er i det delende stadie, dvs. ikke mitotiske, kunne transfecteres, dog i en 
mindre grad end i delende celler. Dette indikerer at det plasmide DNA ikke kun 
kan diffundere ind i cellekernen, når kernemembranen er midlertidigt åben, men at 
der også findes en mekanisme der kan hjælpe det plasmide DNA ind i cellekernen 
når kernemembranen er intakt. Resultaterne i dette studie indikerer at det er muligt 
at benytte pullulan-spermine komplekser til levering af DNA til BCECs in vitro og 
at disse kan transfecteres og udskille det DNA indkodede protein.  

Den anden carrier type hvis evner blev undersøgt I dette studie var 
fluorescerende superparamagnetiske nanopartikler (SPIOs). I dette studie kunne 
det påvises at fluorescerende stivelses overflade behandlede jern oxid nanopartikler 
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kunne optages af BCECs. Desuden kunne disse partikler passere BCECs, der 
dannede en BBB i en statisk in vitro BBB model. Derudover kunne det påvises at 
passage af  SPIOs øges markant ved hjælp af et eksternt magnetisk felt. Dette 
eksterne magnetiske felt blev dannet ved hjælp af en plademagnet hvorpå 
cellekultur pladerne med BCECs blev placeret og de magnetiske nanopartikler blev 
derved trukket gennem cellelaget mod magneten. To vitalitets test udført på 
BCECs, der havde været udsat for SPIOs alene eller suppleret med det eksterne 
magnetiske felt viste ingen signifikant ændring i vitaliteten. Det blev derfor 
konkluderet at SPIOs er potentielt potente carriere til hjernen. 
  I anden del af tesen var formålet at undersøge og sammenligne to 
forskellige former for in vitro BBB, en statisk og en dynamisk. Den statiske model 
inducerer BCECs til at danne de fleste BBB karakteristika, men mangler evnen til 
at forme “shear stress”, der er en vigtig tætheds promoverende faktor. BCECs 
dannelse af barriere blev monitoreret ved hjælp af transendothel elektrisk resistans 
(TEER) måling og celler blev efterfølgende farvet positive for tight junction 
proteinet zonula occludens 1. Tætheden af barrieren viste sig at øges ved kontakt 
co-kultur med astrocytter og en yderligere øgning af tætheden blev observeret ved 
tilsættelse af binyrebarkhormon til mediet.   

Den dynamiske in vitro BBB model kan inducere shear stress og er derfor 
en mere kompleks model. Desværre var det ikke muligt at indsamle pålidelige 
resultater fra den dynamiske model og derfor kunne dannelse af en blod hjerne 
barriere i denne model ikke undersøges nærmere. Desuden var det heller ikke 
muligt at sammenligne de to modeller, men det kunne konkluderes at den statiske 
in vitro BBB model på nuværende tidspunkt virker mest stabil.  
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1.1 THE BLOOD-BRAIN BARRIER 
BCECs denote the BBB and form a major physical restraint on the transport of 
several molecules present in the blood plasma. Astrocytes and pericytes make 
intimate contacts with the BCECs and participate in the maintenance of the 
integrity of the BBB [3]. Astrocytes are especially important for induction and 
regulation of the BBB properties of the BCECs and their end-feet ensheat almost 
completely the abluminal surface of the BCECs [4]. Together, the BCECs and 
astrocytes form a basal lamina present between the BCECs and end-feet of the 
astrocytes. The basal lamina consists of laminin, type-IV collagen, integrins and 
fibronectin [5, 6]. The basal lamina is believed to act as a barrier to the passage of 
macromolecules [2]. The pericytes are embedded in the basal lamina. Studies 
indicate that pericytes have a role in regulating the paracellular permeability of the 
BBB by regulating the tight junctions between the endothelial cells [7, 8, 9, 10]. 
Pericytes have also been shown to be necessary for BBB formation, regulate BBB 
gene expression, and induce polarization of astrocytic end-feet [9, 10]. The BCECs 
are also believed to be in direct contact with neurons, suggesting that neurons also 
could take part in the regulation of permeability of the BBB [11].   

The BCECs are thin and non-fenestrated cells [12, 2]. BCECs are rich in 
mitochondria, hence high metabolic activity, but low in vesicles involved in 
endocytotic and transcytotic activity [2, 4]. Furthermore BCEC have a higher 
concentration of drug and nutrient metabolizing enzymes, such as gamma-glutamyl 
transpeptidase and alkaline phosphatase compared with non-neural endothelial 
cells [4]. The BCECs are closely interconnected with tight and adherence 
junctions, which highly impair paracellular trafficking of even small molecules 
[13, 14]. The tight junctions are considered to be the main structures responsible 
for the strict barrier properties. The tight junctions are composed of the integral 
transmembrane proteins occludins, claudins (predominantly claudin 3 and 5), 
junctional adhesion molecules (JAMs) and endothelial selective adhesion molecule 
(ESAM). The transmembrane proteins are anchored to the cytoskeleton by zonula 
occludens 1, 2 and 3 (ZO-1, ZO-2, ZO-3) [3, 4, 6]. The adherence junctions are 
formed by vascular endothelial cadherins and these are linked to the cytoskeleton 
by catenins. The platelet endothelial cell adhesion molecule (PECAM) is also a 
part of the adherence junctions [3, 6].  

Transcellular transport across the BCECs takes place by mechanisms like 
passive diffusion of small lipid soluble, nonpolar compounds; carrier mediated 
transport of essential nutrients like glucose and amino acids; receptor mediated 
transport of e.g. insulin and transferrin; adsorptive mediated transport of e.g. 
albumin; and carrier mediated efflux transporters of amphilic lipid soluble 
substrates [15, 6]. Furthermore leukocytes can penetrate the BBB transcellularly by 
diapedesis, giving raise to transvascular transport in the brain [6].  

Several lipophilic and cationic drugs which enter BCECs are returned to the 
plasma by efflux transporters expressed by the BCECs [2]. The entry of large 
molecules like most drugs into the brain is therefore limited which is additionally 
supported by the fact that the number of endocytotic and transcytotic vesicles in 
BCECs are significantly smaller compared with those of capillaries of many other 
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organs [15, 16, 17, 18]. About 98% of all small lipophilic drugs and all large drug 
molecules with a molecular weight above ~400 Dalton are unable to penetrate the 
BBB without an enhancing transport strategy [12]. 
 

1.2 DRUG DELIVERY TO THE BRAIN 
Several strategies have been taken to enable drug transport into the brain via 
bypass of the BBB impermeability.  

Transiently disruption of the BBB integrity can be employed to facilitate 
entry of drugs to the brain. Disruption is achieved by either opening of tight 
junctions, by enhancing pinocytotis or by creating lesions in the cell membrane 
[19, 20]. Disruption can e.g. be mediated by osmotic substances, vasoactive agents, 
chemicals, and ultrasonic waves. Hyperosmostic substances, such as mannitol 
cause shrinkage of BCECs and opening of tight-junctions due to an elevation of 
osmotic pressure [21]. Vasoactive molecules such as bradykinin and histamine are 
also known to disrupt the BBB [22, 23]. Chemicals like dimethylsulfoxide 
(DMSO) and ethanol enhance permeation of the BBB by solubilizing the BCECs 
membrane [19]. Furthermore ultrasonic waves can be employed to create micro-
bubbles bursting in the BCECs membrane leading to a higher permeability of the 
BBB [20]. Administering a drug together with one of these approaches will lead to 
entry of the drug into the brain through the disrupted areas of the BBB. 
Unfortunately, not only the drug has access to the brain. The brain is also exposed 
to e.g. infection, toxins in circulation and plasma proteins. Therefore these 
procedures can lead to severe damage e.g. serum albumin have damaging effects 
on astrocytes [19].  

Invasive strategies for drug delivery directly to the CNS can also be 
employed. These delivery methods have the advantage of delivering high drug 
concentrations directly to the CSF or parenchymal space of the brain and low drug 
distribution outside CNS [24]. Drugs can be injected by intrathecal catheters in a 
bolus or continuous infusions [25]. Delivery is high at the site of administration but 
limited in success due to the poor diffusion of drugs into the brain tissue. 
Convection-enhanced diffusion (CED) by implanted osmotic pumps increases the 
distribution of the drug. The diffusion rate is though still not high enough for the 
drug to reach into the entire brain parenchyma [12]. Intracerebral implants have 
also shown to lead to controlled release of drugs in the brain. Implants are made of 
polymeric materials which encapsulate the drug [26]. This strategy is also based on 
diffusion of the drug from the implant into the brain parenchyma and has the same 
diffusion limitations as CED [19]. With the invasive delivery strategies follows a 
risk of increased intracranial pressure due to the increased fluid volume. There is 
furthermore a higher risk of infection in the brain, because of the need of repeated 
craniotomy to allow continuous drug infusion [19]. 

1.2.1 Non-CNS-invasive approaches to enable drug delivery to the brain 

Systemic delivery of drugs into the blood-stream for transvascular delivery to the 
CNS is non-invasive strategies for drug delivery. Drugs are administered through 
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intravenous, intra-arterial or intra-nasal delivery [26]. The delivery bypasses the 
first-pass metabolism allowing fast access to the brain vasculature [24].  

Intra-nasal delivery bypasses the BBB. Due to the highly permeable nasal 
epithelium, drugs can diffuse across the nasal mucosa, though the arachnoid 
membrane and into the olfactory CSF compartments [12, 27]. Frequent intra-nasal 
administration of drugs damages the nasal mucosa and only some drugs, mostly 
lipid soluble reached into the CSF by this strategy [19].  

Intravenous delivery is limited by the non-brain-specific delivery as the 
drug is circulated throughout the entire vascular system of the body [26].  

Intra-arterial delivery is local delivery to the brain as the blood is supplied 
directly to the brain before entering peripheral tissue. The intra-arterial delivery 
ensures a higher concentration of drugs delivered to the brain compared with 
intravenous delivery [28]. Drugs delivered intravenously or intra-arterially for the 
purpose of entering into the brain are limited by the BBB. If a drug in circulation is 
to cross the BBB there are great restrictions. To overcome the blood-brain barrier a 
drug should meet one of the following criteria:  
1) Affinity for nutrient transporters or membrane receptors. An example of a 
substrate that is able to penetrate the BBB by this criterion is a precursor of 
dopamine, L-3,4 dihydroxyphenylalanine (L-DOPA). L-DOPA is a substrate for 
the BCEC receptor, large amino acid transporter 1 (LAT1) and is therefore able to 
cross the BBB without modification. L-DOPA is considered a pro-drug 
administered to patients with Parkinson’s disease to increase dopamine 
concentration [12].     
2) Capability to undergo adsorptive transport e.g. by means of positive charge. 
Cationic albumin is able to be internalized by BCECs by electrostatic interaction 
with BCEC membrane proteins [19].    
3) Small in size and high lipophilicity. Diazepam, a benzodiazepine, is small 
(284.7 Da) and highly lipophilic. Diazepam is able to diffuse passively through the 
BBB [29]. Diazepam is administered e.g. to patients with epileptic seizures or 
anxiety disorders.   
If a drug does not have affinity for BCEC membrane transporters, receptors, or are 
small and lipophilic, it can be transported by a substance that fulfills these criteria. 
Drug and gene carriers are such transport vectors that enable or improve delivery 
of large molecules such as drugs and genetic material to a target organ.  

1.3 GENE THERAPY AND DELIVERY TO THE BBB 
Gene therapy was first proposed as a treatment of human diseases in 1972 by 
Fiedmann and Roblin [30]. Expression of disease causing genes can be corrected 
by gene therapy by the transfer of genetic material into target cells in order to 
enhance or inhibit production of a protein [31]. Gene inhibitors, such as 
oligonucleotides and short interfering RNA (siRNA), silence defective genes on 
the mRNA level in the cell cytosol. Gene enhancers such as complementary DNA 
(cDNA) compensates for a deficiency in the production of a specific protein [32]. 
Ideally cDNA is transported into the target cells by a carrier and further into the 
nucleus where it is integrated into the host cell genome (Fig. 2). If the integration 
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cells as they are able to escape the endosomes and deliver DNA into the cell 
nucleus [37]. 
 

Table 1: Proteins with therapeutic effect in CNS disorders 

Protein Therapeutic effect CNS disorder Reference 
Brain-derived 
neurotropic 

factor (BDNF) 
 

Neuroprotection and 
neuroregeneration 

Differention of 
oligodendroctytes 

Multiple Sclerosis 
 

Cerebral Ischemia 
Depression 

Parkinson’s disease 

Makar et al 2009 
[112] 

Yong 2009 [124] 
Zhu et al 2011 

[125] 
Yu and Chen 

2011[126] 
Sun et al 2005 

[127] 
Glial cell line-

derived 
neurotropic 

factor (GDNF) 

Neuroprotection and 
neuroregeneration 

Parkinson’s disease Biju et al 2010 
[34] 

Neural growth 
factor (NGF) 

Promote neuronal 
growth 

Alzheimer’s disease Li et al 2008 [128] 

Growth 
hormone (GH) 

Neuroregeneration and 
neuroprotection 
Proliferation of 

astrocytes, neurons and 
oligodendrocytes 

Mild cognitive 
impairment and 

Alzheimer’s disease 

Zhang et al 2010 
[129] 

 
Isgaard et al 2007 

[114] 
Basic 

fibroblast 
growth factor 

(bFGF) 

Neuroprotective 
 

Brain Ischemia Song et al 2002 
[130] 

Ma et al 2008 
[121] 

Erytropoetin 
(EPO) 

Neuroprotective and 
neuroregenerative 

Oligodendrogenesis 

Parkinson’s Disease 
 

Brain 
Ischemia/hypoxia 

Boado et al 2010 
[132] 

Xue et al 2007 
[133] 

Iwai et al 2010 
[134] 

 
Although most viral genetic material is removed from the viral vectors, 

leaving only sequences for delivery of the exogenous genetic material, there are 
still concerns about the use of viral vectors [36]. Integration into the host genome 
has been shown to come with a high risk of insertional mutagenesis. Furthermore 
the innate immune system are of risk of recognizing surface antigens on the viral 
vectors which can lead to destruction of all the virally transfected cells [36, 37].  
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Table 2: Common viral and non-viral gene delivery vectors 

Delivery vector Reference 
Viral vectors: 
Retrovirus 
Adenovirus 
Adeno-associated virus 
Herpes virus 

 
Lundberg et al 2008 [135] 
Thaci et al 2011 [37] 
Gray et al 2010 [136] 
Sun et al 2005 [127] 

 
Non-viral vectors: 
Physical techniques: 
Microinjection 
Gene gun 
Electroporation 
Magnetofection 
 
Chemical techniques:  
Lipid based: 
Cationic liposomes (Lipoplexes): 
e.g.  
 
Anionic PEGylated immunoliposomes (PILs) 
 
Lipid coated DNA complexes (LCDC) 
 
Polymer-based: 
Cationic polymers (Polyplexes)  
e.g.: Polyethylenimine 
 
 
Dendrimers 
Polymeric micelles 

 
 
 
Zang and Yu 2008 [137] 
Benedicksson et al 2005 [138] 
De Vry et al 2010 [139] 
Scherer et al 2002 [77] 
 
 
 
 
Tros de Ilarduya et al 2010 (Review) 
[140] 
Caveletti et al 2009 [141] 
 
Skjørringe et al 2009 [123] 
 
Lehthinin et al 2008 [142] 
 
Tros de Ilarduya et al 2010 (Review) 
[140] 
Son et al 2011 [143] 
 
Svenson 2009 [144] 
Shao et al 2010 [145] 

 
Non-viral chemical gene vectors are less efficient than the viral vectors as 

they often lack natural strategies for endosomal/lysosomal escape and nuclear 
delivery, but the non-viral chemical gene vectors are less immunogenic and easy to 
prepare in large scale [33, 38]. 
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1.3.1 Delivery by non-viral chemical gene vectors 

Non-viral chemical gene vectors can be conjugated with various targeting 
molecules to increase BCEC internalization [2, 38]. Targeting the BBB can be 
achieved by conjugating the non-viral gene vector with a ligand that has affinity 
for a membrane receptor on the luminal side of BCECs [2]. Transferrin is such a 
targeting molecule which has affinity for the BCEC transferrin receptor. 
Unfortunately exogenous transferrin is in direct competition with endogenous 
transferrin and this limits the possibility of its use for delivery. Anti-receptor 
antibodies are also widely used to target BCEC receptors and are not in 
competition with the endogenous proteins. OX26 is a monoclonal anti-rat-
transferrin receptor antibody that has been shown to be taken up by BCECs [39, 
40]. Unlike transferrin which undergoes transcytosis after receptor binding the 
monoclonal antibody OX26 has been shown to mainly stay within the BCECs after 
receptor binding and internalization [41, 42]. OX26 is therefore appropriate for 
targeting BCECs. The transferrin receptor is not only expressed by BCECs but also 
by other cell types such as epithelial cells of the intestinal crypts, orthochromatic 
normoblasts, reticulocytes, trophoblasts cells of the hemochorial type of placenta, 
Sertoli cells of blood-testis barrier, immature erythroid cells, and hepatocytes [43, 
44]. Therefore, targeting the transferrin receptor will possibly not lead to exclusive 
uptake by BCECs. The uptake by BCECs could though be heightened if the 
conjugates were administered into the carotid artery and thereby pass the 
capillaries of the brain early in circulation.   

When internalized the non-viral gene vectors are enclosed inside an early 
endosome which matures to a late endosome and fuses with a lysosome. To avoid 
degradation in the lysosome the carrier has to escape into the cytosol. Some non-
viral carriers for example polyethylenimine (PEI) are capable of escaping the 
lysosomes by a process called the proton sponge effect: In the acidic lysosome, 
PEI will bind protons which are pumped in and these are followed by chloride ions 
and water. Eventually this makes the lysosome swell and burst [45]. After escape 
from the endosome/lysosome the gene vector needs a rapid trafficking to the 
nucleus, because DNA is degraded as quickly as within 50-90 min in the cytosol 
due to nucleases [46]. In dividing cells the nuclear envelope is momentarily open 
during mitosis, hence allowing transport of DNA into the nucleus. In non-dividing 
cells DNA reside in the cytosol in between cell divisions and is therefore prone to 
degradation.      

Transport through the nuclear membrane pores is restricted because of a 
pore diameter of only approximately ~25nm [47]. Most DNA fragments are 
therefore not able to cross the pores without nuclear trafficking. For gene therapy 
plasmid DNA can be coupled to a nuclear localization signal (NLS) that enables 
docking to the nuclear membrane pores and subsequent transport to the nucleus 
[48, 49]. Coupling NLS to plasmid DNA has been shown to enhance nuclear 
uptake by 10 to 1000 fold [50, 51]. Overall the optimal characteristics of a non-
viral carrier would be that it is biodegradable, non-toxic and have a high delivery 
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rate. Furthermore it should protect its cargo from degradation and be able to 
deliver its cargo to the cell nucleus. 

In this thesis the focus is on two different non-viral carriers, the polyplex: 
Pullulan-Spermine and superparamagnetic iron oxide nanoparticles (SPIOs) and 
will be described in further detail in the next sections. 

1.3.2 Polyplexes 
Polyplexes are complexes consisting of cationic polymers and DNA. Cationic 
polymers consist of large organic molecules; they include polypeptides, 
polysaccharides, polyamines and dendrimers.  

Many different cationic polymers have been developed for the purpose of 
polyplex formation e.g. PEI [52], poly-L-lysine (PLL) [53], polysaccharides like 
chitosan [54], and polyamidoamine dendrimers (PAMAM) [55].  

Due to the electrostatic bindings between cationic polymers and anionic 
DNA, the polymers are excellent carriers of DNA and able to condense DNA to a 
small size of importance for BBB penetration. An important criterion for the 
strength of the polymer binding to the DNA is that it has to be sufficiently strong 
to carry the DNA into the target cell, but at the same time weak enough to allow 
the separation from the DNA in the cytosol.  

The ratio of cationic polymer and DNA in a polyplex is determined by its 
N/P ratio in where the N refers to the number of nitrogen atoms in the amine 
groups of the polymer and P to the phosphor content in the DNA. If the polymer 
contains many branches of amine groups the transfection rate is increased and the 
toxicity is lowered, e.g. as seen in branched PEI [56].      

In circulation, cationic complexes are in risk of being bound to negatively 
charged albumin, which hinders them from entering the cells. This phenomenon 
may occur both in vitro and in vivo [33, 57]. Moreover, when polyplexes are 
administered intravenously they are often recognized by the immune system as 
exogenous material and scavenged [33]. Coating the polyplexes with polyethylene 
glycol (PEG) known as PEGylation shields the polyplexes from this clearance [58, 
59].    

The positive charge of the polymers enables interaction with anionic 
glycoproteins and proteoglycans residing on the surface of the cells [60]. 
Concerning their cellular entry, polyplexes are believed to undergo unspecific 
cellular uptake by endocytosis [61, 62]. Thereafter, they need to escape the 
endosomeal/lysosomal system to avoid degradation, which can occur by the so-
called proton sponge effect (see above). The proton sponge effect can be created 
by introducing histidine residues to the polymers [63]. Surface modifications of the 
polyplexes may also facilitate their escape into the cytosol from the 
endosomeal/lysosomal system. Hence, PEGylation of the cationic polymers is 
known to enhance this escape [53].  

1.3.3 The novel drug carrier pullan-spermine and gene delivery  
Pullulan-spermine is a novel natural cationic complex suitable for forming 
polyplexes (Fig. 3). Pullulan is a water-soluble extracellular polysaccharide with 
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not have any NLSs suggesting nuclear entrance may occur mainly during mitosis 
[65].  

Pullulan-Spermine has shown good potential as a non-viral carrier of 
DNA for transfection of various cell types in vitro i.e. human bladder cancer cells 
(T24) [65], human hepatoma cells (HepG2) [64, 67] and mesenchymal stem cells 
[68, 69]. 

1.3.4 SPIOs and Blood-Brain Barrier Penetration 
A relatively new approach within the field of drug delivery to the brain is the use 
of magnetic nanoparticles as drug carriers. Magnetic nanoparticles have been 
applied for diagnostic purposes for about 40 years, but in the last decade their 
applications have been intensified [70]. They are currently used for many purposes 
both in basic research and clinical medicine e.g. as a contrast agent for magnetic 
resonance imaging (MRI) [71], induction of hyperthermia for tumor therapy [72], 
cell labeling and separation [73, 74], drug delivery [75, 76], and magnetofection 
[77]. 

SPIOs are a subtype of SPIOs that is highly magnetizable and have a core 
of iron-oxide like magnetite (Fe3O4) or maghemite ( γ-Fe2O3) that both are half-
metallic. SPIOs have a mean diameter of around 50-100nm [78]. The iron oxide 
particles show low toxicity and will in time be broken down in the organism to 
Fe2+ and Fe3+ that gets incorporated in hemoglobin [78]. SPIOs have been shown 
to induce oxidative stress in murine macrophage (J774) cells, but only in doses 
higher than 100µg/ml [79]. For improved visual detection, the magnetic core can 
be coated with a fluorescent dye. The surface of the SPIOs can furthermore be 
coated with organic or inorganic substrates e.g. dextran, chitosan, starch, 
phospholipids or PEG [80, 81, 82, 83]. A coat of PEG can prolong the time in 
systemic circulation, just as with the polyplexes described above, because they are 
made less prone to clearance by the mononuclear phagocytic system [76, 83]. 
Uncoated SPIOs tend to aggregate because of a strong dipole-dipole attraction 
between the particles. This can be avoided by coating the particles with monomers, 
inorganic materials or polymers e.g. starch or dextran [80, 84]. A coat of polymeric 
materials has also been shown to protect the particles from oxidation and thereby 
making the particles more biocompatible [80, 84]. Furthermore a surface coat of 
e.g. chitosan or phospholipids enables conjugation of e.g. antibodies, DNA and/or 
drugs to SPIOs [80, 82, 84, 85].  

The SPIOs are also very potent for targeted drug delivery. With the aid of a 
magnetic force, they are able to very precisely deliver their cargo to a target organ. 
A magnetic field is supplied by an external magnet or an implanted magnet. When 
applied, the SPIOs are drawn towards the magnet and concentrated in the area 
where the magnet is located. The delivery can therefore be very locally and in 
consequence, fewer particles will be directed towards other non-target areas 
enabling reduced dosage. The lower dose of nanoparticles will presumably also 
lead to a reduced risk of unwanted side-effect [79, 80, 85].  
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1.4 IN VITRO BLOOD-BRAIN BARRIER MODELS 
Modeling the morphology and permeability of the BBB has been an important 
issue for decades. The experimental conditions in vitro are often more controllable 
than those in vivo and they are overall also more ethically acceptable as the usage 
of cell lines results in lower use of laboratory animals. Although the BBB formed 
in vitro models lacks the full complexity of the in vivo BBB many parameters of 
the in vivo conditions can be assayed in vitro e.g. tight junction expression, luminal 
to abluminal transport of large molecules, and gene expression experiments of the 
BBB.  

A valid real-time monitor of the integrity of the BBB in vitro is made by 
measurements of the trans endothelial electrical resistance (TEER). Unfurtunately, 
BBB in in vitro models does not express as high TEER values as can be measured 
on the BBB in vivo [86]. In vivo BBB TEER values are in the range of 1200-1900 
Ω*cm2 and have even been measured as high as 8000 Ω*cm2 [86, 87]. In vitro 
models using cultured endothelial cells generally have a TEER value around 6-10 
times lower as those recorded in vivo [86]. 

For in vitro studies of the BBB both primary and immortalized cells are 
being used. BCECs of an in vitro BBB model should express as many endothelial 
markers e.g. ZO-1 and PECAM-1 as possible. Primary BCECs have been isolated 
and cultured from most mammals with the foremost coming from rat, human and 
bovine brains (e.g.[88, 89, 90]). The major advantage of primary cells is that they 
express most of the in vivo BBB properties to a higher extent than those of 
immortalized cells. Most of the immortalized cell lines have been derived from the 
same species as those of the primary cells and subsequently immortalized e.g. by 
introducing simian virus 40 (SV40) T antigen. Examples of immortalized cell lines 
are rat brain endothelial cells, RBE4 and human brain endothelial cells, 
hCMEC/D3 [91, 92]. Immortalized endothelial cells form less tight BBB 
properties, which can be seen as a lower TEER values than in vivo or in primary 
culture, and they do not consistently express endothelial cell markers [93]. Many 
immortalized cell lines also tend to lose their BBB properties after having been 
passaged many times in culture [87]. 

In a model of a well formed BBB BCECs obtain the same polarized 
properties as can be found in BCECs in vivo. The polarized BCECs will form a 
barrier with an apical membrane facing the lumen of the vessel, a basal membrane 
facing the abluminal brain side, and a lateral membrane containing tight junction 
proteins facing the lateral membrane of adjacent BCECs. The various domains of 
the BCEC membrane have distinctive characteristics determining their function. 
The mechanisms that induce polarization are not fully understood, but astrocytes 
are known to secrete a number of substances that participates in the induction of 
the BBB e.g. basic fibroblast growth factor (bFGF) and angiopoitin 1 (ANG1) [3].  

Astrocyte conditioned medium (ACM) have been shown to increase the 
barrier properties of the endothelial cells [94]. The ACM is obtained from 
astrocytes in culture and is believed to contain some of these BBB inducible 
factors like bFGF and ANG1. The in vitro BBB model is improved by addition of 
ACM to the culture media or even better by co-culturing astrocytes with BCECs. 
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fibers and form direct contacts with BCECs through micro pores in the fiber walls. 
TEER values in the Flocel model have been measured to values around 1200 
Ω*cm2, which is near the TEER of the BBB in vivo (e.g. [109]).  
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2 Objective of the thesis 
 
 
 
 
Over all the objective of this study is to find applicable drug carriers for delivery to 
BCECs. Furthermore the objective is to establish the best possible in vitro BBB 
model for testing the application of drug carriers. For further description the 
objective can be divided into three separate aims for further description.  
 
1) The first aim is to investigate a novel non-viral carrier pullulan-spermine for 

its abilities to function as a transfection agent at the BBB. Pullulan-spermine 
has been proved to be able to carry cDNA into various cell types and therefore 
this part of the thesis aims at exploring, if the carrier also has capabilities of 
gene delivery to BCECs. If pullulan-spermine could successfully deliver DNA 
to the BCECs then it would be interesting to detect whether the DNA also 
would be transcribed and expressed by the BCECs. It would also be 
interesting to investigate whether the BCECs would be able to produce and 
secrete the DNA encoded protein. 

2) SPIOs can potentially be used for targeted delivery and the second aim of the 
thesis is to investigate if SPIOs would be able to enter into and cross the brain 
capillary endothelial cells. This would involve the application of an external 
magnetic force that can pull the SPIOs towards the source of the magnetic 
field. The particles could therefore potentially be very precisely delivered. 
Therefore the aim in this part of the thesis is to test the ability of magnetic 
particles to pass through BCECs cultured in an in vitro BBB model with and 
without an external magnetic source. The impact of SPIOs and the external 
magnetic source on BBB integrity and BCEC vitality is also investigated. 

3) The third aim is to characterize a new dynamic in vitro model of the BBB, 
which can be used for testing the ability of various drug and gene carriers to 
penetrate the BBB. The model has been claimed to exceed the abilities of 
other models in the field to replicate the BBB. The dynamic model will 
therefore be compared with a well-established static model. A good model 
should be able to express as many BBB characteristics as possible and 
therefore give reasonable indications of the abilities of the carriers to penetrate 
the in vivo BBB.   
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3 Results 
 

3.1 STUDY I 
 
GENE DELIVERY BY PULLULAN DERIVATIVES IN BRAIN 
CAPILLARY ENDOTHELIAL CELLS FOR PROTEIN SECRETION 

 
 

Louiza Bohn Thomsen, Jacek Lichota, Kwang Sik Kim and Torben Moos 
 
 

The manuscript was published in Journal of Controlled Release, Vol. 515, Issue 1, 
45-50, 2011. 
 
Reprinted with permission. 
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ABSTRACT 

The blood-brain barrier (BBB) constitutes a physical, chemical and immunological 
barrier making the brain accessible to only a few percent of potential drugs 
intended for treatment inside the central nervous system (CNS). A new approach 
with the purpose of overcoming the restraints of the BBB by enabling transport of 
drugs, siRNA or DNA into the brain is to use superparamagnetic iron oxide 
nanoparticles (SPIOs) as drug-carriers. The aim of this study was to investigate the 
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ability of fluorescent SPIOs to cross the BBB facilitated by an external magnetic 
force. The capability of SPIOs to penetrate the barrier was shown to be 
significantly higher in the presence of an external magnetic force in a static in vitro 
BBB model of the BBB. Particles added to the luminal side of the in vitro BBB 
model were found in astrocytes co-cultured in remote distance on the abluminal 
side, indicating that particles were transported or drawn through the barrier and 
either taken up by or forced into the astrocytes by the external magnetic field. The 
SPIOs did not negatively affect the viability of the endothelial cells as revealed by 
a live/dead assay and by trypan blue uptake. The magnetic force-mediated 
dragging of SPIOs through the BBB may denote a novel mechanism for drug 
delivery to the brain. 
 
INTRODUCTION 
Drug delivery to the brain has proven to be a difficult task mainly due to the 
presence of the blood-brain barrier (BBB) formed by tightly interconnected brain 
capillary endothelial cells (BCECs). The impermeability properties of the BCECs 
are supported by astrocytes, pericytes and neurons which together form the so-
called neurovascular unit [1]. The BBB excludes most molecules from entering the 
central nervous system (CNS) [2] and molecules must be preferably small in size 
and lipophilic to enter the brain [3]. In spite of being in possession of these 
qualities many of the carriers however fail to deliver their cargo to the brain in an 
amount adequate for treatment without allowing unacceptable high off-target 
affection.  

Many drug-carriers have been created, e.g. liposomes or polyplexes, 
which fulfill the demands of being lipophilic and/or at the nano-size scale. A 
relatively new approach in the field of drug delivery is the use of magnetic 
nanoparticles. Hence, magnetic nanoparticles are currently being used for various 
purposes such as a contrast agent for magnetic resonance imaging (MRI) [4], 
induction of hyperthermia for tumor therapy [5], cell labeling/cell separation [6, 7], 
targeted therapeutics [8, 9] and magnetofection [10].   

Superparamagnetic iron oxide nanoparticles (SPIOs) is a subtype of 
magnetic nanoparticles which are highly magnetizable and have a core of iron 
oxide particles composed of magnetite (Fe3O4) and maghemite ( γ-Fe2O3) [11]. The 
SPIOs typically have a mean diameter of 50-100nm [11], and their iron oxide core 
exerts  low toxicity, as it is gradually degraded to Fe2+ and Fe3+ in the body and 
enters the pool of body iron [11]. SPIOs have been shown to induce oxidative 
stress in murine macrophage (J774) cells, but only in doses higher than 100µg/ml 
[12]. Their magnetic core can be coated with lipophilic fluorescent dyes for visual 
detection. Furthermore, the particles can be protected by a biocompatible 
polymeric shell, like dextran, polysorbate or starch, or coated by phospholipids or 
polyethylene glycol (PEG) to prolong their presence within their circulation due to 
a lower capture of the particles by the mononuclear phagocyte system [9, 13, 14, 
15]. A proper coat also prevents aggregation of the particles, which they otherwise 
tend to due to a strong magnetic dipole to dipole attraction [13, 17]. Furthermore a 
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protective coat enables conjugation of e.g. various proteins, DNA and drugs to the 
surface of the SPIOs [13, 15, 16, 17].    

A major advantage of the properties of SPIOs is their ability to precisely 
deliver their cargo to a given target organ when drawn there to by the force of a 
magnetic field provided by an external or implanted magnet [13, 17]. Under the 
influence of the magnetic field, the SPIOs are drawn towards the magnet to 
concentrate near its location. Delivery of SPIOs will therefore benefit from being 
very local and its dosing can be minimized to reduce off-target effects [13, 17].  

In this study the ability of SPIOs to function as drug carriers is 
investigated in an in vitro BBB model. The SPIOs are taken up by endothelial cell 
and increasingly pass the intact brain endothelial cell monolayer with the aid of an 
external magnet to end up in a layer of astrocytes cultured in remote distance on 
the “brain side” of the endothelial cells.  
 
MATERIALS AND METHODS 
Materials 
Transwell membrane culture inserts and plates (Corning, Thermo Fisher 
Scientific), fluorescent SPIOs “nano-screenMAG-D” composed of magnetite 
(Chemicell, Germany), mouse-anti-ZO-1 and Alexa Fluor 488 goat-anti-mouse, 
live/dead cell viability assay (Invitrogen, UK), Trypan Blue stain,  4’,6diamidino-
2-phenyindole (DAPI) (Sigma-Aldrich, Germany), mounting media and mouse 
anti-cow glial fibrilary acidic protein (Dako, Denmark).   
Cell cultures 
Immortalized human brain microvascular endothelial cells (HBMEC)  were 
cultured in Medium 199 with L-Glutamine and HEPES (Invitrogen) with 10 % 
Fetal Calf Serum (Invitrogen), 10 % Nu Serum IV (BD Biosciences, USA) and 100 
U/mL Penicillin G Sodium and 100µg/mL Streptomycin sulphate (Invitrogen) 
[18]. Immortalized rat brain astrocytes (DI-TNC1) (ATCC, Sweden) were cultured 
in DMEM/F12 (Lonza, Switzerland) with 10 % fetal calf serum and 100 U/mL 
Penicillin G Sodium and 100µg/mL Streptomycin sulphate.  
 
Establisment of an in vitro BBB model in Transwell membrane plates  
HBMECs were seeded as monocultures in inserts of twelve wells Transwell 
membrane culture plates in a density of 150.000cells/insert. The HBMECs were 
cultured in an astrocyte conditioned media (ACM) consisting of a mixture of 50% 
DI-TNC1 media aspirated from astrocytes after 24 hours incubation and 50% 
HBMEC media. When mentioned DI-TNC1s were seeded in the wells of the 12 
well culture plates with 100.000cells/well. The astrocytes cultured in DI-TNC1 
media were grown overnight in a humidified incubator with 5% CO2 to ensure 
proper cell attachment. Then the inserts containing HBMECs were re-inserted into 
the Transwell culture plate’s containing the DI-TNC1 astrocytes to form a non-
contact co-culture. The medium was replaced every day to avoid high media 
changes in the pH. 
 
 



   
 

 

T
T
(M
R
ar
fo
T
ev
ch
m
c
 
F
T
n
m
p
an
n
n
6
 

F
dy
 

S
S
ch
S
o
so
S
  
A
W
T
fl

     Non-viral d

Trans Endoth
TEER measur
Millipore, US

Rblank was subt
rea. The TW i
ollows: (RSamp

The TEER wa
very day. Just
hanged and c

measurements 
alculated.  

Fluorescent SP
The SPIOs us
nanoparticles w
magnetite cor

olysaccharide
nd blue fluo

nanoparticles h
nanoparticles h

13 nm.  

Figure 3-1 The 
ye layer covere

Size and charg
Size (DLS/Non
harge/ ζ- pote

SPIOs was dilu
f the SPIOs 
oftware which

SPIOs. The ζ-p

Application of
When the TEE
TEER had be
luorescent SP

delivery strategi

helial Electric
rements wer

SA) and an S
tracted from R
in this study h
ple - Rblank ) x 1
as measured e
t before the T
cells and me
were made o

PIOs 
sed in this s
with a hydrody
re surrounded
e matrix of sta
orescent SPIO
have maximal
have excitatio

SPIOs consist o
ed by a polysacc

ge of the SPI
n-Invasive Ba
ential were m
uted in 1 ml d
was analyzed
h calculated 
potential was l

f SPIOs on th
ER of the HB
een reached a
PIOs (Fig.1) w

ies into/across t

cal Resistance
re conducted 
STX-1 electro
RSample, and th
had a well are
1.1 cm2 = Ω*c
every second 

TEER measur
dia were allo

on each well 

tudy is comm
ynamic diame
d by a lipo
arch consistin
Os were use
l excitation at
on wavelength

of a magnetic c
charide matrix 

Os 
ack-Scatter (N

measured on a 
double distille
d based on th
the Rs value
likewise calcu

he BBB mode
BMEC’s reach
and the endo
were added to

the brain capilla

e (TEER) me
with a Mi

ode (Millipore
en the produc
a of 1,1cm2; t
cm2 

day up until
ements were m
owed to reac
from which a

mercially ava
eter of 100nm
philic fluore

ng of α-D-gluc
ed in this st
t 378 nm and 
h at 578 nm a

ore, surrounded
of starch consis

NIBS)) equiva
Zetasizer Nan
ed water and 
he Culmulant
s and provid

ulated by the s

el 
hed a plateau
othelial cells 
o the inserts i

ary endothelial 

easurements
illicell™ ER
e).  To calcu
ct was multipl
therefore the e

l seven days, 
made the cult

ch room temp
an average TE

ailable magne
m. They consis

scence dye 
cose units (Fi
tudy. The bl
emission at 4
and emission

d by a lipophilic
sting of α-D-glu

alent to particl
no (Malvern, 
tested in tripl
ts method by

ded the appare
software teste

u, indicating th
had formed 

in doses of 3

cells               3

RS-2 apparatu
ulate the TEE
lied by the we
equation was a

and thereafte
ture media wa
perature. Thre
EER value wa

etic iron oxid
st of a magnet
covered by 

ig. 1). Both re
lue fluorescen
413 nm and re

wavelength 

 
c fluorescence 
ucose units.  

le diameter an
UK). 20 µg o

licate. The siz
y the compute
ent size of th
d tree times. 

hat the highe
a barrier, th

35, 70 and 14

31 

us 
R 

ell 
as 

er 
as 
ee 
as 

de 
ic 
a 

ed 
nt 
ed 
at 

nd 
of 
ze 
er 
he 

st 
he 
40 



 

3

µ
to
T
st
 

F
ai
to
w
w
H
co
37
(g
at
of
di
w

 
Im
A
ex
p
in
p
T
(G

2

µg/insert in thr
o the cell cultu

The external m
trength of 0.39

igure 3-2 Drawi
id of avoiding p
o other twelve w

were incubated fo
washed three tim
HBMEC’s (5+6)
ontaining cells i
7°C to draw th
green) were cult
t 37°C in secure
f the wells was
istance from the

were collected an

mmunostaini
After termina
xperimental 
araformaldehy
ncubated over
rimary antibo

TNC1s were i
GFAP), and b

ree replicas of
ure is demons
magnetic forc
9 Tesla.  

ing of the metho
paracellular trans
well plates (3). A
or 24 hours. Aft
mes with PBS 
. The inserts con
in the twelve we
he magnetic par
tured in remote d
e distance from t
s collected and s
e magnet. After 
nd stored at 4°C.

ing 
ating the exp

plates were
yde for 4 min
rnight with mo
ody was visu
incubated ov
binding of th

Louiza Boh

f each concen
strated in Fig. 
ce was suppli

od employed for
sport. SPIOs are

After addition of 
terwards, the me
to remove nan

ntaining endothe
ell plates (7) and
rticles towards t
distance from th
the magnet. Afte
stored at 4°C. A
5 hours the med
 

periment, the
e washed t
nutes and wa
ouse-anti-zonu
ualized using 
ernight with 
e primary ant

hn Thomsen 
 

ntration. The p
2.  
ied by a ferri

r addition of SPI
e depicted in blu

the nanoparticle
edia from the ins
noparticles that 
elial cells in PB
d placed on a fer
the bottom of t

he endothelial ce
er 5 hours the me
A control plate 
dia of the upper 

e HBMEC’s
three times 
ashed three tim
ula occludens-

Alexa Flour
mouse-anti-g
tibody was vi

process of add

ite block mag

IOs to the cultur
ue. 1) The insert
es (4), the endot
serts was change
had not been 

BS (light blue) (6
rrite block magn
the well (8) in 
ells. A control p
edia in upper an
was also kept a
and lower cham

s of the co
in PBS, 

mes in PBS. 
-1(ZO-1), and
r 488 goat-an

glial-fibrillary 
isualized usin

dition of SPIO

gnet with fiel

  
re inserts with th
ts were moved (
thelial cells (pin
ed, and the inser
taken up by th

6) were reinserte
net  for 5 hours 
where astrocyt

late was also ke
nd lower chambe
at 37°C in secu
mbers of the wel

ntrol and th
fixed in 4%
The cells wer

d binding of th
nti-mouse. D
acidic protei

ng Alexa Flou

Os 

ld 

he 
2) 
k) 
rts 
he 
ed 
at 
es 
pt 

ers 
ure 
lls 

he 
% 
re 
he 
I-
in 
ur 



        Non-viral delivery strategies into/across the brain capillary endothelial cells               33 
 

 

488 goat-anti-mouse. The cell nuclei of both DI-TNC1s and HBMECs were 
stained with DAPI for 5 minutes. The membrane of the inserts containing 
HBMECs was cut out of the insert, mounted on a slide with fluorescent mouting 
media and observed under a fluorescence microscope. 
 
Cytotoxicity  
To examine if the cells gets impaired by the SPIOs or by the application of the 
external magnetic field, the cell viability was visualized using a live/dead cell 
viability assay.  The assay was performed according to the recommendations from 
the vendor. In brief, two working solutions were prepared: Solution one containing 
50 µM C12-resaurin in Dimethylsulfoxide (DMSO), solution two consisting of 1 
M SYTOX Green stain in DMSO. The culture medium was aspirated from the TW 
inserts, and 0.25 ml of PBS added to each well. The working solutions were added 
to the wells to reach a final concentration of 5 µM C12-resazurin and 50 nM 
SYTOX Green dye in the two solutions respectively. The cells where then 
incubated at 37°C in an atmosphere of 5% CO2 for 15 minutes and afterwards they 
were kept on ice, rinsed three times with PBS and observed under a fluorescence 
microscope. 

Dead and viable cells were counted on the basis of a counting of Trypan 
blue-labeling, as trypan blue only enters dead cells. Cells were cultured in 
monoculture in six wells culture plates until 100 % confluence was reached. Then 
SPIOs was added to half of the wells in a concentration of 1170 µg which 
corresponded to the highest dose (140µg/insert) added in amount per square 
centimeter in the experiment described above. The cells were incubated with or 
without SPIOs for 24 hours and placed on the plate magnet for 5 hours. The cells 
were then trypsinized and mixed with Trypan blue. An appropriate amount of cell 
suspension containing Trypan blue was then filled in a hemocytometer and dead 
and living cells counted. The total amount of dead and vital cells were calculated 
and a student’s T-test was performed to test, if there were any differences in the 
amount of vital and dead cells between the control wells and experimental wells 
subjected to the magnetic force. A p-value at p<0.05 was considered statistically 
significant. 
  
Quantification of SPIOs crossing the BBB in vitro 
The well plates with the presence of DI-TNC1 astrocytes were investigated under a 
fluorescence microscope with the medium remaining in the wells. The fluorescent 
SPIOs were counted using a counting mesh with an area of 0,054mm2 that was 
inserted inside of the microscopes ocular. Counts were made at randomly picked 
areas 10 times per well to obtain a statistical correct counted average of the amount 
of nanoparticles in the wells. By the use of a student’s t-test, it was examined if 
there were any differences between the amounts of particles in the wells of control 
versus experimental plates. A p-value was considered statistically significant at p< 
0.05. 
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RESULTS AND DISCUSSION 
In this study we wanted to investigate whether SPIOs are able to enter and cross 
BCECs and if an external magnetic force could be applied to aid the penetration 
rate and efficiency. We also wanted to test if the particles have a toxic effect on the 
cells and will obstruct the barrier when passing the endothelial cell layer. 
 
 
Size and charge of the SPIOs 
The hydrodynamic diameter of the SPIOs was determined by DLS, which is a back 
scatter analysis. The SPIOs had a mean diameter of 117.5 nm which is a little 
larger than proclaimed by the manufacturer. Furthermore the ζ-potential of the 
SPIOs was measured to be -16.8 mV. Starch coated SPIOs have previously been 
found to be of similar anionic charge [19].  
 
SPIOs enter into and cross though endothelial cells 
Using immunofluorescence, the HBMECs were investigated for their expression of 
ZO-1, a marker of tight junctions, before and after exposure to SPIOs and 
subsequent magnetic force (Fig. 3). Clear signal and equal intensity of the ZO-1 
marker protein provide morphological evidence that tight junctions were present 
between HBMECs in both the experimental and control plates.  
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were detected in the HBMEC monolayer (compare Figs. 3a and 3b), indicating that 
the nanoparticles were drawn through the cells by the magnetic force and entered 
the abluminal (“brain side”) chamber of the microporous membrane. These 
findings suggest that the SPIOs are taken up by the HBMECs even without the 
addition of an external magnetic force. They also indicate that SPIOs do not need 
any further chemical/physical changes on their surface to interact with the BCECs 
and can subsequently be internalized by BCECs. 
SPIOs very similar to those used in the present study coated with starch and of a 
size of ~110nm have been shown to enter the brain of Fischer 344 rats when 
injected intravenously without the presence of a magnetic force [13]. This supports 
the findings in the present study and it seems as there are to some extent an 
extravasation of the SPIOs.   
These results imply that a targeting strategy towards BCECs is needed if these are 
to be the only target. If systemically injected  the SPIOs used in this study would 
probably also interact with other cells than BCECs . Therefore a new strategy is 
necessary for targeting the particles to the BCECs only. It has been shown that 
SPIOs can be coated with substrates that can bind e.g. ligands or antibodies [15]. 
With such modified SPIOs, BCECs can be directly targeted and exclusive uptake 
by in BCECs can be achieved. The results seen in Fig. 3 also suggest that SPIOs 
can be drawn out of the HBMEC monolayer by an external magnetic force, which 
contributes the targetability aiding their passage towards their intended destination.  
This phenomenon was therefore explored further in this study.    
 
Exposure to SPIOs and magnetic force does not lead to cytotoxicity of the 
endothelial cells. 
SPIOs exhibit a generally low, but concentration depended cytotoxic action [11, 
12]. Our study revealed no signs of lost vitality of the HBMECs after the cells had 
been incubated for 24 hours with various concentrations of SPIOs (35µg, 70µg and 
140 µg per ml) (Fig. 4). Hence, a trypan blue stain conducted to count the amount 
of dead cells in wells incubated with or without 140µg/ml SPIOs revealed no 
statistical difference (p<0,05) between cell viability in the two conditions. Naqvi et 
al. (2010) observed the toxicity of SPIOs with a Tween 80 coat and 30nm in 
diameter increases in a concentration-dependent manner [12]. In their 
measurements, the toxicity seen as a marked change in cell viability was observed 
when between 100 and 200µg/ml SPIOs were added to cultures of murine 
macrophage cells (J774), indicating that SPIOs are non-toxic to cells in 
concentrations of 100µg/ml or less [12]. These data are in good accordance with 
the results of the present study even though the concentration of 140µg/ml lies 
within their range of a toxic concentration, but does not exhibit any toxic effect on 
cells in our study. Furthermore it has been shown that SPIOs with an 
anhydroglucose polymer coat and 50-150nm in diameter did not affect the 
mortality of Sprague-Dawley rats when injected in the tail vein in a dose of 5% of 
the estimated blood volume [20]. The rats were monitored for up to 65 days and it 
was detected that the amount of magnetic particles found in the animal decreased 
over time [20]. These data indicates that magnetic nanoparticles can be 
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chamber under the inserts could only derive from the magnetic force drawing the 
particles through the HBMECs or from their secretion.  
The TEER of the HBMECs reached a plateau after approximately 6 days of culture 
(Fig. 5). The TEER values were also measured after magnetic force had been 
applied to the HBMECs containing SPIOs (Fig. 5). The stable TEER values after 
the exposure to the magnetic field indicate that the integrity of this in vitro BBB 
was not harmed by the magnetic-field-aided penetration of the SPIOs. This 
observation is in good agreement with the findings in Saiyed et al. (2010) who 
showed that magnetic particles encapsulated in liposomes were taken up by 
monocytes and drawn through an in vitro BBB model with an external magnet 
without affecting TEER values [17].   
 

 
Figure 5 The graphs shows the measured TEER values over time from both the control (circle) 
and experimental plate (triangle) in HBMEC monocultures grown in the presence of a astrocyte-
conditioned media. The fluorescent SPIOs were added at experimental day 8, and at day 9 the cell 
culture plate was placed on a block magnet for five hours and TEER measured afterwards. The 
TEER values of the epithelial monolayer peaked at day 6 and did not decrease after the passage of 
nanoparticles. Hence, the TEER values of both curves are stabile before and after the application 
of an external magnetic force and indicates that the barrier had not been obstructed by the passage 
of the particles through the endothelial cells (n = 11, results presented as means ± standard error 
(SE) (very low SE values)). 
 

Passage of SPIOs through the BBB in vitro  
The SPIOs crossed the HBMEC monolayer under the influence of an external 
magnetic field (0,39T), and their passage occurred in a concentration dependent 
manner (Fig. 6a-c). This indicates that SPIOs can be drawn through the BBB and 
into the brain parenchyma. A limited number of SPIOs were observed in the lower 
chamber without exposure to the magnetic field (Fig. 6d-f). However, this number 
was very low and did not seem to increase when increasing the concentration of 
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Figure 7. The graph depicts the relation between the amount of magnetic nanoparticle passing 
through BCECs and into DI-TNC1 cultured on the bottom of the wells and the concentration of 
SPIOs added to the BCECs. Experimental plate (circle) which was submitted to an external 
electric field for 5 hrs and control plate (square) devoid of an external electric field subjection. 
SPIOs were added to BCECs in concentrations of 35, 70 or 140µg per insert. The amount of 
SPIOs passing the BCECs an entering into astrocytes was clearly higher when an external 
magnetic field was applied. There seems to be a linear correlation between dose and response 
when applying the magnetic field (n= 4 observations per point at 70 and 140 µg and n=3 
observations per point at 35µg, results presented as means ±SE). 
 

There is a statistically significant difference between the counts from wells of the 
experimental plate and the control plate (35µg: p<0,001, 70µg: p<0,001, 140µg: 
p<0,001). The passage of SPIOs across BCECs was increased 11, 8 and 29-fold 
over the control at a concentration of 35, 70 and 140µg/ml respectively. Chertok et 
al (2008) observed that a magnetic force of 0.4T increased the concentration of 
starch coated SPIOs (~110nm) targeted towards a rat brain tumor by 11.5-fold over 
the amount found in non-targeted (no magnetic force applied) brain tumors [13]. 
Similar results have been shown for starch coated SPIOs with a diameter of 46nm 
which was intravenously injected into nude mice with armpit tumor xenografts [22, 
23]. The SPIOs were shown to accumulate in a higher concentration in the tumors 
when subjected to an external magnetic field of 0.5 T [22, 23]. These studies all 
refer to magnetic-force-increased delivery of SPIOs in tumor tissue which is 
known to have a compromised blood-tumor barrier. Chertok et al (2008) found that 
the concentration of SPIOs dispersed into normal brain tissue of Fischer 344 rats 
seemed to increase slightly (approximately 3-fold) under the influence of a 
magnetic field (0.4T) over non-magnetic-force-targeted SPIOs [13]. Also the 
migration of monocytes loaded with magnetic liposomes has been shown to be 
enhanced 3-fold by applying a magnetic force in an in vitro BBB model [17].  In 
the present study passage of SPIOs across an in vitro BBB  in non-toxic doses was 
clearly increased by the magnetic field. The rate of SPIOs penetrating the BCECs 
without any aid of an external magnetic field was low and did not significantly 
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CONCLUSIONS  
The SPIOs could pass into and through the BCEC monolayer and enter astrocytes 
cultured at the bottom of the lower chambers in a manner that was clearly 
enhanced by the use of an external magnetic force. The external magnetic force did 
not affect the integrity of the endothelial monolayer, neither was the cell viability 
affected by the fluorescent SPIOs or by the magnetic force dragging the 
nanoparticles through the cells.  
Our main conclusion is therefore that SPIOs can be used for penetration of the 
BCECs and further into the brain without harming the cells. SPIOs can be 
conjugated with various compounds and our results are indicative of SPIOs as 
nano-carriers for future drug-delivery (purpose involving targeted therapeutics) to 
the brain.  
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Abstract 
The Blood-Brain Barrier (BBB) is a functional barrier preventing passage of 
certain compounds from the blood to the brain. When addressing complex issues, 
such as drug-delivery to the brain, it is important to understand the physiology of 
the BBB. Different models have been developed to mimic the BBB for this 
purpose. Applying an in vitro BBB model is a more ethical and less expensive 
method. Recently a new and improved dynamic in vitro BBB model (DIV-BBB) 
was developed by Flocel Inc. This model should be able to mimic the natural state 
physiological permeability properties of the BBB. This is not possible to mimic in 
static in vitro BBB models with hanging culture inserts. In the new DIV-BBB, 
unlike the static BBB models, cells can be grown in hollow fibers mimicking blood 
vessels and exposed to a pulsating flow of media mimicking the blood flow. The 
flow induces shear stress and this factor has shown to be of great importance when 
forming a tighter BBB. In this study the static in vitro BBB model and the DIV-
BBB model are tested individually and compared afterwards. The static in vitro 
BBB model produced the tightest BBB when BCECs was cultured in a contact co-
culture with astrocytes with 550nM hydrocortisone added to the culture media. It 
was not possible to produce any reliable results with the dynamic in vitro BBB in 
this study. The static in vitro BBB model therefore proved to be the most reliable 
model. 
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Abbreviations:  
BBB: Blood-brain barrier 
DIV-BBB: Dynamic in vitro blood-brain barrier 
TEER: Trans endothelial electrical resistance 
 
Introduction  
The Blood-Brain Barrier (BBB) is formed by specialized brain capillary 
endothelial cells (BCECs), which form the walls of the blood vessels in the brain 
[1]. The BCECs are surrounded by a basal membrane which they form together 
with adjacent astrocytes. Astrocytes contact and cover most of the abluminal side 
of the BCECs with their end-feet [2, 3]. Pericytes also make contact with the 
BCECs and are found in the basal membrane in between the astrocytes and BCECs 
[4, 5]. Furthermore nerurons have been found to make contact with BCECs [6].  

BCECs make intercellular contacts called tight-junctions. Tight-junctions 
prevent leakage of substances into the brain, by preventing the passage of 
substances in between the BCECs [7, 8]. As a result substances can only enter the 
brain at the BBB through the BCECs either by diffusion or by transport via carrier-
mediated transporters [3, 9, 10]. In this way diffusion/transport across the barrier 
can be strictly modulated by the BCECs [11]. The formation of tight-junctions and 
other features of the BBB characteristics are induced and maintained by astrocytes, 
pericytes and possibly also neurons [4, 6, 12, 13, 14, 15]. 

It has been demonstrated that shear stress, generated by the flow of blood 
across the endothelial cell surface, is an important factor in regulation of the 
genetic and physiological properties of the BBB [16]. The tightness of the BBB 
increases when BCECs are exposed to flow [9, 17, 18, 19]. Also up regulation of 
cAMP by hydrocortisone addition to the BCECs have shown to strengthen the 
BBB properties and thereby heighten the barrier integrity [10, 20]. 

The tightness of the BBB can e.g. be measured by recording the trans-
endothelial electrical resistance (TEER). TEER is the electrical resistance formed 
across the BCECs and provides a measure of the barrier integrity. The tighter the 
barrier is the higher TEER values can be measured because the passage of 
electrons across the cells decreases and therefore creates a difference in the electric 
potential [11].  

Administering e.g. drugs to the brain have been shown to be difficult 
because of the BBB properties just described. The solution to the problem could be 
drug-delivery, where drugs are carried into the brain over the BBB by a drug-
carrier. For testing such drug-carriers abilities to penetrate the BBB an 
experimental setup is needed. It has been difficult to make direct observations of 
the BBB physiology on living animals, and therefore different in vitro models with 
cultured cells have been developed for this purpose [11]. Hanging cell culture 
inserts are static in vitro BBB models, which have been applied for many years. In 
these models the BCECs can be cultured alone or co-cultured with astrocytes, 
pericytes or neurons or in a combination of one or more of the cell types [5, 20, 21, 
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22, 23, 24]. The BCECs will form a BBB in these inserts, but the TEER values 
measured in this model does not always mimic the TEER values (between1200-
8000 Ω*cm2) measured in living animals and does not induction of shear stress [9, 
25]. In a new dynamic in vitro blood-brain barrier (DIV-BBB) model developed by 
Flocel Inc. the BCECs are grown inside hollow fiber tubes, that mimics blood 
vessels, and astrocytes are grown on the outside of the fibers, supporting the 
BCECs. The fibers are placed in a sealed chamber, where they are exposed to a 
pulsatile flow, which passes through the fibers, mimicking the blood flow through 
the vessels. The TEER was measured by the manufacturer to be ~1200 Ω*cm2 in 
the DIV-BBB model and therefore mimic the in vivo BBB more closely than most 
static models [18, 19, 26, 27, 28, 29]. In this study a static and a dynamic in vitro 
BBB model are tested individually and compared based on the tightness of the 
barriers measured in TEER.  

 
Materials and methods  

 
Cell culture  
Three kinds of immortalized endothelial cell cultures were used in this study. 
Human Brain Microvascular BCECs (HBMEC) were kindly provided by Professor 
Kwang Sik Kim, Johns Hopkins Univ. School of Medicine, Baltimore. HBMEC’s 
were grown in culture flasks precoated with collagen (5μg/ml, BD Biosciences) in 
growth medium consisting of Medium 199 (Invitrogen), 10 % fetal bovine serum 
(Invitrogen), 10 % NuSerum (BD Biosciences) and 100 U of Penicillin G sodium 
per ml and 100μg Streptomycin sulfate per ml (Invitrogen). When mentioned 
550nM/ml hydrocortisone (Sigma-Aldrich, Germany) was added to the HBMECs 
media to induce a greater tightness hence higher TEER of the HBMECs. Rat Brain 
BCECs (RBE4) was cultured in Alpha minimum essential medium with glutamax-
1 (Gibco, Invitrogen) and Ham’s F10 (Gibco, Invitrogen) in a 1:1 relation with 
10% fetal calf serum (Invitrogen), 1ng/ml human basic fibroblast growth factor 
(Invitrogen) and 100 U of Penicillin G sodium per ml and 100μg Streptomycin 
sulfate per ml (Invitrogen). Mouse BCECs (Bend3) were cultured in DMEM 1885 
(Sigma-Aldrich) with 10% fetal calf serum (Invitrogen), 1ng/ml human basic 
fibroblast growth factor (Invitrogen) and 100 U of Penicillin G sodium per ml and 
100μg Streptomycin sulfate per ml (Invitrogen). 

The astrocytes used in this study were either Human Astrocytes (HAs) 
(Sciencell cat no 1800) or rat brain astrocytes DI-TNC1 (ATCC). HAs were grown 
in culture flasks precoated with Poly-L-Lysine (3μg/ml, Sigma-Aldrich). Both HA 
and DI-TNC1 were grown in DMEM-F12 (Biochom AG), 5-10 % fetal bovine 
serum (Invitrogen) and 100 U of Penicillin G sodium per ml and 100μg 
Streptomycin sulfate per ml (Invitrogen).  

 
The Static in vitro BBB models setup 
BCECs and astrocytes were cultered in either 12-well Transwell-Clear Polyester 
Membrane plates (Costar) with hanging cell culture inserts (RBE4 and Bend3) or 
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membrane surface area. The Transwell and Millicell inserts both have a membrane 
area of 1,1cm2. 
The TEER was measured every second day the first 5 days and hereafter every 
day. A steady state would normally commence at day 5-7. Before measurements 
the culture media was changed and cells and media was allowed to reach room 
temperature. Three measurements were made on each well from which an average 
TEER value was calculated.  
 
Immunostaining of the BCECs in the models 
This procedure was only conducted on the HBMECs. After the experiment the 
DIV-BBB cartridges and the hanging culture inserts were washed three times in 
PBS, fixed in 4% paraformaldehyde for 4 minutes and washed three times in PBS.  
The DIV-BBB cartridges were split open and the tubes within were carefully taken 
out. They were then placed in a 30% sucrose solution. Fibers were stored in glasses 
in categories of front end fraction, middle fractions and end fractions. The fibers 
were embedded in Tissue-Tek 4583 O.C.T (Sakura Finetek, Japan) for cryo-
sectioning. The fibers were cut in 20 µm thick pieces (Protocol adapted from 
Cucullo et al (2002) [30]).  
The cells in both the inserts and the hollow fiber pieces were incubated overnight 
with primary antibody, mouse-anti-ZO-1 (Invitrogen) in PBS 1:200 and this was 
visualized with goat-anti-mouse alexa 488 (Invitrogen) in PBS 1:200. The cell 
nuclei were stained with DAPI (Sigma-Aldrich) in PBS 1:20 for 5 minutes. The 
membrane in the hanging cell culture inserts with HBMECs on was cut out of the 
insert. Both the membranes and the hollow fiber pieces were mounted on a slide 
with fluorescent moutingmedia (Dako, Denmark) and observed under a 
fluorescence microscope.  
 
Statistical analysis 
An analysis of variance (ANOVA) followed by a Fisher’s least significant 
difference (LSD) method was employed for analyzing the possibility of a 
difference between the obtained TEER values measured on the four experimental 
culture setups.  A p-value was considered significant at p<0.05. 
 

Results and discussion 
Many different molecules are manufactured for e.g. treatment of CNS diseases but 
only a few percent can penetrate the BBB. Testing their penetration abilities in vivo 
on the BBB is both ethically changeling, expensive and time consuming. In vitro 
BBB models have therefore been developed for this purpose. These models mimic 
the in vivo BBB but how good they portray the real BBB functions can be debated. 
The static in vitro BBB model enables the culture of BCECs in co-culture with 
astrocytes and a brain and blood side can be defined on the BCECs. The static in 
vitro BBB model however lack the ability to support a high TEER and the BCECs 
are not subjected to a flow which is known to induce higher barrier tightness. Dr. 
Damir Janigro has together with his group developed a dynamic in vitro BBB 
model which subjects the BCECs to a flow and their studies on the models show 



Louiza Bohn Thomsen 
 

 

52

significant increase in TEER values when both primary and immortalized BCECs 
are grown in this model. In this study the static and dynamic in vitro BBB models 
was tested separately and then compared.  

    
Static in vitro BBB model 
The static model was setup in four different ways, 1) monoculture of BCECs, 2) 
non-contact co culture of astrocytes and BCECs, 3) Contact co-culture of 
astrocytes and BCECs and 4) contact co-culture of astrocytes and BCECs with 
hydrocortisone added in the media. TEER measurements made on all four kinds of 
experimental setups on HBMECs in the hanging cell culture inserts are shown in 
figure 3. These results resemble the results with RBE4 and Bend3 cells although 
the TEER values of these cells were approximately 30% lower (data not shown). 

 

 
Figure 3 TEER measurements on HBMECs in the static in vitro BBB model .The HBMECs 
grown in the static in vitro BBB models did not reach a high TEER compared with in vivo values 
although a higher TEER is reached when HBMECs are cultured with astrocytes in a contact 
culture and an even higher TEER if Hydrocortisone is added to the cell media in the contact co-
culture (n=22, results presented as means ±standard error). 

 

The TEER values were measured for 9-10 days in total. The TEER values 
increased until around day 6-8 where it seemed to reach a plateau. Around day 10 
the TEER value would slowly begin to decrease again. A statistically significant 
difference (p<0.05) was found between the TEER threshold value of all of the four 
setups except between the monoculture and the non-contact co-culture. The test 
results suggest that astrocytes need to form contact with the BCECs to induce a 
significant tighter barrier. Furthermore tightness could be further increased if 
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BCECs a stain with anti-zo-1 and DAPI was performed. No cells could be 
identified within the hollow fibers. This could be due to the rather harsh procedure 
in the immunofluorescence staining protocol which contains several washing steps. 
It could also be due to cell detachment from the hollow fibers or even no 
attachment of cell in the fibers to begin with. There was taken some samples from 
the media to estimate the number of cells that had detached. Approximately 20 % 
of the loaded cells were found in the media; hence ~80 % were still in the system. 
There is a possibility that the cells had attached themselves in other parts of the 
system. Cells was identified on the walls of the cartridges at the entrance and exit 
points in both ends of the hollow fibers and also in some parts of the tubing. This 
could explain the lack of an increase in TEER values if the cells did not cover the 
hollow fibers but instead were attached to other surfaces in the system.  

To obtain a tight barrier the BCECs must form a monolayer where they form 
tight junctions in between them. If there is just a small gap in between two adjacent 
BCECs in the monolayer the TEER values will be lowered. The surface area of the 
hollow fibers in the cartridge is quite large (13,5cm2) and therefore it is plausible 
that it can be difficult to ensure full coverage of the fibers by the BCECs. This 
could lead to a less loose barrier and very low TEER values as seen in this study.  

 
Comparison of the static and the dynamic in vitro BBB models 
When creating an in vitro model of the BBB, it is important to obtain values, which 
mimic the values obtained in living animals. The tightness of the in vivo BBB has 
been poorly reproduced in most studies with the non-dynamic models. The models 
have been ignoring the fact that the blood flow is a BBB tightness promoting 
factor. Thus the DIV-BBB model should be a better and more realistic model of 
the BBB than the static models. 

Comparison of the two in vitro model types from this study proved difficult 
as the DIV-BBB model never gave any reliable results. A big difference between 
the two models is the culture area size and availability. In the static BBB model the 
membrane on which the BCECs are cultured on is 1,1 cm2. The area of the hollow 
fibers on which the BCECs are cultured on in the static BBB model is 13,5 cm2. 
This is a considerable larger area the BCECs need to cover in the hollow fibers to 
provide a tight monolayer. Furthermore the culture surface in the dynamic BBB 
model is in 19 hollow fibers whereas in the static BBB model the surface is flat 
and horizontal. The membrane in the static model is transparent and the cells are 
easy to monitor whereas the non-transparent hollow fibers does not allow any cell 
culture inspections during and experiment. These culture conditions in the static 
BBB model seems to be more favorable for the BCECs compared to the dynamic 
BBB model.   

At this stage the DIV-BBB model from Flocel Inc. cannot be trusted to 
produce consistent and reproducible data. It still needs some improvements before 
it can seriously challenge the more old fashion static in vitro BBB models. The 
static in vitro BBB model does not allow shear stress but it still seems to be a 
reliable model for studies of new carrier compounds. Applying either 
hydrocortisone to the media or using the triple cell model in the static in vitro BBB 
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model has been shown to reproduce parameters of the in vivo BBB in such a way 
that it can be used as a reliable and trustworthy BBB model.  
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4 Discussion 
 
 
 
 
The overall objective of this study was to find potent drug carriers for either direct 
delivery to the brain or delivery of cDNA to BCECs with the potential of de novo 
gene expression and subsequent secretion of synthesized proteins to the brain. The 
aim was also to establish a valid in vitro BBB model for testing these drug carriers.  

4.1 PULLULAN-SPERMINE COMPLEXES AS GENE-CARRIERS TO 
BCECS 

Pullulan-spermine was successfully conjugated with plasmid cDNA encoding the 
red fluorescent protein, HcRed-1. The formed polyplex consisting of pullulan-
spermine-pHcRed-1 cDNA was introduced to the BCECs and transgene BCECs 
expressing the red fluorescent marker was detected. Pullulan-spermine complexes 
were also conjugated with plasmid cDNA encoding hGH1 and transfection of the 
BCECs was further confirmed by the expression of hGH1 mRNA by BCECs. The 
results clearly show that pullulan-spermine is a potent carrier of genetic material 
suitable for transfection of BCECs, as it succeeded in delivering its cargo to the 
cell cytosol with a subsequent transport to the cell nucleus. These findings supports 
results from other studies in where pullulan-spermine proved to be a potent donor 
of genetic material to cells of non-neuronal origin like human bladder cancer cells 
(T24), human hepatoma cells (HepG2), and mesenchymal stem cells [64, 65, 67, 
68, 69]. The results of the present study add to this row of data via the discovery 
that BCECs can be converted into protein factories for protein secretion to the 
brain following uptake and transfection of cDNA carried into the cells by pullulan-
spermine. In this thesis, gene therapy was performed with plasmid cDNA encoding 
hGH1 but theoretically, this principal method for cellular tranfection might be used 
for delivery of any protein of relevance for the brain. Jiang and co-workers (2003) 
transfected cultured mouse brain capillary endothelial cells (MBEC4) with 
pIRESneo-mGDNF by using Lipofectamine following secretion of GDNF [110]. 
They also proved secretion of GDNF by the MBEC4 cells to both the apical and 
the basolateral side of the MBEC4 cells. Furthermore they were able to transfect 
BCECs in vivo with GDNF encapsulated in Hemagglutination virus of Japan 
(HVJ)-liposomes and the secreted GDNF provided neuroprotection for dopamine 
neurons against 6-hydroxydopamine induced lesions [110]. This supports the 
possibility of using BCECs as protein secreting factories for secretion of proteins 
that could have a beneficial effect on damaged neurons or other cell types in the 
brain. BCECs could potentially be transfected to secrete other proteins than hGH1. 
GDNF and BDNF have been shown to play a significant role in maintenance of 
fully differentiated neurons and to promote growth and differentiation of newly 
formed neurons [111, 112]. Likewise EPO, bFGF, and NGF are also of putative 
interest (see Table 2 in Introduction).  Johnston et al (1996) showed that bFGF 
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could be transferred into BCECs in vitro by liposome complexes and subsequent 
secretion of bFGF into the culture media by the BCECs was detected [113]. It 
should also be mentioned that secretion of hGH1 may have a beneficial effect on 
not only neurons but also oligodendrocytes and astrocytes [114].  
In this study immortalized BCECs grown in monolayer was employed for 
transfection with pullulan-spermine-cDNA complexes. However, there can be a 
big difference between the barrier properties and other characteristics of 
immortalized and primary BCECs and experiments should preferably be performed 
on polarized primary BCECs to increase the significance on how the results could 
translate to the in vivo situation with respect to synthesis and secretion.  Jiang and 
co-workers showed a huge potential for basolateral secretion of protein from 
BCECs which should also be investigated by the use of the vector of the present 
study [110]. 
 

4.2 TRANSPORT OF PULLULAN-SPERMINE CARGO INTO THE 
CELL NUCLEUS 

Presumably, gene delivery by pullulan-spermine is limited to mitotic cells [65]. 
One of the new findings in this thesis was that BCECs present in either a dividing 
or non-dividing state could be transfected by pullulan-spermine-cDNA complexes, 
which suggests that the plasmid cDNA not only enters the cell nucleus during 
mitosis but are also trafficked through the intact nuclear membrane during the non-
mitotic state of the cell cycle. This trafficking is though not the main route for 
plasmid cDNA as the transfection in non-dividing cells is lower than in dividing 
cells. 
The transport of plasmid cDNA to the cell nucleus was demonstrated using 
coupling of NLSs to plasmid cDNA, which led to increase in in vivo transfection 
(e.g. [50, 51, 115]). Possibly the coupling of NLSs to the pullulan-spermine-
plasmid cDNA complex would increase delivery of cDNA to the nucleus of non-
mitotic cells. Plasmid cDNAs used in this study encode HcRed-1 and hGH1 and 
contain sequences of SV40 and cytomegalovirus (CMV) respectively. SV40 
contains NLSs and is able to optimize nuclear uptake whereas CMV does not 
facilitate such nuclear translocation [116]. A change in the plasmid vector 
composition of the hGH1 cDNA might also increase its nuclear uptake and thereby 
further strengthen the carrier properties of pullulan-spermine-plasmid cDNA 
complexes.   
 

4.3 TARGETING PROPERTIES OF PULLULAN-SPERMINE 
The intracellular route by which pullulan-spermine complexes are internalized by 
BCECs was not investigated in the present study, however other studies have 
shown that positively charged polyplexes can undergo non-specific adsorptive 
endocytosis via interaction with anionic proteoglycans and glycoproteins present 
on the luminal cell surface [60, 61, 62]. Specifically pullulan-spermine is thought 
to be taken up by cells via sugar-recognition receptors [65]. The pullulan-
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spermine-DNA complexes employed in this study were 240-300nm in size and 
therefore attributable to enter the BCECs by means of calveolae dependent 
endocytosis [65]. As either of these mechanisms for recognition and uptake is 
thought to be specific for BCECs in vivo a targeting strategy for BCEC access is 
necessary. 
One strategy could be to administer the pullulan-spermine complex directly into 
the carotid artery which would increase the rate of interaction between the BCECs 
and the complex before interaction with other cells. This will of course not exclude 
interaction with other cell types but as the complexes would pass the BCECs 
immediately after injection the charged complexes would be prone to interaction 
with the BCECs before encountering other organs. A downside to this strategy 
would be that the pullulan-spermine complexes would still be distributed into the 
systemic circulation outside CNS and this could give rise to unwanted side-effect 
in non-target organs. 
Another approach could be to target a receptor on the apical surface of the BCECs.  
It has been shown that OX26 will bind to the transferrin receptor which leads to 
internalization of the antibody into the cytosol of BCECs when administered to rats 
intravenously or by in situ perfusion [41, 42]. This makes OX26 a suitable 
targeting molecule to the BCECs. 
The conjugation of OX26 to the pullulan-spermine-cDNA complex was done 
successfully suggesting that this principle form of targeting strategy is accessible 
(Lichota et al (unpublished data)).  This strategy will though still not exclude 
uptake by other cell types expressing the transferrin receptor, but by administration 
into the carotid artery the possibility of uptake mainly by BCECs would increase.  
  

4.4 PULLULAN-SPERMINE AND SERUM COMPATIBILITY 
The transformation efficiency of pullulan-spermine-cDNA complexes is severely 
inhibited by serum [68] a finding supported by data of the present study. Hence, 
almost no transgenic BCECs expressing HcRed1 C1 were detected when serum 
was added to the growth media. This lack of transfection is thought to be due to the 
negatively charged serum proteins which lower or even completely neutralize the 
charge of the cationic polyplexes. This apparent obstacle for future in vivo 
experiments was addressed by Thakor and co-workers who developed a strategy 
where pullulan-spermine-cDNA complexes would form anionic complexes, 
anioplexes [57, 117]. These anioplexes have proved significantly more effective 
for transfection than their cationic counterparts; the rationale being that anionic 
serum proteins will not interact with the anioplexes, and therefore serum is no 
longer a restraining factor for the complex as the interaction with the negatively 
charged cell surface components is no longer taking place [57, 117]. An apparent 
disadvantage in this strategy is that it limits non-specific endocytic uptake, which 
must be dealt with by making the complexes targetable as described in the previous 
section. This targeting approach may in fact prove to be advantageous as the ratio 
of specific to unspecific uptake probably will be markedly improved. 
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Another strategy to avoid serum protein interaction could be to encapsulate the 
pullulan-spermine-cDNA complexes in liposomes. Liposomes have been very 
intensely studied for their capabilities as drug-carriers. They can be PEGylated and 
conjugated with antibodies [118] suggesting that PEGylated targetable liposomes 
carrying pullulan-spermine-cDNA could denote a potent complex being both 
serum compatible and targetable.  
 

4.5 SPIOS AND DRUG DELIVERY TO THE BRAIN 
The uptake and transport of SPIOs through BCECs indicates that they are 
appropriate candidates for drug delivery to both BCECs and the brain. Their 
passage through BCECs occurred in small scale without external aid. Application 
of an external magnetic field clearly enhanced the SPIOs movement through the 
BCECs. Once through BCECs cultured in cell culture inserts, the SPIOs were 
taken up by astrocytes, grown in wells in which the inserts with BCECs were 
placed.  
The SPIOs used in the present study is coated with starch which have terminal 
hydroxyl groups. These functional hydroxyl groups can be covalently coupled with 
amine groups on antibodies or other types of proteins. As SPIOs can also be coated 
with substrates like chitosan or phospholipids with capabilities to bind ligands, 
cDNA and drugs [80, 82, 84, 85], the SPIOs are potent drug carriers to the brain in 
a targetable manner. SPIOs coated with chitosan and enclosed in liposomes are 
able to carry plasmid DNA into BCECs and transfect them in culture (Linemann et 
al (unpublished data)).  
 

4.6 SPIOS AND POSSIBLE DAMAGING EFFECTS 
Accumulating an excess of iron present as iron oxide particles could potentially 
become a safety issue due to the risk of metal-induced cytotoxicity and damage to 
the BCECs [80, 85]. Not only could BCECs be damaged but they could also lose 
their integrity to proteins in circulation leading to increased BBB permeability.   
No significant damage was seen in BCECs after having been subjected to SPIOs 
and an external magnetic field, as less than one 1% of the cells were damaged. Iron 
oxide SPIOs coated with tween 80 and of a diameter of 30 nm have been shown to 
be cytotoxic to murine macrophages (J774) after incubation for 6 hours at a 
concentration of 200µg/ml, but not significantly toxic at 100µg/ml [79]. The 
present study shows that iron oxide SPIOs of a diameter of ~117,5nm is non-toxic 
to the BCECs at a concentration of 140µg/ml and 5 hour incubation time. 
Additionally, the TEER measurements implied no disruption of the BBB following 
application of SPIOs, the external magnetic field or both. Hence, the integrity of 
the BBB remains stable after application and passage of the SPIOs indicating that 
magnetic particles would be suitable also for in vivo studies.  
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4.7 SPIOS AND MAGNETIC FORCE-TARGETED DELIVERY 
The external magnetic field was supplied by a plate magnet with a strength of 0.39 
Tesla, which is compatible with the strength of the magnetic fields applied for 
magnetic resonance imaging (MRI) in clinic. MRI is normally powered by 0.2 - 3 
Tesla with the most common values being in the range of 1,5 and 3 Tesla, but in 
some analyzes MRI may be performed at 30 Tesla. As SPIOs are already in 
clinical use as contrast agents for MRI scanning [71] is plausible that delivery to 
the brain of drugs and genes carried by SPIOs is accessible even with 
simultaneously real-time visualization of their accumulation in the brain.  
 

4.8 STATIC VERSUS DYNAMIC IN VITRO BBB MODEL 
Unfortunately it was not possible to obtain any reliable results with the dynamic in 
vitro BBB model in the present study, which makes it impossible to compare the 
static and dynamic BBB models. Other research groups have proven that it is 
possible to obtain data from the dynamic model and their studies were the reason 
for investing in this model [100, 101, 102, 103, 104, 105, 106, 107, 108, 109]. 
In the dynamic model there are a lot of small finesses that can alter the culturing 
process. The rather large surface area is limiting because BCECs needs to cover 
the entire surface before an increased TEER can be measured. In the static in vitro 
BBB model the surface area to be covered by BCECs is significantly smaller. 
Therefore for practical reasons the culture conditions of the static model favors the 
establishment of a tight BBB with high TEER values.   
In the dynamic BBB model the cell culturing is very difficult to monitor and 
therefore very difficult to get a comprehensive view on whether BCECs form a 
confluent monolayer. The hollow fibers are not transparent like the microporous 
membranes of the static model. It is therefore also very difficult to ensure correct 
loading of the BCECs into the hollow fibers or to monitor the growth. These 
problems could easily be changed, by forming hollow fibers of transparent 
material, instead of the current non-transparent membranes. 
It was also difficult to avoid unwanted attachment of cells on surfaces outside 
hollow fibers. If the two sampling ports to the inner compartment were exclusively 
attached to the hollow fibers this unwanted attachment of cells in the cartridge 
could be avoided. Unwanted attachment of cells is not an issue in the static model, 
and although the static model may seem simpler and lack some key features for 
induction of the BBB phenotype, it remains the best model for obtaining 
reproducible data on BCECs.  
 

4.9 IMMORTALIZED BCECS AND BBB INTEGRITY 
When studying transcellular or intercellular transport of substances into BCECs it 
is important to eliminate paracellular leakage. The BCECs of the present study did 
not express too impressive TEER values.  Although they stained positive for ZO-1 
the low TEER values indicate that the BCECs are not that closely interconnected 
by tight junctions. ZO-1 formation indicates tight junction formation but it is a 
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cytoplasmic plaque protein that links the transmembrane junctional proteins to the 
actin cytoskeleton. Staining for the transmembrane tight junction proteins e.g. 
occludin or claudin-5 could have provided a more clear view of the presence of 
tight junctions. Furthermore a study on the barrier permeability with a tracer e.g. 
sodium fluorescein or radiolabeled sucrose could have been performed. The 
permeability depends on the sum of transport across all junctional pathways [87] 
and would therefore provide insight into the tightness of the barrier as well. The 
BCECs in the present study have probably lost some of their barrier characteristics 
during their repetitive passaging, but their BBB properties could be increased by a 
contact co-culture with astrocytes and further increased by addition of 
hydrocortisone, observations in hand with other laboratories (e.g. [88, 94, 96, 98]). 
Despite attempt to optimize the culture conditions the HBMEC cell line used in the 
present study does not seem to be able to form a tight enough barrier to fulfill the 
criteria of TEER values around 150-200 which have been determined to be 
necessary for obtaining reasonable information from an in vitro BBB model [87, 
119].  
Primary brain microvascular BCECs could instead be employed to improve the in 
vitro model of the BBB. Primary BCECs have intact BBB features and form a 
much tighter barrier than their immortalized counterparts [86, 87]. TEER values 
measured on primary cultures of e.g. bovine and porcine BCECs can be as high as 
values obtained in vivo [87, 120, 121]. Including both astrocytes and pericytes in 
double or triple co-culture with the BCECs has also been shown to strengthen the 
tightness of the BBB models [95, 122]. With the use of primary BCECs in 
monoculture or coculture with astrocytes and/or pericytes, the in vitro BBB models 
are more compatible with the in vivo situation and therefore more useful for 
studying the passage of various compounds as e.g. SPIOs and pullulan-spermine-
cDNA through the in vitro BBB.  

  



        Non-viral delivery strategies into/across the brain capillary endothelial cells               67 
 

 

5. Future Perspectives 

 

In this study it was found that pullulan-spermine complexes are potent gene 
carriers to BCECs. SPIOs were found to be potentially potent carriers for delivery 
to both BCECs and the brain. Furthermore it was found that the static in vitro BBB 
model consisting of cell culture inserts were the most reliable BBB model when 
compared with a dynamic in vitro BBB model. The results in this thesis have 
raised three new questions I would like to be able to answer in the nearer future.  
 
1) First, could a better in vitro BBB model be established based on the static 

model? The three studies in this thesis might benefit from establishment of a 
primary brain endothelial cell culture. Primary BCECs possess far more of the 
BBB characteristics, and especially they form a tighter barrier than the 
immortalized BCECs [87]. The existing literature suggests that replacement of 
immortalized BCECs with primary cells would highly improve the results 
obtained in the static in vitro BBB model and make them translate to the in 
vivo situation [87]. Attempts have already been made on establishing human 
primary BCECs during the last period of this Ph.D. study. Pieces of human 
brain tissue are obtained from patients undergoing surgery to remove brain 
tumors at the neurosurgical department on the Hospital of Aalborg. 
Unfortunately it has been a challenge to ensure a pure fraction of BCECs, and 
the protocol still needs further improvement. Human brain tissue is not 
provided on a regular basis, therefore more available sources as for example 
rat brains should be studied as well.  

2) Secondly, is it possible to alter pullulan-spermine complexes to become potent 
gene-carriers for in vivo use? If pullulan-spermine complexes are to be 
employed for in vivo purposes the serum incompatibility problem has to be 
solved. Pilot studies have been initiated to combine PEGylated liposomes with 
pullulan-spermine employing a new protocol for liposome preparation [123]. 
The hypothesis to examine is that if PEGylated liposomes can carry pullulan-
spermine-cDNA complexes into BCECs, release pullulan-spermine-cDNA 
into the cytosol from where cDNA will reach to the nucleus to enable 
transfection. This strategy ensures full protection of the pullulan-spermine 
complexes from serum degradation. Another strategy would be to form 
anionic complexes of pullulan-spermine-DNA as recently described by Thakor 
et al (2011) [117], which was shown to eliminate the serum incompatibility 
factor.  

3) Thirdly, is it possible to conjugate the fluorescent SPIOs with a cargo and 
demonstrate delivery of this cargo into BCECs or directly into the brain? 
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Having studied the ability of SPIOs to enter into BCECs and even through the 
BCECs, the next step would be to conjugate these coated particles with both 
cDNA and a BCEC targetable molecule. DNA binding could be done by 
coating with a positively charged molecules e.g. chitosan to take advantage of 
the electrostatic binding ability. Furthermore the magnetic particles can be 
covalently coupled to antibodies via cyanogen bromide activation, which 
should be tested as a strategy towards producing BCEC specific targetable 
SPIOs. 
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