
 Enhancing Formal Modelling Tool
Support with Increased Automation

phd

PhD Dissertation

by Kenneth Lausdahl

AARHUS
UNIVERSITY AU

Enhancing Formal Modelling
Tool Support with

Increased Automation

Enhancing Formal Modelling
Tool Support with

Increased Automation

PhD Thesis by

Kenneth Lausdahl

Aarhus University Department of Engineering, Denmark

ISBN 978-87-93102-02-6 (e-book)

Published, sold and distributed by:
River Publishers
P.O. Box 1657
Algade 42
9000 Aalborg
Denmark

Tel.: +45369953197
www.riverpublishers.com

Copyright for this work belongs to the author, River Publishers have the sole
right to distribute this work commercially.

All rights reserved c© 2013 Kenneth Lausdahl.

No part of this work may be reproduced, stored in a retrieval system, or trans-
mitted in any form or by any means, electronic, mechanical, photocopying,
microfilming, recording or otherwise, without prior written permission from
the Publisher.

Abstract

The intrinsic complexity of even simple software systems makes their de-
velopment challenging. This is especially true for heterogeneous embedded
control systems that include the constraints of the physical world. Formal
methods and modelling techniques allow software designs to be analysed
and thus contribute to their reliability and robustness. However, industrial
adoption of formal methods is limited by uncertainties related to their cost,
effectiveness and the skills required. This thesis has three areas of focus:
manual labour reduction through automation of various kinds of analysis,
with focus on validation; language translation utilised to exploit existing au-
tomated analysis techniques; and a way to model and simulate embedded
control systems that demand high-fidelity representation of their environ-
ment, based on a sound formal foundation. The result is a collection of con-
tributions to a modern integrated development environment that can analyse
software specifications and simulate hybrid embedded control systems with
their environment.

v

Resumé

Udviklingen af selv små software systemer er en kompleks udfordring: især
for heterogene indlejrede kontrolsystemer, som også tager højde for dynamik-
ken i den fysiske verden. Formelle metoder og tilsvarende modelleringstek-
nikker muliggør analyse af software design. Det kan være medvirkende til
at øge pålideligheden og derved sikre et mere robust system. Dog har den
industrielle anvendelse af formelle metoder været begrænset, primært grundet
usikkerhed i forhold til omkostningerne og den nødvendige tekniske eksper-
tise.

Denne afhandling har tre fokus områder: reduktion af manuelt arbejde
gennem automatisering af forskellige former for analyser primært med fokus
på validering; udnyttelse af eksisterende automatiserede analyse teknikker
ved hjælp af sprog oversættelse; og simulering af indlejrede kontrolsyste-
mer, der kræver en meget detaljeret og nøjagtig repræsentation af det dy-
namiske miljø systemet opererer i. Der præsenteres adskillige bidrag til anal-
yse af software abstraktioner som alle bidrager til et moderne integreret ud-
viklingsmiljø.

vii

Acknowledgements

I would like to thank my supervisor Peter Gorm Larsen from the Department
of Engineering, University of Aarhus, for providing valuable feedback during
my PhD. It has been a great pleasure and great continuous source of inspira-
tion to work with Peter, who always sees opportunities. His professionalism
and dedication is second to none. I would also like to thank my co-supervisor
Erik Ernst from the Computer Science Department, University of Aarhus, for
his impressive sense for detail and feedback that he has provided during the
development of this PhD thesis.

I give thanks to the DESTECS project for funding my PhD. I have had
so many useful discussions with this group of talented people, who have also
given me the opportunity to get valuable feedback from industrial partners. I
would like to give a special thanks to my colleagues in the DESTECS project
at Controllab Products Peter Visser and Frank Groen.

I would like to express my gratitude to Daniel Jackson and his software
design group at the Computer Science and Artificial Intelligence Lab at Mas-
sachusetts Institute of Technology for giving me the opportunity to visit them
in Cambridge, MA, USA, and to Aarhus university research foundation and
Fondation Idella for providing the necessary funding this trip.

I would also like to thank all my close collaborators: Nick Battle, Joey W.
Coleman and Augusto Ribeiro. The collaboration with these skilled people
have helped me develop my competences as a researcher. I have enjoyed our
many valuable discussions that have given served as inspiring variation. In
particular, I admire their dedication to detail.

I would like to thank Claus Ballegaard Nielsen and Sune Wolff for their
camaraderi and many small interactions as well as the feedback they have
provided during the development of this PhD thesis. I would also like to thank
Stefan Hallerstede for his valuable feedback and review of this PhD thesis.

I would like to thank my parents, Yvonne and Henning Lausdahl, for
loving and supporting me unconditionally, and for giving me a good founda-
tion for life. I also thank my sister Leni Lausdahl, for being the best sister

ix

x Acknowledgements

in the world. My family has been a source of constant encouragement and
unconditional support.

Last, but not least, I would like to thank my beautiful wife Tenna Lausdahl
for her love, support and can-do spirit. I would especially like to thank her for
giving my two wonderful daughters, Marie and Laura, the apples of my eye
and a constant source of smiles. I would also like to thank the three of them
for joining me on multiple occasions when research has lead me abroad. This
thesis is dedicated to my wife and my two daughters.

Contents

Abstract v

Resumé vii

Acknowledgements ix

I Overview 1

1 Introduction 3
1.1 Modelling of Software Systems 4
1.2 Formal Modelling Languages 5
1.3 Modelling of Physical Systems 9
1.4 Motivation . 11
1.5 Research Method . 11
1.6 Research Objectives . 12
1.7 Evaluation Criteria . 13
1.8 Published Work . 14
1.9 Outline and Reading Guide 17

2 Tool Automation 19
2.1 Overture in a Historical Perspective 19
2.2 Development . 21
2.3 Validation . 22
2.4 Translation . 38
2.5 Formal Verification . 43

3 Semantics 47
3.1 Existing VDM Semantics Efforts 47
3.2 The VDM Real-Time Semantics Developed in this PhD Project 49
3.3 Co-Simulation Semantics 52

xi

xii Contents

4 Conclusion 59
4.1 Introduction . 59
4.2 Research Contributions . 59
4.3 Evaluation of Contributions 61
4.4 Future Work . 65

II Publications 69

5 The Overture Initiative – Integrating Tools for VDM 71

6 Connecting UML and VDM++ with Open Tool Support 73

7 Translating VDM to Alloy 75

8 A Deterministic Interpreter 77

9 Combinatorial Testing for VDM 79

10 Combining VDM with Executable Code 81

11 Run-Time Validation of Timing Constraints for VDM Models 83

12 Semantics Focused Papers 85

Bibliography 87

Part I

Overview

1

1
Introduction

People are surrounded by devices that contain software, and daily life is be-
coming increasingly more dependent upon the services offered by software in
general. However, a common practice in some areas of the software industry
is to release incomplete software, or software with known faults to gain a
market advantage. This is made even worse by the constantly increasing com-
plexity of software, while at the same time expectations are that it performs
flawlessly. Unfortunately, this is not the case, and most software is faulty
and expensive to develop partially due to the increase in complexity. Faulty
software poses a significant risk in safety critical systems where either ma-
chinery or humans might be damaged or hurt by errors. The consequence of
the increase in complexity and expectations is that a large number of software
projects fail and either get cancelled or run over budget, and still deliver fewer
features than initially claimed [136, 59].

The software engineering discipline is relatively new compared to other
disciplines such as mechanical engineering that dates back to the medieval
times and was deeply influenced by the work of Archimedes (287 BC) and
later Heron of Alexandria (c. 10-70 AD) who created the first steam en-
gine. The mechanical engineering discipline uses modelling techniques to
accurately predict the behaviour of a final system. This ability to accurately
design and later build the same solution still remains unsolved for software
engineering.

The term software engineering was introduced in the 1968 NATO Soft-
ware Engineering Conference [106], 45 years ago; where concepts were in-
troduced for software development. Unfortunately, the concepts introduced
at that conference are not universally used in software development. The
modelling concept allows engineers to formally describe software systems
based on their informal requirements and thus unambiguously capture inter-
actions with devices external to the system; the result is a formal specification
that thus can be analysed. The specification can then be validated against the

3

4 1 Introduction

informal requirements by simulation, thus checking that the specification rep-
resents the intended system. A specification can also be verified with respect
to its internal consistency by e.g. checking for contradictions in the form
of type incomparability, conflicting invariants etc. These types of analysis
are challenging to perform by hand and, therefore, automated analysis is a
significant advantage since it reduces human errors and in most cases speeds
up analysis by an order of magnitude [129].

1.1 Modelling of Software Systems

Modelling is the process of capturing and describing knowledge about a
system in an abstract form. The result is a specification that capture the
requirements for a given system and its behaviour. A specification is de-
scribed using a modelling language that focuses on certain types of analysis.
Various modelling languages exist which can be used to describe a system;
the languages can either be graphical using diagrammatic techniques (e.g.
the Unified Modelling Language), or textual using standardized keywords
in a natural language or with terms that make the language interpretable by
computers. These interpretable languages can be formal modelling languages
with a concrete syntax and well defined semantics that is built on mathematics
and therefore provides a base of analysis.

The nature of a system may favour some modelling languages over others,
e.g. a software ticketing system might require a language capable of describ-
ing relations, while an embedded reactive control system might require the
ability to describe the complex behaviour of the controller in the system but
also the ability to faithfully represent the physical environment it operates
within. The first case of a simple software system may be modelled by any of
the languages like: UML, Alloy, Z, B or VDM from the discrete-event (DE)
domain; however, the second category requires a more complex language that
not only has the capability to describe elements of the DE domain but also
the ability to describe physical elements of the environment, that belong to
the continuous-time (CT) domain. To describe such systems a language that
spans multiple domains is needed either in the form of a single language or
two languages that integrate with each other.

The motivation behind the creation of a specification of a system is to
describe the system in a clear and concise way and then through analysis
check that the specification is consistent and unambiguous and reflects the
requirements. A critical factor is the ability to automatically check such spec-
ifications for internal consistency and validation against external criteria e.g.

1.2 Formal Modelling Languages 5

requirements. This is supported by formal modelling languages due to their
mathematical foundations.

1.2 Formal Modelling Languages

This section gives a brief description of a few of the existing formal modelling
languages (Z, B, Event-B, Alloy and VDM) which have been used both in
academia and industry. The formalisms are presented with a description of
the available tools that can be used for various kinds of analysis. The sec-
tion presents an extended description of VDM which is the language used
throughout this thesis.

1.2.1 Z-notation

The Z-notation was developed at Oxford University in the 1980’s; it was
originally proposed by Jean-Raymond Abrial in 1977, based on the pub-
lication [2]. The Z-notation was later ISO standardised [56], a number of
books have been written about the Z-notation [58, 122, 156, 158]. It is based
on the standard mathematical notation used in axiomatic set theory, lambda
calculus and first-order predicate logic. The logic is augmented with structure
(schemas) to make it easy to describe software systems, i.e. schema calculus.
Specifications are built as a collection of schemas. The most popular version
of Z is the version from Mike Spivey’s book [134]. Z, unlike B, does not
have built-in refinement, and thus many users view Z as a system modelling
language and have no intent of proving the conformance of code to the spec-
ification. However, a well-established theory to refinement of Z exists, as
introduced in Woodcock’s book [156]

Tools for Z
The tools available for Z focuses on theorem proving. The most widely used
proof tools are ProofPower from Lemma 1 Ltd., and Z/Eves, a front-end to
the Eves theorem prover from ORA Canada. Eves can calculate preconditions
and perform domain checks (checking that partial functions are not applied
outside their domain) as well as general theorem proving. The tool is au-
tomated but still requires expert assistance. Mark Utting has developed an
animator for Z named Jaza1. It can execute operations written in an explicit
style, evaluate expressions, check state against invariants, and so on. Finally,

1 http://www.cs.waikato.ac.nz/˜marku/jaza/

http://www.cs.waikato.ac.nz/~marku/jaza/

6 1 Introduction

the Community Z Tools (CTZ) project2 aims to combine tools for Z. The
tool currently includes infrastructure required to parse, type check, edit and
animate Z (ALive).

1.2.2 B-Method and Event-B

The B-Method [1] is a method for software development based on the B no-
tation, it is based around an abstract machine notation for e.g. embedded soft-
ware development. The method was originally developed by Jean-Raymond
Abrial and is a proof-based refinement method. The B notation is related to Z,
but B is closer to the implementation level, with focus on formal refinement to
code compared to just formal specification. The formal method Event-B [3] is
an evolution of B and has a simpler notation. It focuses more on system-level
modelling, and is thus less suited for embedded software. Event-B is also a
refinement method, and it has been used in the DEPLOY project3 [130, 129].
Furthermore, Event-B forms the base in a current research project Advanced
Design and Verification Environment for Cyber-physical System Engineering
(ADVANCE4).

Tools for B and Event-B
The B-method is supported by the commercial tool Atelier B5 from ClearSy,
a French company. Event-B is supported by the open-source tool Rodin6.
Furthermore, an extension ProB provides model checking and animation to
Event-B specifications [96].

1.2.3 Alloy

Alloy [57] is a declarative formal specification language for describing soft-
ware abstractions; it was developed to adapt a declarative language like Z to
bring in fully automatic analysis. At the core, Alloy is based on relations over
atoms with a logic that is small, simple and expressive. It is based on a rela-
tional logic that combines the quantifiers of first-order logic with operators of
relational calculus. It is easy to learn and understand if one already is familiar
with basic set theory. The Alloy language is more than just logic; it provides

2 http://czt.sourceforge.net
3 http://www.deploy-project.eu/
4 http://www.advance-ict.eu/
5 http://www.atelierb.eu/en/
6 http://sf.net/projects/rodin-b-sharp

http://czt.sourceforge.net
http://www.deploy-project.eu/
http://www.advance-ict.eu/
http://www.atelierb.eu/en/
http://sf.net/projects/rodin-b-sharp

1.2 Formal Modelling Languages 7

ways to organise a model, build larger models based on smaller ones and a
way to factor out components for reuse. The language also provides a number
of commands needed to communicate with the Alloy Analyzer. And, finally,
the language includes modules, polymorphism, parametrized functions etc.,
though some features are unique to Alloy including signatures and the notion
of scope that is used to describe structure and define the scope of analysis.

Tools for Alloy
The Alloy Analyzer is a bounded model finder that has proven to be useful
for validating specifications in the Alloy language [57]. The analyzer can
find instances of Alloy specifications, as well as checking user defined asser-
tions. The analyzer can provide immediate visual feedback when an instance
is found or present a core containing the top level formulas if no instance
could be found. The analyzer is built on top of a boolean satisfiability (SAT)
solver, which is used to find an instance by converting the Alloy signatures
to boolean formulas, and then find an assignment to all variables so these
formulas are satisfied.

1.2.4 The Vienna Development Method

The Vienna Development Method (VDM) [10, 61, 62, 31] was originally
developed at the IBM laboratories in Vienna in the 1970’s and, as such, it
is one of the longest established formal methods. The VDM Specification
Language is a language with a formally defined syntax, and both static and
dynamic semantics [119, 81]. Models in VDM are based on data type def-
initions built from simple abstract types using booleans, natural numbers,
characters and type constructors for product, union, map, (finite) set and se-
quences. Type membership may be restricted by predicate invariants meaning
that run-time type checking is also required from an interpreter perspective.
Persistent state is defined by means of typed variables, again restricted by
invariants. Operations that may modify the state can be defined implicitly,
using standard pre- and post-condition predicates, or explicitly, using imper-
ative statements. Such operations denote relations between inputs, outputs
and states before and after execution; note that such relations allow non-
deterministic behaviour. Functions are defined in a similar way to operations,
but may not refer to state variables. Recursive functions can have a measure
defined for them to ensure termination [124]. Arguments passed to functions
and operations are always passed by value, apart from object references.

8 1 Introduction

Three different dialects exist for VDM: The ISO standard VDM Specifi-
cation Language (VDM-SL) [32], the object oriented extension VDM++ [33]
and a further extension of that called VDM Real Time (VDM-RT) [146, 52].

None of these dialects are generally executable since the languages permit
the use of type bindings with infinite domains, or implicitly defined functions
and operations, but the dialects all have subsets that can be interpreted [77].
In addition, some commonly used implicit definitions can be executed in
principle [42]. A full description of the executable subset of the language
can be found in [80].

The dialects VDM++ and VDM-RT allow concurrent threads to be de-
fined. Such threads are synchronised using permission predicates that are
associated with any operation that limits their allowed concurrent execution.
Where pre-conditions for an operation describe the condition the caller must
ensure before calling it, the permission predicate describes the condition that
must be satisfied before the operation can be activated, and until that con-
dition is satisfied the operation call is blocked. The permission predicates
can refer to instance variables as well as history counters which indicate the
number of times an operation has been requested, activated or completed for
the current object. In VDM-RT, the concurrency modelling can be enhanced
by deploying objects on different CPUs with busses connecting the CPUs.
Operations called between CPUs can be asynchronous, so that the caller does
not wait for the call to complete.

VDM-RT has a special system class where the modeller can specify
the hardware architecture, including the CPUs and their bus topology; the
dialect provides two predefined classes for the purpose, CPU and BUS. CPUs
are instantiated with a clock speed and a scheduling policy, either First-
Come, First-Served (FCFS) or Fixed Priority (FP). The initial objects defined
in the model can then be deployed to the declared CPUs using the CPU’s
deploy operation. Busses are defined with a transmission speed and a set
of CPUs which they connect. Object instances that are not deployed to a spe-
cific CPU (and not created by an object that is deployed), are automatically
deployed onto a virtual CPU. The virtual CPU is connected to all real CPUs
through a virtual BUS. Virtual components are used to simulate the external
environment for the model of the system being developed.

The semantics of VDM-RT has been extended with the concept of dis-
crete time, so that all computations a thread performs take time, including the
transmission of messages over a bus. Time delays can be explicitly specified
by special duration and cycles statements, allowing the modeller to
explicitly state that a statement or block consumes a known amount of time.

1.3 Modelling of Physical Systems 9

This can be specified as a number of nanoseconds or a number of CPU cycles
of the CPU on which the statement is evaluated. All virtual resources are
infinitely fast: calculation can be performed instantaneously consuming no
time, though if an explicit duration statement is evaluated on a virtual CPU,
the system time will be incremented by the duration.

Tools for VDM
Early tools for VDM, such as Adelard’s SpecBox [127] were largely con-
fined to basic static checking and pretty-printing of specifications. Currently,
only two tools for VDM are actively maintained, VDMTools [28, 35] and
Overture [P74].

VDMTools [35] originated with the Danish company IFAD, but is now
maintained and further developed by the Japanese corporation SCSK Sys-
tems Inc. This is a closed-source product which includes syntax- and type-
checking facilities, an interpreter to support testing and debugging of models,
test coverage, proof obligation generators that produce formal specifications
of integrity checks that cannot be performed statically, and code generators
for C++ and Java. A CORBA-based Application Programmer Interface (API)
allows specifications to be executed on the interpreter, but accessed through
a graphical user interface, so that domain experts unfamiliar with the specifi-
cation language can explore the behaviour described by the model by playing
out scenarios or other test cases. The interpreter has a dynamic link library
feature allowing external modules to be incorporated. VDMTools supports
round-trip engineering of VDM++ specifications to UML class diagrams.

A newer tool that is under active development is the Overture tool [P74],
described in detail in Section 2.1. It has the advantage over VDMTools that
it is open-source and designed to be highly extensible; therefore it provides
a good platform for research. The Overture project is a community-based
initiative7 that this PhD project is very much involved with, and many of
the contributions in this PhD thesis are associated with different aspects of
Overture.

1.3 Modelling of Physical Systems

The modelling and analysis of real system phenomena that one would like
to control typically spans multiple disciplines. Models use representations of
the various logical and physical laws of a subject system, however, logical

7 Overture: www.overturetool.org

www.overturetool.org

10 1 Introduction

and physical laws use different mathematical frameworks to create useful
specifications. The underlying mathematics of physical laws is usually de-
scribed using differential equations, resulting in Continuous Time (CT) spec-
ifications whereas logical laws and computational specifications are usually
represented using discrete mathematics in Discrete Event (DE) models. The
latter is described in languages as in Section 1.2 and may be interpreted.

The CT languages can be simulated by integrating the differential equa-
tions that embodies the specification and provide values of the derivatives
at any particular point in time. The term used to describe the tools which
perform simulation of such differential equations is called a numerical solver;
they simulate by integrating the equations in time steps. A number of different
integration methods exist which primarily differ on how they calculate the
size of the step, and can generally be divided into two groups: fixed step and
variable step.

The fixed step methods always take a predefined step in time without tak-
ing into account the dynamics of the system. This is also known as sampling
in the computer science domain. The accuracy of the method depends on
the step size; the smaller the step size the more accurate the solution is, but
the penalty is a slower simulation. Variable step methods use the dynamics
of the system to determine how large the step size can be so that a certain
accuracy is guaranteed. The advantage is that, usually, fewer steps have to
be taken over the full time range. Only at points where the dynamics of the
system dictate a certain accuracy, step sizes are decreased. The disadvantage
is that it is not possible to know in advance what the next output time will be.
Only a maximum step-size can be specified within the integration method,
but this maximum is only used if the dynamics of the physical system allow
it. Various simulation tools exists of which MathLab8 Simulink9 is proba-
bly the best known tool. In the Design Support and Tooling for Embedded
Control Software (DESTECS)10 [12, 34] an FP7 research project an alterna-
tive tools named 20-sim11 [14] is used which provides some features similar
to that of the MathLab Simulink combination. The DESTECS project pro-
vides guidelines and tools for modelling embedded software [116, 115]; the
project uses a co-simulation approach that combines a discrete-event formal-
ism, like all the formalisms presented in Section 1.2, with CT formalisms.

8 MathLab: http://www.mathworks.com/products/matlab
9 Simulink: http://www.mathworks.com/products/simulink

10 DESTECS: http://destecs.org
11 20-Sim: http://www.20sim.com

http://www.mathworks.com/products/matlab
http://www.mathworks.com/products/simulink
http://destecs.org
http://www.20sim.com

1.5 Research Method 11

The project also focuses on how faults can be modelled in such multi-domain
systems [117].

1.4 Motivation

The adoption of formal methods, and the underlying specifications languages,
by industry is highly dependent on available tool support since it affects risk
and cost during development [50]. While not all believe that tools are needed
as in [19] where it is mentioned that tools are neither necessary nor sufficient
for an efficient formal method application. However, the survey [157] states
that it is almost inconceivable that an industrial application would proceed
without tools. It is also reported that the tools investigated in the survey are
not felt in general to be of sufficient quality for wide-scale applications. These
tools must also be available to various platforms, and integrated with features
that allow for version control and co-operative development. In [153, 66, 152]
the authors suggest that integration of tooling for formal methods into exist-
ing development tools may improve the industrial adoption. A key factor for
the application of formal methods is that automation is capable of reducing
otherwise time consuming tasks while still being flexible [153]. A successful
example of how one person-month is reduced to 17 minutes of computation
illustrates how automation is able to drastically reduce the time spent per-
forming analysis of specifications [129]. Thus the overall motivation behind
this PhD project is to attempt to improve the tool automation of the VDM
formal method enabling more widespread industrial take up.

1.5 Research Method

The approach that was taken in this PhD project focused on how the analy-
sis of VDM specifications could be enhanced to automate procedures that
otherwise would be manual.

The method followed was based on the identification of areas where the
existing support was not yet automated or capable of performing analysis.
The work was driven by a number of external industrial case studies from the
DESTECS project: a self-balancing scooter, a document inserting system and
a dredging excavator [13].

These case studies led to the discovery of a number of limitations of the
ability to either express or analyse parts of the case studies with respect to the
objectives set for this PhD project. These limitations led to the identification

12 1 Introduction

of contributions that could make it possible to model and perform analysis
of the case studies. The contributions that were identified range from the
ability to deterministically simulate discrete-event systems but also included
the ability to describe and simulate systems that require high-fidelity environ-
ment representations. Other contributions focused more on the development
of the discrete-event systems and understanding and communication of its
behaviour.

Whenever a limitation was identified, the existing literature was searched
for similar problems and corresponding solutions. If a solution was found
it was adapted and extended to fit the needs, or otherwise a new theoretical
solution was constructed. These were, in most cases, followed by a proof
of concept implementation of the theory, and evaluation of the support on
concrete VDM specifications, including the case studies. Depending on the
outcome, theories were adjusted, and the prototype was improved. When
a solution that could be considered as a new contribution was reached, it
was reported in the form of publications to either workshops, conferences or
journals.

1.6 Research Objectives

The thesis objective is to increase the applicability of existing analysis tech-
niques for formal methods-based models, in particular those based on indus-
trial cases and those that involve a higher degree of complexity than the usual
textbook case studies. As complex specifications are often modelled using
multiple tools and notations, this thesis also investigates the connections that
are possible between the multiple notations used in these models.

Given that a formal method approach results in software with fewer faults,
the hypothesis is that a higher degree of automated analysis will allow formal
methods-based approaches to be a viable alternative for software develop-
ment to the traditional approaches used in industry.

To accomplish this, it is necessary to enhance the fidelity of formal spec-
ifications in relation to the final system’s environment, and also to improve
and extend the analysis already available within the scope of validation and
translation, while maintaining a formal semantic foundation. VDM is used
throughout this work as the base formal method, and it has been shown
elsewhere to be a suitable formal method for industrial applications [157, 76].

1.7 Evaluation Criteria 13

1.7 Evaluation Criteria

The developed automation has been evaluated with regards to the properties
described below. The properties are defined primarily based on the indus-
trial statements about tool requirements described in Section 1.4, and the
industrial case studies from the DESTECS project.

The individual contributions made in this PhD project are numbered ex-
plicitly in Chapter 2 and 3. There is a total of 16 contributions, each of which
have been evaluated using the following criteria:

Semantic foundation: The languages that automated analysis are developed
for must have a well defined semantic foundation.

Language completeness: The analysis of a specification must cover the com-
plete specification language either in the form of a single type of analysis
or by combining different types of analysis. Likewise, any limitations
must be clearly identified.

Reduction of manual labour: The workload of the user must be reduced by
automated analysis; this includes reduction of the required user guidance
for any particular kind of analysis.

Fidelity of embedded control systems: To describe and perform analysis on
specifications of embedded control systems that rely heavily on high-
fidelity representations of the target physical environment; it is required
that support is available for modelling of both the embedded system as
well as the environment.

Integration with other tools: Integration between tools supporting different
languages is important if it brings value to the different stakeholders or
improves the communication between stakeholders. Therefore, a trans-
lation should be enabled if the desired view or analysis already has tool
support in another language.

The evaluation of the contributions is described in Section 4.3 where the
level of fulfilment of all contributions are compared to each criteria. The
comparison is illustrated using a chart as shown in Figure 1.1; the covered
area indicates to what extent the criteria are fulfilled. The chart can be used
to see the relation between contributions and fulfilment of criteria.

The contributions are motivated by the external industrial case studies
and have been posed as a solution to the objectives but are not generalizable

14 1 Introduction

[C13]

[C12]

[C11]

[C10]

[C9]

[C8] [C7]

[C6]

[C5]

[C4]

[C3]

[C2]

[C1]

Figure 1.1: Example comparison chart.

for every possible application. However, the contributions have been incor-
porated into tools used by the industrial partners that enabled them to carry
out their case studies with success.

1.8 Published Work

This section presents the work published during this PhD project, it mainly
focuses on the topics tool automation, and the formal semantics of VDM.

1.8.1 Publications

The publications listed here are all included in this thesis in Part II.

[P74] Peter Gorm Larsen, Nick Battle, Miguel Ferreira, John Fitzgerald, Ken-
neth Lausdahl, and Marcel Verhoef. The Overture Initiative – Integrat-
ing Tools for VDM. SIGSOFT Softw. Eng. Notes, 35(1):1–6, January
2010.

[P89] Kenneth Lausdahl, Hans Kristian Agerlund Lintrup, and Peter Gorm
Larsen. Connecting UML and VDM++ with Open Tool Support. In Ana
Cavalcanti and Dennis R. Dams, editors, Proceedings of the 2nd World
Congress on Formal Methods, volume 5850 of Lecture Notes in Com-
puter Science, pages 563–578, November 2009. Springer-Verlag. ISBN
978-3-642-05088-6.

[P83] Kenneth Lausdahl. Translating VDM to Alloy. In Einar Broch Johnsen
and Luigia Petre, editors, Integrated Formal Methods, volume 7940 of
Lecture Notes in Computer Science, pages 46–60. Springer Berlin Hei-
delberg, 2013. 10th International Conference, IFM 2013.

http://dl.acm.org/ft_gateway.cfm?id=1668864&type=pdf&CFID=140697333&CFTOKEN=75149541
http://dl.acm.org/ft_gateway.cfm?id=1668864&type=pdf&CFID=140697333&CFTOKEN=75149541
http://dl.acm.org/ft_gateway.cfm?id=1668864&type=pdf&CFID=140697333&CFTOKEN=75149541
http://dl.acm.org/ft_gateway.cfm?id=1668864&type=pdf&CFID=140697333&CFTOKEN=75149541
http://link.springer.com/chapter/10.1007%2F978-3-642-05089-3_36
http://link.springer.com/chapter/10.1007%2F978-3-642-05089-3_36
http://link.springer.com/chapter/10.1007%2F978-3-642-05089-3_36
http://link.springer.com/chapter/10.1007%2F978-3-642-05089-3_36
http://link.springer.com/chapter/10.1007%2F978-3-642-05089-3_36
http://link.springer.com/chapter/10.1007%2F978-3-642-05089-3_36
http://link.springer.com/chapter/10.1007/978-3-642-38613-8_4
http://link.springer.com/chapter/10.1007/978-3-642-38613-8_4
http://link.springer.com/chapter/10.1007/978-3-642-38613-8_4
http://link.springer.com/chapter/10.1007/978-3-642-38613-8_4

1.8 Published Work 15

[P87] Kenneth Lausdahl, Peter Gorm Larsen, and Nick Battle. A Determin-
istic Interpreter Simulating a Distributed Real Time System using VDM.
In Shengchao Qin and Zongyan Qiu, editors, Formal Methods and Soft-
ware Engineering, volume 6991 of Lecture Notes in Computer Science,
pages 179–194, 2011. Springer-Verlag. ISBN 978-3-642-24558-9.

[P79] Peter Gorm Larsen, Kenneth Lausdahl, and Nick Battle. Combinato-
rial Testing for VDM. In Proceedings of the 2010 8th IEEE International
Conference on Software Engineering and Formal Methods, SEFM’10,
pages 278–285, Washington, DC, USA, September 2010. IEEE Com-
puter Society. ISBN 978-0-7695-4153-2.

[P107] Claus Ballegaard Nielsen, Kenneth Lausdahl, and Peter Gorm Larsen.
Combining VDM with Executable Code. In John Derrick, John Fitzger-
ald, Stefania Gnesi, Sarfraz Khurshid, Michael Leuschel, Steve Reeves,
and Elvinia Riccobene, editors, Abstract State Machines, Alloy, B, VDM,
and Z, volume 7316 of Lecture Notes in Computer Science, pages 266–
279, 2012. Springer-Verlag. ISBN 978-3-642- 30884-0.

[P125] Augusto Ribeiro, Kenneth Lausdahl, and Peter Gorm Larsen. Run-
Time Validation of Timing Constraints for VDM-RT Models. In Sune
Wolff and John Fitzgerald, editors, Proceedings of the 9th Overture Work-
shop, number ECE-TT-2 in Technical Report Series, pages 4–16, June
2011.

[P86] Kenneth Lausdahl, Joey W. Coleman, and Peter Gorm Larsen. The Ex-
ecution Semantics of VDM Real-Time in a Co-Simulation Environment.
Submitted for publication to the International Journal on Software Tools
for Technology Transfer, June 2013.

[P18] Joey W. Coleman, Kenneth Lausdahl, and Peter Gorm Larsen. Seman-
tics for Generic Co-simulation of Heterogenous Models. Submitted for
publication to the Formal Aspects of Computing journal, April 2013.

1.8.2 Other Publications

The publications listed here have not been selected for inclusion in this thesis
but are all available from the respective publishers.

[P75] Peter Gorm Larsen, Nick Battle, Miguel Ferreira, John Fitzgerald, Ken-
neth Lausdahl, and Marcel Verhoef. The Overture Initiative – Integrat-

http://link.springer.com/chapter/10.1007%2F978-3-642-24559-6_14
http://link.springer.com/chapter/10.1007%2F978-3-642-24559-6_14
http://link.springer.com/chapter/10.1007%2F978-3-642-24559-6_14
http://link.springer.com/chapter/10.1007%2F978-3-642-24559-6_14
http://link.springer.com/chapter/10.1007%2F978-3-642-24559-6_14
http://dx.doi.org/10.1109/SEFM.2010.32
http://dx.doi.org/10.1109/SEFM.2010.32
http://dx.doi.org/10.1109/SEFM.2010.32
http://dx.doi.org/10.1109/SEFM.2010.32
http://dx.doi.org/10.1109/SEFM.2010.32
http://link.springer.com/chapter/10.1007%2F978-3-642-30885-7_19
http://link.springer.com/chapter/10.1007%2F978-3-642-30885-7_19
http://link.springer.com/chapter/10.1007%2F978-3-642-30885-7_19
http://link.springer.com/chapter/10.1007%2F978-3-642-30885-7_19
http://link.springer.com/chapter/10.1007%2F978-3-642-30885-7_19
http://link.springer.com/chapter/10.1007%2F978-3-642-30885-7_19
http://eng.au.dk/fileadmin/DJF/ENG/PDF-filer/Tekniske_rapporter/Technical_Report_ECE-TT-2-SAMLET.pdf
http://eng.au.dk/fileadmin/DJF/ENG/PDF-filer/Tekniske_rapporter/Technical_Report_ECE-TT-2-SAMLET.pdf
http://eng.au.dk/fileadmin/DJF/ENG/PDF-filer/Tekniske_rapporter/Technical_Report_ECE-TT-2-SAMLET.pdf
http://eng.au.dk/fileadmin/DJF/ENG/PDF-filer/Tekniske_rapporter/Technical_Report_ECE-TT-2-SAMLET.pdf
http://eng.au.dk/fileadmin/DJF/ENG/PDF-filer/Tekniske_rapporter/Technical_Report_ECE-TT-2-SAMLET.pdf

16 1 Introduction

ing Tools for VDM. In Min Zhang and Volker Stolz, editors, Harnessing
Theories for Tool Support in Software, pages 9–19, November 2010.

[P108] Claus Ballegaard Nielsen, Kenneth Lausdahl, and Peter Gorm Larsen.
Using the Overture Tool as a More General Platform. In Franco Maz-
zanti, editor, iFM 2012 & ABZ 2012 - Proceedings of the Posters & Tool
demos Session, pages 1–34. CNR-ISTI, June 2012.

[P90] Kenneth Lausdahl and Augusto Ribeiro. Automated Exploration of Al-
ternative System Architectures with VDM-RT. In Sune Wolff and John
Fitzgerald, editors, Proceedings of the 9th Overture Workshop, number
ECE-TT-2 in Technical Report Series, pages 17–31, June 2011.

[P125] Augusto Ribeiro, Kenneth Lausdahl, and Peter Gorm Larsen. Run-
Time Validation of Timing Constraints for VDM-RT Models. In Sune
Wolff and John Fitzgerald, editors, Proceedings of the 9th Overture Work-
shop, number ECE-TT-2 in Technical Report Series, pages 4–16, June
2011.

[P91] Kenneth Lausdahl, Marcel Verhoef, Peter Gorm Larsen, and Sune Wolff.
Overview of VDM-RT Constructs and Semantic Issues. In Ken Pierce,
Nico Plat, and Sune Wolff, editors, Proceedings of the 8th Overture
Workshop, number CS-TR-1224 in Technical Report Series, pages 57–67,
September 2010.

[P85] Kenneth Lausdahl, Joey W. Coleman, and Peter Gorm Larsen. Se-
mantics of the VDM Real-Time Dialect. Technical Report ECE-TR-13,
Aarhus University, April 2013.

[P84] Kenneth Lausdahl, Joey W. Coleman, and Peter Gorm Larsen. Towards
a Co-simulation Semantics of VDM-RT/Overture and 20-sim. In Nico
Plat, Claus Ballegaard Nielsen, and Steve Riddle, editors, Proceedings of
the 10th Overture Workshop, number CS-TR-1345 in Technical Report
Series, pages 30–37. Computing Science, Newcastle University, August
2012.

In addition to the above listed publications, a new book is being prepared as
a follow-up to the DESTECS project. The author of this PhD thesis will also
contribute as co-author of chapters based on tool usage and the semantics of
the co-simulation that forms part of this PhD project. Finally, the author of
this PhD thesis has been co-author of [P128, P155], but these publications are
not related to the research conducted in this PhD project.

http://eng.au.dk/fileadmin/DJF/ENG/PDF-filer/Tekniske_rapporter/Technical_Report_ECE-TT-2-SAMLET.pdf
http://eng.au.dk/fileadmin/DJF/ENG/PDF-filer/Tekniske_rapporter/Technical_Report_ECE-TT-2-SAMLET.pdf
http://eng.au.dk/fileadmin/DJF/ENG/PDF-filer/Tekniske_rapporter/Technical_Report_ECE-TT-2-SAMLET.pdf
http://eng.au.dk/fileadmin/DJF/ENG/PDF-filer/Tekniske_rapporter/Technical_Report_ECE-TT-2-SAMLET.pdf
http://eng.au.dk/fileadmin/DJF/ENG/PDF-filer/Tekniske_rapporter/Technical_Report_ECE-TT-2-SAMLET.pdf
http://eng.au.dk/fileadmin/DJF/ENG/PDF-filer/Tekniske_rapporter/Technical_Report_ECE-TT-2-SAMLET.pdf
http://eng.au.dk/fileadmin/DJF/ENG/PDF-filer/Tekniske_rapporter/Technical_Report_ECE-TT-2-SAMLET.pdf
http://eng.au.dk/fileadmin/DJF/ENG/PDF-filer/Tekniske_rapporter/Technical_Report_ECE-TT-2-SAMLET.pdf
http://eng.au.dk/fileadmin/DJF/ENG/PDF-filer/Tekniske_rapporter/Technical_Report_ECE-TT-2-SAMLET.pdf
http://www.cs.ncl.ac.uk/publications/trs/papers/1224.pdf
http://www.cs.ncl.ac.uk/publications/trs/papers/1224.pdf
http://www.cs.ncl.ac.uk/publications/trs/papers/1224.pdf
http://www.cs.ncl.ac.uk/publications/trs/papers/1224.pdf
http://www.cs.ncl.ac.uk/publications/trs/papers/1224.pdf
http://www.cs.ncl.ac.uk/publications/trs/papers/1345.pdf
http://www.cs.ncl.ac.uk/publications/trs/papers/1345.pdf
http://www.cs.ncl.ac.uk/publications/trs/papers/1345.pdf
http://www.cs.ncl.ac.uk/publications/trs/papers/1345.pdf
http://www.cs.ncl.ac.uk/publications/trs/papers/1345.pdf
http://www.cs.ncl.ac.uk/publications/trs/papers/1345.pdf

1.9 Outline and Reading Guide 17

1.9 Outline and Reading Guide

This thesis is structured in two parts. Part I, gives an overview of the contri-
butions based on a selection of the publications carried out as part of this PhD
project. Contributions are numbered e.g. [C1], and framed. Part II, contains a
selected subset of the actual publications that is the base of the contributions;
all publications in this part start with a description about where the paper was
published followed by the paper as published.

The publications introduced in Part I all fall within the topic of “En-
hancing Formal Modelling Tool Support with Increased Automation”. The
purpose of this part is to give an overview of the publications while introduc-
ing relevant background material and related work. Part I introduces a total
of 15 publications. To make it possible to distinguish these publications from
other references, they are prefixed with “P” e.g. [P89].

Part I is structured as follows; after the introduction in this chapter, Chap-
ter 2 presents the publications: [P74, P75, P108, P89, P83, P87, P107, P79,
P90, P125] all concentrating on Tool Automation. The chapter starts by giving
some background about the context in which the work has been carried out,
followed by a description of the work related to tool automation. The contri-
butions described in this chapter primarily focuses on tool aspects of valida-
tion. This includes both interpretation of discrete-event systems and reactive
control systems that require high-fidelity representation of the environment.

Chapter 3 introduces the Semantics work that the tool automation is based
upon with focus on the new semantics for VDM-RT and a co-simulation
framework. This chapter is based on the publications: [P91, P85, P86, P84,
P18]. Finally, Chapter 4 concludes and discusses the contributions12 from
Chapter 2 and 3, and how they relate to each other and fulfil the objectives
from Section 1.6.

Part II lists a selection of papers that is written by the author of this PhD
thesis or in collaboration with others. Each chapter presents one or two pub-
lications and starts by listing the bibliography entry for the publication used
throughout this thesis followed by the publication in its original published
form.

12 The electronic version of this thesis uses hyper-links to link each contribution reference
to its definition.

2
Tool Automation

This chapter explains how the Overture tool has developed over time and how
this PhD project has been involved in the development of many of the current
features and how it influenced the development of the internal architecture.
The current status of the Overture features is shown in Figure 2.1 which
groups the features into four groups: (1) The development group includes ba-
sic features needed for a Integrated Development Environment (IDE), (2) The
validation group includes different feature all related to interpretation, (3) The
translation group includes different translators for other modelling or pro-
gramming languages, (4) The verification group includes features for model
checking or proving properties about VDM models. The work carried out
during this PhD thesis is mainly focused on the three first groups where work
has been done in the development group to create a framework to support the
research carried out in the verification and translation groups.

2.1 Overture in a Historical Perspective

The Overture open source initiative was started in 2003 by the authors of [33].
From the beginning, the mission of the Overture project was defined as:

• To provide an industrial-strength tool that supports the use of precise
abstract models in any VDM dialect for software development.

• To foster an environment that allows researchers and other interested
parties to experiment with modifications and extensions to the tool and
the different VDM dialects.

In the first years of the Overture project, work was solely performed by MSc
students starting with [142, 143] with a focus on using XML as the internal
data structure. This was followed by [109] where the Abstract Syntax Tree
(AST) was manually implemented resulting in numerous bugs. As a reaction

19

20 2 Tool Automation

AST

Syntax Highlighting

Syntax Check

Type Check

Refactoring

Interpreter

(with debug features)

Test Automation

External Executable Code

Real-Time Log Viewer

Model Checking

Interactive Proof

Automatic Proof

Proof Obligation

Generation

Code Generation

Reverse Engineering

GUI

Generators

UML

SysML

Available Prototype available Not yet started

AADL

Alloy

Completion

Figure 2.1: Overture Overview

to this Marcel Verhoef suggested a way to automate the classes for the un-
derlying AST by producing a tool called ASTGen. A key feature of ASTGen
was the ability to automatically generate both the java code implementing the
different nodes in the AST. This is to be used inside the Eclipse integrated
development environment for the implementation of the Overture tool and in
addition a possibility to generate the corresponding AST at a VDM level.

The AST representation at the VDM level was desirable in order to enable
development of core components using VDM itself in the same kind of boot-
strapping fashion that was successfully applied in the development of VDM-
Tools [73]. This approach has been used in the following MSc projects: static
semantics [16], proof support using HOL [149], connection to JML [151],
test automation [131] and coupling to UML2.0 [88].

In parallel with these efforts a stand-alone command-based tool called
VDMJ was developed by Nick Battle [8]. An attempt to build a common

2.2 Development 21

Overture front-end using Eclipse was then made in [104]. This naturally also
meant that basic conversions between the AST generated using ASTGen and
the AST inside VDMJ was needed.

The Eclipse front-end was then subsequently significantly improved and
extended with full interpretation and debug capability using VDMJ. Fur-
thermore, both the Eclipse front-end and VDMJ were updated to enable the
DESTECS project to use Overture as its platform.

During 2012 the development of Overture struggled with an ever increas-
ing effort required to maintain the multiple ASTs used by the various features.
Therefore, a new attempt was made to create a new common AST that could
meet the analysis requirements of all existing features of Overture but at the
same time make it flexible and extensible to prepare for new features. It was
decided to create a tool that could generate the AST and visitors supporting
any analysis code needed.

The new tool AST-Creator, inspired by ASTGen, was developed en-
abling the automatic generation of a new common Overture AST based on
the VDMJ internal structure. This new tool was developed to create a new
AST for Overture with improved analysis features for e.g. translators. This
included a new feature with ability to extend the Overture AST in a way
that allowed reuse of all existing features. The Overture front-end and VDMJ
were converted to use the new AST in the period between summer 2012
to spring 2013. As a part of this PhD project, a version of the coupling to
UML [P89] and a new translator for VDM to Alloy [P83] were developed
using the new analysis feature after the successful conversion of Overture.

Pre-dating this PhD thesis and the DESTECS project, we published a
vision paper about the Overture tools for VDM [P74] describing the then
current status and further plans for the Overture community. That then later
was followed-up by a number of tool automation papers [P78, P75, P108]
published during this PhD project to make others aware of the active research
on tools for VDM.

2.2 Development

The Overture platform was chosen as the basic research platform for this PhD
project. Before this PhD project, a number of features were developed inde-
pendently of each other, and as a result, a number of different ASTs for the
VDM language were used internally. During this PhD project, features were
upgraded to make use of the same AST, and thus allowing a better integration;
this resulted in a modern IDE that both includes editing capabilities as well as

22 2 Tool Automation

different kinds of analysis for the VDM language. Most of the work carried
out during this development did not lead to any direct publications; the most
important contribution was the influence on the design of the internal AST for
which a new language and generator was developed. This new generator was
used to solve the issue with multiple ASTs [82], and at the same time make
it easier to implement various kinds of analysis e.g. type check, translations
for UML and Alloy. The outcome of this development effort have been a new
IDE that is designed with extensibility in mind that was able to serve as a
platform for the rest of the work described in this chapter.

2.3 Validation

Validation of specifications can be carried out in a number of different ways
e.g. manual inspection, proof of properties of the system or execution. This
section describes various contributions related to the execution of VDM spec-
ifications. It can be useful for the user to demonstrate the behaviour of a
specification before implementation costs are accumulated [43, 72, 46]. This
gives the user hands-on experience early in the specification process. In [48]
they suggest that this leads to over-specification of systems, and that only
system properties should be recorded so that one does not exclude any possi-
ble valid implementations. However, others [43, 72] argue that only minimal
design decisions are needed to make specifications executable. This makes
validation through execution a cost-effective supplement to e.g. proofs [46].

The VDM language is generally non-executable but it contains a subset
that can be executed [77], earlier work has also been carried out to extend the
executable subset with implicit function and operations [42]. In this section
we present a way to interpret VDM specifications, improve test generation
through automation and how to improve analysis and the representation of
embedded systems using VDM-RT. We also show how a specification can be
graphically visualized and integrated with existing code.

2.3.1 Interpretation

Simulation of a system is an easy way to gain knowledge about design options
before any formal analysis is carried out. One way to efficiently find problems
with a formal model is to evaluate expressions using the definitions of the
model. In the event that such expressions do not yield the expected values, it
is essential to be able to deterministically reproduce the problem, for example
by debugging the model using a deterministic interpreter. The VDM language

2.3 Validation 23

contains looseness that allows the modeller to gain abstraction and to avoid
implementation bias; to perform simulation, tool support must provide an
interpreter and debugging environment that allows the designer to investi-
gate and reproduce problems; as a result the interpreter must be able to deal
with looseness deterministically both during interpretation and debugging,
otherwise it may not be possible to reproduce problems.

In [P87] we presented a deterministic interpreter and debugger that sup-
ports all VDM dialects. The interpreter is based on the semantics given in [146,
52, 145] and is able to interpret the executable subset of the different VDM
dialects including looseness [77] and non-determinism. A specification that
contains looseness may have many semantic models but validation through
interpretation only selects a single model that can be executed at the time. As
a result, only a single semantic model is executed leaving the rest unexplored.

Validation of specifications is not a new approach but has been done by
others like VDMTools [77] from which this work was mainly inspired. The
ProB tool [95] for the B language focuses on execution of implicit defini-
tions. The ProB tool has also been used for Z specifications [118]; none of
the other interpreters/translators to programming languages of the Z nota-
tion [23, 141, 11, 132] include the notion of concurrency as presented in our
work. The POOSL approach has significant similarities with VDM-RT and
as opposed to the other tools for B and Z includes the ability to describe
distributed systems [140, 38]; they resolved non-determinism by always se-
lecting the first option when a finite collection of possibilities exist but they
do not have the interactive debugging functionality as described in our work.
Our work differs from previous work by mainly focusing on the deterministic
execution/debugging of distributed and concurrent systems, and the support
for run-time termination check of recursive functions.

This section is outlined with a description of the sequential interpretation
of VDM in Section 2.3.1.1, followed by the concurrent interpretation in Sec-
tion 2.3.1.2 and finished with Section 2.3.1.3 about combining the interpreter
with external executable code.

2.3.1.1 Interpreting Sequential Models
The interpretation of sequential specifications starts out by converting the
definitions from the model into their semantic equivalent; this is achieved
by a tree traversal. The VDM language was not designed for interpretation
and therefore the process of this transformation can be complex because
of the potential dependencies between definitions. The interpreter operates
with specific values and not symbolic values, and therefore the initialization

24 2 Tool Automation

of a specification amounts to the evaluation of the state, either in VDM-
SL state definitions or in VDM++ or VDM-RT static class definitions. The
initialization is guided by the definition dependency ordering and determinis-
tically initializes definitions that do not have an explicit ordering; as a result
a re-initialization always produces the same initial state.

The execution of a function or operation in the interpreter is in the sim-
plest case carried out by evaluation of the argument expressions followed by
the body of the function or operation. However, the interpreter is also capa-
ble of checking pre- and post-conditions, type and state invariants, recursive
measures and perform general runtime type checking during execution. The
complete execution order is as follows:

1. Type check function arguments

2. Check function pre-condition

3. Check measure if defined

4. Evaluate function body

5. Type check function result

6. Check function post-condition

The new addition here is the measure check that checks for termination in
case of a recursive function. The measure check uses a special measure func-
tion [124] that must be defined; this function takes the same arguments as
the recursive function it is a measure of but must have a return type of N.
The measure must be defined in terms of its arguments so that it is strictly
decreasing for every nested call in the recursion function1.

Looseness in VDM can be illustrated by e.g. the let-be expression, the
expression represents a choice as shown in let a in set {1,2} in awhere this
expression denotes either 1 or 2. This is deliberately left as an implementation
choice from a refinement perspective. To interpret such models the interpreter
chooses one of the possible semantic models. In order for the interpreter to
produce executions, it must choose one of the possible semantic models in
order to produce a deterministic interpretation. The iterations over a set of
elements poses a similar challenge where the order of the set must be the
same for every execution. As a result, this interpreter can deterministically
execute sequential models containing looseness and therefore it is easy to

1 Note there are still cases where it is impossible to express a measure functions i.e. directly
over tree structures

2.3 Validation 25

reproduce any problems discovered during execution for later inspection. The
interpreter only selects a single semantic model to execute for performance
reasons; it is theoretically possible to calculate all semantic models from an
executable specification as described in [71].

Contribution 1. Run-time termination checks of recursive functions
using measure functions.

2.3.1.2 Interpreting Concurrent Real-Time models
Interpretation of concurrent and concurrent real-time systems is in itself not
new, and has been done in e.g. LOTOS [55] with CSP [51] and CSS [102]
and TCOZ [97] for Timed CSP [123]. However, the VDM language differs
from CSP and Timed CSP by using a state based approach alternative to the
algebraic approach used in CSP. The approach taken in TCOZ is to combine
Timed CSP with a state based approach (Object Z). This is to some extent
similar to VDM-RT which also includes timing primitives and has support
for modelling of multi-threaded concurrency.

The sequential interpretation presented until now only reflects execu-
tion of VDM-SL or non-threaded VDM++ specifications and thus results in
a single threaded evaluation that always produces the same result because
the interpreter treats all loose operations as under-determined rather than
non-deterministic [77]. Under-determined denotes the set of all possible de-
terministic implementations whereas a non-deterministic approach denotes
all possible implementations including non-deterministic implementations.

To simulate specifications of real-time systems that include concurrency
and distribution the initialization process must be extended with deployment
of objects to CPUs and configuration of the system topology that the inter-
preter must use during the evaluation. The VDM-RT dialect supports a more
precise simulation of how a system behaves, not only with respect to con-
currency but also how the interpreted execution time influences the model.
The VDM-RT dialect is defined in terms of computational resources such
as CPUs and busses which each can have maximum a single running thread
at a time. The interpreter must use this information and that of the special
system class to determine whether interprocess communication over a bus
is required.

The VDM scheduling is responsible for scheduling resources and the
control of the interpreted execution time, and is controlled by a Resource-
Scheduler that is based on Resources as shown in Figure 2.2. A resource is

26 2 Tool Automation

represented by a separate limited resource in the model, such as a CPU or
a bus; A CPU is limited to only run one thread at a time while busses are
limited to only communicate one message at a time, this creates a queue of
activities per resource. The resource scheduler is responsible for scheduling
the execution of resources.

Resource Scheduler

BUS ResourceCPU Resource CPU Resource

ThreadThread
Running
Thread

ThreadThread
Running
Thread

Figure 2.2: Overview of the VDM Resource Scheduler.

To use the same scheduler for simulation of VDM-SL and VDM++ spec-
ifications that exclude the notion of time, a special CPU resource (called a
virtual CPU) is used and no bus resources are available. The virtual CPU
has an infinitely fast simulation time and therefore does not put any timing
constraints on the evaluation of the models. Every resource has a scheduling
policy which is responsible for determining which thread is the best to run
next, and for how long it should be allowed to run (its time-slices).

With VDM-RT, in the event that the active thread is trying to move in-
terpreted execution time, the resource will identify this fact. The resource
scheduler is responsible for waiting until all resources are in this state, and
then finding the minimum time step that would satisfy at least one of the
waiting threads. The interpreted execution time is moved forward at this
point, and those threads that have their time step satisfied are permitted to
continue, while those that need to wait longer remain suspended. This reflects
the semantics of VDM-RT as defined in [145, 52] and Chapter 3.

A VDM extract of this behaviour is specified in Listing 2.1. The initial
loop establishes whether any resources can progress. The CanProgress
operation does a compute step for the resource, if possible. The progress-
ing flag will be true if any resource was able to progress. The getTime-
step operation either returns the timestep requested by the resource, or nil,
indicating that it is not currently waiting for time to advance. If no resource

2.3 Validation 27

can progress and no resource is waiting for a timestep, the system is dead-
locked. Otherwise, if no resource can progress and at least one is waiting for
a timestep, then system time can advance by the smallest requested amount.
In this event, every resource is adjusted by the minimum step, which will
result in at least one resource being able to progress. This scheduling process
continues until the original expression supplied by the user completes its
evaluation. Note that the set resources is interpreted here according to the
looseness defined in [77] posing a deterministic ordering on the resources.�
progressing := false;
for all resource in set resources do
-- record if at least one resource is able to progress
progressing := CanProgress(resource) or progressing;

let timesteps =
{resource.getTimestep() | resource in set resources}\{nil}

in
-- nobody can progress and nobody is waiting for time
if not progressing and timesteps = {}
then error -- deadlock is detected
-- nobody can progress and somebody is waiting for time
elseif not progressing and timesteps <> {}
then let mintime = Min(timesteps)
in

(SystemClock.advance(mintime);
for all resource in set resources do
AdvanceTime(resource,mintime))

else -- continue scheduling
� �
Listing 2.1: Overview of the internal scheduling sequence.

Debugging multi-threaded programs is another challenge not solved by
simply using a deterministic interpreter. Non-deterministic behaviour can eas-
ily be introduced if a debugger suspends a single thread in a multiple threaded
program. This causes non-deterministic scheduling since the suspended thread
is excluded from scheduling, thus decreasing the number of threads in the
scheduling algorithm. This introduces non-deterministic behaviour during
debug which is difficult to repeat, however, this approach is common and
both used by the Java debugger in Eclipse and the C# debugger in Visual
Studio.

The solution chosen for the VDM interpreter suspends all threads when a
breakpoint is reached; this does not in itself ensure deterministic debugging

28 2 Tool Automation

but the resource scheduler described above has the overall control and thus
controls that the overall scheduling order is preserved.

Contribution 2. Deterministic interpretation and debugging of dis-
tributed and concurrent systems using a deterministic scheduler.

2.3.1.3 Combining VDM with Executable Code
Formal methods are generally difficult to comprehend for people who are not
already used to them and this poses a challenge when the formal specification
must be compared to the users expectations. Furthermore, links between a
specification and external subsystems that are not modelled can be unclear.

In [P107] we present work that allows one to build an interactive graphical
representation of an executable specification, including the ability to integrate
with external code. The work is inspired by previous work in VDMTools [35]
that supported a CORBA link [138] and dynamic loading of DLLs [139].
However, both these approaches were challenging to use compared to our
solution. The main difference is that we do not require any syntactic changes
to the language. The interpretation of the specification is kept consistent by
run-time checks of all calls to external code; including checks for pre/post-
conditions, invariants and run-time type checking. The integration of external
code still allows the user to debug the specification.

The approach for Coloured Petri Nets: Comms/CPN [44] is a standard
ML library that augments e.g. DESIGN/CPN with the necessary infrastruc-
ture to establish communication between a CPN model and external pro-
cesses. The Comms/CPN library enables two-way communication between
the CPN model and the external process using TCP/IP, by defining generic
send and receive-functions which accept a byte stream of data. Encoding/de-
coding functions have to be implemented to marshal data for transmission.
Comms/CPN has the advantage of using TCP/IP which allows heterogeneous
clients to interact with the simulator, while the send/receive approach has the
weakness of potentially blocking the simulator while waiting for data trans-
mission and it requires the external process to implement some conveying,
and mapping of the received data into concrete functionality e.g. an update
of a graphical animation. Comms/CPN differs from our solution since they
need to define the connection points used for the TCP/IP connections.

The successor of DESIGN/CPN is Access/CPN [154] which provides a
Java interface to the CPN simulator and thus provides a simpler higher level
interface. Communication is still done through TCP/IP and this still requires

2.3 Validation 29

the definition of connection points. Another approach for Event-B, is B-
Motion Studio [67] that makes it possible to create visualizations via a visual
editor, and it establishes a link to the model using Event-B expressions as
gluing code. The key feature is that it allows a for faster creation of graphical
representations without the knowledge of graphical programming. Its focus
on easy visualization comes at the cost of flexibility, as users who might want
to do advanced features, in particular parts of the visualisation, will lack the
versatility provided by access to lower-lever graphical programming. To our
knowledge there is no possibility of interacting with the model or visuali-
sation through external executable code. The easy visualization provided by
B-Motion Studio would be beneficial for VDM; however, it cannot be directly
mapped to VDM because of the dynamic construction of objects allowed in
VDM. This dynamic construction of objects is handled in our solution, and
a solution is provided that integrates with a graphical user interface gener-
ator [111, 110] that in-part resembles B-Motion Studio. Additionally, our
solution also has an integration with external legacy code, which is not the
focus of B-Motion Studio.

Contribution 3. A foundation for integration of graphical user interfaces
with an interpreter for run-time manipulation of a specifications.

Contribution 4. Integration of external code with the interpretation
of specifications without changes to the syntax of the formal language,
while preserving the internal run-time checks.

2.3.2 Automatic Testing of VDM Specifications

Testing can be used to gain confidence in a specification, but to obtain suffi-
cient coverage of even small specifications a significant effort is required by
the user. A solution is to use automatic testing that can generate test cases
which then can be checked against the specification. However, this limits
testing to only consider run-time errors; a test oracle would also be required
to test for defects not resulting in run-time errors.

In [P79] we introduce a combinatorial testing tool that is based on ear-
lier work conducted with the TOBIAS tool by the research group led by
Yves Ledru [113, 94, 92, 93], and related to recent work conducted on the

30 2 Tool Automation

generation of test cases from model checkers [5, 112, 126, 39]. Combina-
torial testing in VDM involves the automatic generation and execution of
large collections of test cases derived from templates provided in the from
of trace definitions added to the VDM language. This approach uses regular
expressions to describe possible sequences of operation calls and utilises the
run-time checks for VDM to determine if a single test sequence yields a valid
result. The results are groups into three categories:

failed – if a run-time error occur during the execution of a test sequence, or

inconclusive – if the test contains a call to an operation which pre-condition
does not hold, which indicates that the generated test was not a valid test
for the specification at hand;

passed – this indicates that no run-time errors occurred during execution and
that the test is correct in relation to the specification.

The number of tests generated though automatic test generation quickly
reaches thousands or even millions. Therefore, it is favourable to reduce
the test set while keeping them as representative as possible. Two reduction
techniques can be applied: (1) A random selection technique, or (2) a shape
reduction technique. The shape reduction technique is divided into three types
of reductions where the simplest type defines a shape as a sequence of named
operation calls, regardless of their argument values. By guaranteeing to retain
at least one example of every test shape, the reduced set of tests can claim
to be more representative than e.g. a random selection. The two other shape
reduction techniques is based on the injection of explicit variable assignments
into test sequences. This enables the shape reduction to take variables into
consideration in the analysis, either simply by their name and position in the
test sequence, or by both considering their name and assigned value. The
effect of using the latter two techniques is finer grained shapes that therefore
limits the degree of reduction. The following example from [P79] illustrates
the syntax, and what effect the reduction techniques have on the number of
tests generated:�

T: let {x,y,-} in set {{1,2,3},{2,3,4}} in
(op1(x, y) | op2(x + y)) | op1(1, 2)
� �

This trace expands to 25 tests: each subset produces six pair-matches for x
and y, giving 12 pairs; each pair produces a call to op1 and op2, giving 24
tests; lastly, there is one call to op1 on the end, giving a total of 25.

2.3 Validation 31

Random reduction: If we ask for a test reduction of 0.01 (i.e. 1% of the
original 25), then using a random reduction technique, we would select
one test at random – the reduction will never select less than one test.

Simple shape reduction: If we ask for a simple shaped reduction of 1%, we
select two tests at random: one is a call to op1, and one is a call to op2.
This is because these are the only two shapes in the set of 25, and the
reduction guarantees to retain at least one test of each shape.

Shape reduction with variable names: If we ask for shaped reduction of
1% with variable names, we get three tests: two are as with simple
shaped reduction, noting that x and y are set, and the third is the op1(1,
2) call which does not involve any variable settings and therefore is now
regarded as a different shape.

Shape reduction with variable values: Lastly, if we ask for shaped reduc-
tion of 1% with variable values, we get 21 tests: the only tests missing
from the original 25 are those which were duplicated because of the
presence of 2 and 3 in both subsets – i.e. there are two ways for the
variables to be set to 2 and 3, and each of these produces two tests
because of the op1/op2 alternative, so four duplicates are missing from
the total, giving 21 tests.

Note that as the specification of shapes becomes more detailed, it is not pos-
sible to achieve the requested 1% reduction in the number of tests. This is
a natural consequence of the reduction process retaining at least one test of
each shape.

It is worthwhile noting that we extended the combinatorial testing in [P79]
to also incorporate the execution of operations that start concurrent threads in
VDM++ and VDM-RT so that possible deadlock situations can be detected.
However, to fully exploit this we need to extend the syntax to include the
non-deterministic VDM statement, which in the interpreter simply executes
the statements it contains in a non-deterministic order. In a combinatorial
testing context, this construct would expand to all possible orderings of the
operation calls included.

Many different approaches to test automation based on formal methods
exist [24, 45, 114, 49, 144] and our work on combinatorial testing, is based
on the work of Ledru [113, 94, 92]. The main difference in our work is the
fact that we have extended the VDM dialects with syntax for trace definitions
rather than using an external tool. In addition, we have devoted significant

32 2 Tool Automation

effort to enable the user to work efficiently with combinatorial testing by
enhancing the number of test cases that can be handled and by creating a user
interface that enables efficient access to the defects discovered.

In earlier work, the performance of combinatorial testing techniques has
been criticized [17]. However, in that work test sequencing was not addressed
at all, so they could not bring the system under test into a particular state as
we can do with the approach presented here. In that respect, from a test se-
quencing perspective, combinatorial testing is more closely related to model
checking [5, 112, 126, 39]. However, model checkers are typically limited by
the total number of classes in the system, whereas here we can directly select
test scenarios of interest.

Contribution 5. Integration of combinatorial testing in the VDM lan-
guage, including: a) a new test reduction techniques using variable
bindings to define new shape reduction types b) a new construct to
express parallelism.

2.3.3 Using The Real-Time Extensions

The real-time extension in VDM aims to give a user the ability to analyse how
the timing behaviour of the specification changes under different deployment
configurations. This information can then be used to assist a user in answering
some of the common design questions relating to deployment configurations,
which may include the following [145]:

(a) Does the proposed architecture meet the performance requirements of all
applications?

(b) How robust is the chosen architecture with respect to changes in the
application or architecture parameters?

(c) Is it possible to replace components by cheaper, less powerful equivalents
to save cost while maintaining the required performance targets?

The interpreter described in Section 2.3.1.2 is able to simulate real-time
systems that include distribution but lacks a way to check time constraints,
and thus leaves the user with no more knowledge than for a regular non-
distributed system. Therefore, the analysis of real-time systems must include

2.3 Validation 33

timing requirements; a real-time system can only be considered correct if the
system reacts with the correct behaviour within a certain time frame.

In previous work [30], a number of validation conjectures were intro-
duced to describe the temporal relationship between system-level events that
can be observed in an execution trace from a simulation of a VDM-RT model
using VDMTools. An example of a conjecture for a car navigation specifica-
tion is shown in Listing 2.2; it requires that a volume change must be reflected
in the display of the navigation system within 35 ms.�

deadlineMet(#fin(Radio‘AdjustVolumeUp),
#fin(MMI‘UpdateScreen),
35 ms)
� �
Listing 2.2: Time Constrain Example.

The approach taken in [30] using post-analysis of an execution trace limits
the analysis to small examples with simple conjectures due to the amount
of data required for their evaluation. Validation conjectures are specified us-
ing trigger events associated with operations and expressions over instance
variables, and may require a deadline to be met, a separation or required
separation between calls. A trigger event indicates that the conjecture must
be checked when the event occurs. Events can be one of the following: re-
quest, activate or finished; which indicates different stages of the evaluation
of operations. The consequence of being able to express conjectures based
on instance variables is that it requires all values of instance variables to be
stored every time an event included in a trigger occurs during interpretation
of a specification.

In [P125] we show how conjectures effectively can be checked during
simulation by extending the VDM interpreter. This solution only logs the
information required to visualize the execution trace, annotated with markers
showing where conjectures were violated as illustrated in Figure 2.3. As a
result, our solution is more scalable, and it is a good starting point for ex-
ploration of alternative architectures. This solution can easily be extended to
raise a run-time error when it is detected that the specification does not respect
a conjecture and thus mark the system configuration as not acceptable.

The solution presented so far gives the user the ability to access certain
aspects of the design questions presented above. However, the process of
exploring alternative system architectures is a manual process, even-though
the analysis of each architecture can be automatically evaluated using con-

34 2 Tool Automation

Figure 2.3: Visualization of an execution trace from a specification of a in-car
navigation and radio system .

jectures. The main issue is the design of the VDM system class which
combines the dependency between deployable instances with the architec-
ture. As a result, the user must manually replace this part of the specification
for each architecture that must be explored.

In [P90] we describe how automated exploration of alternative system
architectures can be achieved by changing the way VDM defines deployment.
The approach taken is to separate the deployable instances (artifacts) from the
actual deployment and in the same manner separate the constraints, (the speed
of CPUs and capacity of busses), of an architecture from its topology. This
then allows automatic generation of hardware topologies and deployments of
artifacts onto the architecture taking into account the dependencies between
the artifacts. This enables a user to quickly generate different architectures
and automatically use the conjectures to judge if an architecture is a valid can-
didate2. Figure 2.4 illustrates how the two extensions presented here extend
the functionality of the interpreter.

2 Note that this does not rank the architectures nor does it estimate cost.

2.3 Validation 35

Interpreter Timing Analysis Architecture Analysis

Figure 2.4: Illustration of how the two VDM analysis features conceptionally
extend the interpreter.

Contribution 6. Run-time check of VDM-RT timing constraints,
expressed as validation conjectures during interpretation.

Contribution 7. Automatic exploration of VDM-RT architectures.

2.3.4 Co-Simulation Extension

Modelling and analysis of real-time systems using simulation is supported
by the VDM-RT dialect. This makes it possible to model embedded con-
trollers which operates as reactive systems. However, if the reactive system
needs to control movement of e.g. mechanical devices, controlled by phys-
ical laws then only a rough approximation can be described in VDM-RT
because of its mathematical basis. While this is sufficient for a high level
specification it is insufficient for the fine tuning of control loops etc. A so-
lution is to provide a higher-fidelity model of the environment that can be
used during the simulation. Conceptionally this can be done in two ways:
either by creating a new language that has the ability to express both discrete-
event controllers and continuous-time physics, or by using multiple languages
joined in a co-simulation.

There are a number of projects that focus on simulation and co-simulation.
Ptolemy II [22] offers a heterogeneous simulation framework, where each
hierarchical diagram has its own model of computation. The project provides
a single tool where multiple domains can be combined and is implemented
by using a hierarchical model structure in which a different model of com-
putation can be used (indicated by a so-called director) on each level of
the hierarchy. Such an integrated solution is useful, but currently it uses
graphical modelling symbols which deviate too much from commonly used
symbols. Furthermore, Ptolemy II, being a generic tool, does not always meet
the necessary domain-specific requirements. Modelica [40, 15] is an object-
oriented, equation-based multi-domain language for simulating controlled

36 2 Tool Automation

physical systems; it provides a number of libraries of physical components.
A number of tools are available that can translate the Modelica language
into a format that can be simulated; one of which is jModelica3 it provides
a compiler from Modelica to C which then is compiled into DLLs. These
DLLs integrate with Python that enables user interaction. Since the Modelica
specification is compiled into executable C code debugging becomes diffi-
cult compared to our solution which interprets the specification. Cosimate4

is a backplane co-simulation tool offering interfaces to tools like Simulink,
Modelsim, Modelica etc. The tool only support time synchronization with
exchange of data between simulators every time step. Furthermore, Cosi-
mate has been tried out on the control of a mechatronic test setup [47]. The
connection between the two models involved was rather cumbersome.

The solution used in the DESTECS project5 is to use co-simulation in-
stead of creating a new language that combines languages of multiple do-
mains. One advantage of this approach is that the individual members of a
development team only needs to master a single discipline, and not e.g. both
physics/control engineering and software engineering; however, the team still
requires a combined knowledge of both disciplines. Furthermore, special mod-
elling tools for each domain would no longer be possible to use if a new
combined language was created.

The co-simulation for VDM enabled the use of a higher-fidelity envi-
ronment model by allowing a VDM-RT specification of a controller to be
co-simulated with a continuous-time model of a physical system. Each model
can be written in its own notation using standard tools already available.
To achieve this a semantics for a generic co-simulation framework has been
developed, including an extension to the VDM-RT semantics; this allows a
VDM specification to be used with the co-simulation framework presented
in Chapter 3. The interpreter has likewise been extended to meet the require-
ments stated by the co-simulation framework which primarily consists of a
protocol layer.

Figure 2.5, illustrates how the co-simulation extension extends the VDM
interpreter and how the internal control of the co-simulation framework has
been implemented into the simulation engine which is the simulation driver.

The VDM Co-Sim simulator implements a new ResourceScheduler that
is capable of respecting the time steps requested by the master simulation

3 See more about jModelica at http://www.jmodelica.org/
4 http://www.chiastek.com/products/cosimate.html
5 See www.destecs.org for more information about the DESTECS project.

http://www.jmodelica.org/
http://www.chiastek.com/products/cosimate.html
www.destecs.org

2.4 Translation 37

Interpreter

Slave
VDM Co-Sim

Simulator

Master
Co-Simulation

Engine

Slave
Continuous

Time Simulator

Figure 2.5: Illustration of the co-simulation extension of the VDM interpreter.

engine, and has the ability to commit internal state until a particular time
bound when requested upon. It also implements the communication protocol,
the functionality to update the internal state of the interpreter from a shared
co-simulation state as well as updating the co-simulation state from the in-
ternal state at the completion of a simulation step. The simulator must also
be able to handle events created during simulation. This is handled by the
creation of new asynchronous threads during a step, just before the resource
scheduler continues. This allows the newly created threads to be scheduled
under the same conditions as the existing threads within the resources of the
system. Furthermore, the simulator has been optimized, reducing the number
of synchronizations with the master; this was achieved by skipping commu-
nication to the master in the cases where no shared state was either read or
changed during a simulation step6. In addition to the extension of the inter-
preter the co-simulation implementation included various other utility fea-
tures (e.g. functionality to statically check if both the VDM and continuous-
time model meet the requirements stated by the co-simulation framework).
The tools have been integrated into the Eclipse framework and used in the
DESTECS project by both the researchers and the industrial partners that
each used the tool to model a specific challenge.

Contribution 8. A co-simulation extension to the VDM interpreter
enabling it to integrate into a co-simulation framework.

Contribution 9. A generic tool for co-simulation of DE and CT
specifications i.e. the DESTECS tool.

6 See about the optimization in Section 3.3.3.

38 2 Tool Automation

2.4 Translation

The tool support for a single modelling language is typically limited to a
particular type of analysis, since a language often is constructed to allow
easy analysis of certain properties. A translation is an easy and efficient way
to extend the types of analysis available for a language; if such a transla-
tion is simpler than the implementation of the new types of analysis them-
selves. In this section two automated translations are presented. Section 2.4.1
presents a translation of VDM to and from UML, and Section 2.4.2 presents
a translation from VDM to Alloy.

2.4.1 A UML Translation for VDM

A translation between formal languages and Unified Modelling Language
(UML), can be seen as an example, that has been attempted several times
in the past (e.g. [65, 133, 21, 68, 29, 137]), and the concept of combining
formal and informal languages to exploit the best of both worlds has been
investigated by others before [65, 133, 21, 68, 29, 137, 54]. Common to these
is the mapping between a formal method (Alloy, B, Z, Z++ and VDM++) and
the UML class diagrams which provides a static view. Most of these focus on
a one-way translation from UML class diagrams to a formal notation or vice
versa. However, in [P89], we present a bi-directional translation that enables
a user to describe the structure of a specification in UML, and then translate
this to VDM and back. Since UML is widely used in industry, a translation
to this modelling language extends the group of researchers and software
developers that can participate in the development of formal specifications
without extensive knowledge thereof. The work in [P89] describes how a
VDM++ specification can be translated to and from UML class diagrams
using various new language constructs compared to earlier work developed
as part of VDMTools [28, 35]; that included a connection between VDM++
and UML class diagrams. Our work also includes a translation between the
combinatorial testing feature [131, P79] of VDM that uses traces resembling
regular expressions and UML sequence diagrams.

This UML translation feature [P89] focuses on the static structure of
VDM specifications using UML class diagrams. The translation was inspired
by the VDMTools that incorporated functionality to translate VDM++ mod-
els into UML 1.4 class diagrams using the Rational Rose API. Our work
upgrades the translation to use the new UML 2.1 standard and integrates

2.4 Translation 39

with the commercial tool Enterprise Architect (EA)7. This translation uses a
number of new mapping rules and thereby utilizes UML constructs to express
VDM types, instead of the text strings used in the Rational Rose mapping. A
small train example, visualized by EA, is shown in Figure 2.6; this translation
uses both a constrained association to express a VDM union type and a N-ary
association to express a VDM product type. The translation differs from the
VDMTools translator by using UML constructs to model VDM types instead
of the use of text strings.

Figure 2.6: Example from the UML paper [P89].

The translation between trace definitions, used for combinatorial testing
in VDM, and UML sequence diagrams is a new feature that enables a trace
definition to be graphically illustrated as a UML sequence diagram. This
has the advantage that a user can define trace definitions with only little
knowledge about VDM. The translation uses the lifelines, call-events and
combined-fragments of UML to express the variables, operation calls, and
repeat patterns or choice operators that are used inside a trace definition.

The translation described above has been implemented in Overture and
used in a number of teaching classes as well as in the DESTECS research
project for about three years; during this period it became clear that the
translation needed to be extended to support all language constructs within
the VDM++ and VDM-RT dialects.

One of the unsupported constructs both in VDMTools and in our work
were union types when used as the return type of functions or operations. The

7 See http://www.sparxsystems.com/ to get more information about Enterprise
Architect.

http://www.sparxsystems.com/

40 2 Tool Automation

translation of types was also limited to associations and not as parameters of
functions or operations. Therefore, the translator was upgraded to use a new
concept that allowed all VDM constructs to be translated to and from UML
while still allowing the mappings defined in [P89].

As a consequence of the deficiencies found with the published UML
translator [P89] a new solution was implemented using the Eclipse UML2
framework and thereby making any tools available that support UML2 which
includes many free open-source tools, instead of the commercial tool EA.
The translation uses the same mapping rules as defined in [P89] but defaults
to a number of generic classes for Set, Seq, Map, Union and Product
types where the previous translation was unable to translate the construct.

Experience also indicated that the users were unfamiliar with constrained
and N-ary associations that therefore these were excluded from the new trans-
lator. However, this is a design choice not due to technical restriction, and
could be added for instance variables and values. Figure 2.7 shows an ex-
tract of the previous translation from Figure 2.6; it is visualized by the free
UML modelling tool Modelio8; note the use of Set, Union and Product in the
Vehicle and Passenger classes. This translation supports all VDM types
and thus enables a complete round-trip for VDM specifications consisting
of classes, types, functions and operations. Furthermore, the new transla-
tion adds a translation of the VDM system class into UML deployment
diagrams.

Figure 2.7: Example from the new UML implementation.

8 See http://modelio.org for more information about Modelio.

http://modelio.org

2.4 Translation 41

Contribution 10. A translation between VDM and UML 2.1 including
class diagrams that use the internal UML structure to represent VDM
constructs, and a translation of UML sequence diagrams to combinatorial
testing, test sequences in VDM.

2.4.2 A Translation from VDM to Alloy

In a VDM setting initial software design is often best described using implicit-
style specifications in the VDM-SL dialect. However, limited tool support
exists to help with the difficult task of validating that such VDM-SL speci-
fications capture their intended meaning. The validation technique presented
in Section 2.3, cannot directly be used since implicit specifications generally
are non-executable. However, work has been done for a subset of VDM that
enables implicit specifications [41, 42] to be interpreted by e.g. rewrite of
post-conditions into an explicit form that can be executed using the standard
VDM interpreter. A different approach is to use a model-finding technique
to find instances of the specification and to check the specification for con-
tradictions; it also enables user specified assertions to be checked against the
specification.

The Alloy Analyzer is an automated model-finder for checking and vi-
sualizing Alloy specifications that has proved to be useful for validation of
specifications [57]. However, to take advantage of the automated analysis
of Alloy, a model-oriented VDM-SL specification must be translated into a
constraint-based Alloy specification.

Various previous works have used the Alloy Analyzer to visualize or
check properties of specifications expressed in different languages. However,
to the author’s knowledge no such attempt has been made for VDM. The
translations from both B and Event-B to Alloy [101, 99] both combined theo-
rem proving with model-checking and thus used Alloy to check properties. It
is noted that Alloy does not have standard operations for manipulating ordi-
nary sets that result in unnecessarily long specifications: however, the current
edition of Alloy (version 4.2)9 includes a number of utility modules providing
such features which are utilized in this work. The translation of UML with
OCL to Alloy [6] identifies differences related to e.g. inheritance, collections
and namespace. The latter was also encountered in our work which requires

9 See http://alloy.mit.edu/ for more information about Alloy and the Alloy
Analyzer

http://alloy.mit.edu/

42 2 Tool Automation

all argument identifiers for functions and predicates to be disjoint from any
field names used in signatures. The translation of Z to Alloy [98] defines a
semantics preserving translation for a subset of the Z notation that enables au-
tomatic syntactical translation to Alloy because of the language similarities.
However, this is not possible to the same extent for VDM due to the higher-
order constructs but we are also able to give a semantics preserving translation
of a subset of the VDM language that can be translated automatically.

In [P83], we describe how to translate a subset of the VDM-SL into Alloy,
and how the Alloy Analyzer can be used to find errors in specifications. It is
worth noting that the translation supports sequences but that these require a
careful selection of the scope used for integers when analysis is performed, a
similar problem occurs when using VDM values of complex types. Due to the
limitation of the Alloy Analyser, recursion and statements used in operation
bodies are not included. However, these are expressible in Alloy.

The translation of VDM to Alloy translates VDM types into Alloy signa-
tures that are similar to VDM types but limited to only expressing relations
between atoms, and thus not able to directly express e.g. sets of sets often
used in VDM. However, by introducing extra atoms and relations most VDM
types can be translated including constraints defined by invariants. In Fig-
ure 2.8, an extract of a telephone specification is shown in the VDM notation;
the extract shows a state definition Exchange with two fields status and
calls , declared as a map and an injective map. The state has an invariant
associated stating a relation between the two fields. The specification also
contains an implicit operation with a read/write frame condition on the status
field of the state and a pre- and post-condition. An automatic translation of
this extract is shown in Figure 2.9, where the state from the VDM speci-
fication is expressed as a signature with two fields resembling the VDM
state fields. However, since Alloy uses relations rather than maps and in-
jective maps additional constraints are needed, as shown in the first part of
the constraint of the signature. The second part of this constraint represents
the state invariant from Exchange . The VDM operation is translated into an
Alloy predicate which takes two additional arguments representing the state.
The predicate conjoins the restrictions on the state derived from the frame-
condition with the pre- and post-condition. By default it is required that the
two state arguments, representing the pre- and post-state are equal; however,
if a write frame condition for a state field exists then the equality constraint
for that field is dropped.

2.5 Formal Verification 43

state Exchange :: status : Subscriber
m−→ Status

calls : Subscriber
m←→ Subscriber

inv
(mk -Exchange(s, c))4∀i ∈ dom c·(s(i) = WI∧s(c(i)) = WR)

Lift (s:Subscriber)

ext wr status

pre s ∈ dom (status B {FR})

post status =
↼−−−
status † {s → AI}

Figure 2.8: VDM extract of a telephone specification.

sig Exchange{ status: Subscriber→lone Status,
calls: Subscriber lone→lone Subscriber

}{ functional[status,Exchange] and
injective[calls,Exchange] and functional[calls,Exchange] and
all i : dom[calls] | (status[i] = WI and status[calls[i]]= WR) }

pred Lift(e : Exchange, e’ : Exchange, s: Subscriber)
{ e’·calls = e·calls

s in dom[e·status :>FR]
e’·status = e·status ++ s→AI}

Figure 2.9: Alloy extract of a telephone specification.

Contribution 11. A translation of the higher-order model-oriented
language VDM to Alloy, that includes higher-order relations.

Contribution 12. A new approach to checking and evaluating implicit
VDM specifications based on Alloy.

2.5 Formal Verification

Different approaches may be used to prove that certain properties hold for a
specification using formal methods and thereby show that the system is cor-
rect in relation to its specification. Two common approaches are: (1) Proofs

44 2 Tool Automation

that can be used to show that a system is correct in relation to a number
of properties one wishes should hold for the system. These properties are
described as validation conjectures in [32] and are denoted as logical expres-
sions which can be used in proofs. (2) Model Checking is a technique for
automated verifying the correctness of a finite state system according to a
number of properties. This is done by a systematic exhaustive exploration of
the state space of the model, checking that the model meets the specification
that consists of properties one wishes to hold for the system.

2.5.1 Using Proofs

Prior to this PhD thesis a translation of a subset of the VDM-SL language
to HOL [149, 150] was defined; it uses HOL to automatically discharge
the proof obligations. Therefore, during this PhD, a proof obligation gen-
erator [4, 124] has been created and integrated into the Overture platform
enabling generation and viewing of proof obligations. The intention was to
create a framework that could serve as the base for integration with interactive
theorem provers. However, no work has been published by the author of this
PhD in this area.

2.5.2 Model Checking

The term model checking refers to a collection of techniques for automatic
analysis of reactive systems; these techniques often finds subtle errors missed
by conventional simulation and testing techniques. The input to a model
checker is a description of the system to be analysed, and a number of proper-
ties, often expressed in temporal logic, that are expected to hold. The model
checker then either confirms that the properties hold, or that they are violated.
In the latter case a counterexample is provided.

The translation presented in Section 2.4.2 makes it possible to use the
Alloy Analyzer to check properties for a VDM specification. However, due to
the lack of a formal way to capture system properties in VDM such properties,
(traditionally expressed as assertions), must be manually written in Alloy; this
reduces the automated analysis but still allows one to find valid instances of
the system and present them graphically (essentially using symbolic evalua-
tion).

The translation not only allows a specification to be checked for con-
tradictions in pre- and post-conditions but it turns out that a number of pub-
lished VDM-SL specifications contained contradictions that all were detected

2.5 Formal Verification 45

using the Alloy Analyzer. The Telephone example published in [37, 60],
and the Hotel included in the Software Abstractions book about Alloy [57]
are both examples of specifications that were published while containing a
contradiction in a post-condition.

In [P83] we also present a new way to use the VDM language to ex-
press assertions like that of Alloy. The idea is that VDM expressions could
be used to express assertions providing a better alternative to the use of an
informal description or logical expression from any language, thereby these
expressions could be translated into an assertion in Alloy.

A simple textual description of an assertion for the Telephone example
may be described by:

Lift → Connect → ClearWait

where Lift , Connect and ClearWait are functions or operations in the Tele-
phone example. The description is interpreted to mean that if one calls Lift
followed by Connect and ClearWait then the post-condition of each oper-
ation should at least ensure that the pre-condition of the following operation
holds, finally that the state before the call sequence should be equal to the
state after the last call. A manual conservative translation of this into Alloy
can be expressed as follows:

 assert liftConnectClearWait{
 all e,e’,e’’,e’’’ : Exchange, s1,s2 : Subscriber |
 (free[e,s1] and Lift[e,e’,s1] and
 Connect[e’,e’’,s1,s2] and
 ClearWait[e’’,e’’’,s1]) implies eq[e,e’’’]}

where free and eq are utility functions that respectively set up the initial state
and compare the final and first state. We propose to expresses this in VDM
using operation quotation [61]. For each function or operation in VDM, two
generated boolean functions pre-Lift and post-Lift representing the pre- and
post-condition, exist. By utilizing this, the above assertion can be written in
the VDM notation as follows:

∀e, e ′, e ′′, e ′′′: Exchange, s1, s2: Subscriber ·
(free(e, s1) ∧
pre-Lift(s1, e) ∧ post-Lift(s1, e, e ′) ∧
pre-Connect(s1, s2, e ′) ∧ post-Connect(s1, s2, e ′′) ∧
pre-ClearWait(s1, e ′′) ∧ post-ClearWait(s1, e ′′, e ′′′))
⇒ eq(e, e ′′′)

46 2 Tool Automation

the free and eq functions are equal to the one used in Alloy and just rep-
resented as simple boolean functions in VDM. The pre- functions take the
same arguments as the function they are guarding with the addition of the
pre-state. The same applies for the post-functions with the addition of the
pre- and post-state. The assertion is conservative in the sense that it only has
to hold in the case, where all functions denoted by pre- and post- are true,
which does not allow cases where a post-condition is false but still implies a
valid pre-condition.

Contribution 13. A new way to express system assertions in VDM using
the existing expressions.

3
Semantics

This chapter describes the semantic evolution of the VDM language; Sec-
tion 3.1 starts with a brief reference to the semantics of the VDM-SL stan-
dard, followed by references to the extensions for concurrency in VDM++,
and time and distribution aspects in VDM-RT which is described in more
detail. Finally, Section 3.2 describes the contributions made to the VDM-RT
language where a new Structured Operational Semantics (SOS) semantics has
been created, and how this integrates with the new co-simulation framework.

3.1 Existing VDM Semantics Efforts

The VDM notation has constantly evolved since the 70’s resulting in an ISO
standard being defined in the mid 90’s. This then served as a basis for new di-
alects of the language which have been given semantics in, primarily, research
projects.

3.1.1 The VDM-SL Semantics

The formal semantics of VDM-SL is included in the VDM-SL ISO stan-
dard [70]. It is written in a denotational style based on basic set theory with
least fixed point semantics for recursive definitions [81]. The domain uni-
verse for VDM-SL has been inspired by [135]; it provides denotations for
all values expressible in VDM-SL. The meta-notation used for expressing
the formal methods has itself been precisely described but here we refer the
reader to [81] for an explanation of these.

3.1.2 The VDM++ Semantics

The formal semantics of VDM++ was first created in the European ESPRIT-
III project Afrodite (Project No. 6500) [25, 26, 27]. The intent was that
the semantics of constructs from VDM-SL should be unchanged. An ax-

47

48 3 Semantics

iomatic semantics was provided in [64]. The concurrency aspects of VDM++
was given semantics in [69] using Real-Time Logic (RTL) [103]. However,
VDM++ has changed substantially since that time, and as a result the only se-
mantic descriptions that exist are limited to the executable subset of VDM++
that is part of the development of the VDMTools interpreter [35]; unfortu-
nately this document is not publically available.

3.1.3 The VDM-RT Semantics

The formal semantics of VDM-RT is based on the existing formal semantics
of VDM++ and has been developed in two stages; first the notion of time
was added and secondly distribution was introduced. The notion of time was
introduced in the European project VICE (project no. 27618) [105] where
the basic idea was to simulate a timing behaviour of the target processor
i.e. simulate the clock of the target processes [105]. A dynamic semantics
was constructed [20] that extended the VDM++ semantics with the notion
of time. The time is modelled in the semantics using durations; a duration
is an estimate of how much time a particular portion of a VDM model will
take to execute, in the implementation on the target processor. The seman-
tics requires that all expressions and statements of the language have a de-
fault duration specified. However, the semantics also includes a new duration
statement that is used to override the default durations ignoring any timing
information contained within the body of it. Furthermore a constant thread
switching overhead is also taken into account.

The VICE approach worked quite well when applied to systems with only
a single CPU, but it failed entirely for distributed embedded systems both
with respect to the modelling and analysis capabilities of VICE. Therefore a
new notion of distribution was introduced by Marcel Verhoef as part of his
PhD thesis [145]. A core of the language is given an operational semantics
in [145, 52]; using a functional style with natural English as the meta seman-
tics. The semantics includes the definitions from VICE but adds a few new
concepts to model distribution as well as the ability to configure the capacity
of the distributed nodes (CPU/BUS):

1. The ability to construct an explicit system architecture on which func-
tionality can be deployed. For this purpose, the system construct is
introduced in the syntax of VDM-RT and CPU and BUS classes are
provided as first-class language citizens. The capacity, scheduling policy

3.2 The VDM Real-Time Semantics Developed in this PhD Project 49

and task switch (or protocol) overhead of both architectural elements can
be specified.

2. A new cycles statement that adds a time penalty to a statement. The
penalty is calculated based on the capacity of the CPU the statement is
deployed onto.

The operational semantics was defined in terms of two main transitions:
Execute Instruction and Time Step. An execute instruction step will execute
the head of all thread bodies until all threads have a duration at the head of
their body. In this case a time step will be performed, incrementing the simu-
lated time by the time of the shortest duration (tstep); followed by a decrement
of all durations by tstep , and removal of all duration zeros. Then execution
will continue by again performing a execute instruction step, repeating the
cycle.

Any state changes that are a result of computation are not made visible to
other threads or resources until the time required for the state change has
passed. Then the state change is committed and becomes visible to other
threads, as the internal record of time is updated and time-related bookkeep-
ing is dealt with.

The VDM-RT semantic model described in [145, 52] is lacking precision
with respect to some of the standard VDM++ constructs. This is a result of
only providing a core semantics for the full VDM-RT notation without taking
all supported constructs into account. There are cases where the standard
behaviour of VDM++ is not appropriate for VDM-RT, and this is described
in [P91]. These cases include the following: (1) static access to variables in a
distributed setting, (2) static operation calls in a distributed setting, (3) and
reading of distributed variables without a bus. The core issue is that the
distributed nature of variables and calls would be ignored if the VDM++
semantics were directly adopted. Unfortunately, this is the case in the current
implementation of the VDM-RT interpreter [P87].

3.2 The VDM Real-Time Semantics Developed in this PhD Project

The semantics of VDM-RT has been revised in [P85] where we define a
new semantics based on the work in [145, 52]. The new semantics uses the
SOS format [120, 121] to present the semantic definitions as oppose to the
ambiguous natural language used in the earlier version. The logical notation

50 3 Semantics

used in the semantics is the basic VDM-SL type system and expressions. This
notation is used to define the static structure of the VDM-RT language.

In a SOS definition, the entire system is modelled as a configuration
containing all of the information needed to capture the state of a system at
any given point. A configuration is typically given as a tuple, in this case of
the listed components.

The behaviour of a system is defined through the use of transition rela-
tions, at least one of which must involve the system’s configuration type. In
a small-step SOS definition the overall system behaviour is typically defined
using a transition relation from configurations to configurations.

The transition relations are defined through the use of inference rule sche-
mata where each rule’s conclusion defines a subset of the entire transition
relation. The least relation that satisfies all of the inference rules is taken to
be the relation defined.

The entities used to describe the VDM-RT semantics form a hierarchy
starting with the VDMRT structure (shown below). At the top level, the
VDMRT structure records the CPUs in the system (cpus), the busses con-
necting the CPUs (busses), the current time that the model has reached (time),
and the defined classes in the model (classes).

VDMRT :: cpus : CPUs
busses : Busses

time : Time
classes : Classes

The behaviour is then described using these entities starting with the top-
level rule Big Step in Figure 3.1, that gives the whole semantics of a running
VDM-RT model. There are six hypotheses of this rule, and each represents a
phase in an execution step.

Big Step

vdmrt1 = commitPendingValuesAndUpdateTime(vdmrt , τ) (1)

vdmrt1
busses−→ vdmrt2 (2)

vdmrt3 = createPeriodicThreads(vdmrt2) (3)
vdmrt4 = doContextSwitches(vdmrt3) (4)

vdmrt4
exec−→ (vdmrt5, τb) (5)

τ ′b = min(τb ,minPendingCommitTime(vdmrt5)) (6)

(vdmrt , τ)
vdmrt−→ (vdmrt5, τ

′
b)

Figure 3.1: Definition of the Big Step rule.

3.2 The VDM Real-Time Semantics Developed in this PhD Project 51

1. The first hypothesis is the internal update of the model state. It updates
the model’s present time, and then commits all of the pending values
held in threads up to that point.

2. The second hypothesis is in the form of a transition relation as the ac-
tion of the busses is inherently non-deterministic. This phase actually
delivers messages on the busses to their target CPUs if sufficient time
has passed. Where the message is an operation call, a new thread will be
created on the target CPU to run the operation.

3. The third hypothesis potentially creates more new threads based on the
timing of periodic threads.

4. The fourth hypothesis performs any potential context switches, allowing
a CPU to change from one running thread to another. Note that this phase
happens after the creation of new threads so that those new threads have
the potential to start execution within this step of the execution.

5. The fifth hypothesis is also a transition relation, as the execution of
VDM-RT statements may be non-deterministic. This transition attempts
to execute the first duration of the body of every active, running thread
in the model. The number of threads attempted will be no greater than
the number of CPUs in the system, as each CPU may only execute in
one thread per step. If it is not possible to fully execute the duration at
the head of a thread’s body, then a PartialDuration will replace that
duration on the head of the body. The partial duration will have the
remainder of the original duration’s body that remains to be executed,
and execution will continue during the next step that the thread is active.
This hypothesis also exposes the minimum time until the next commit
of pending values.

6. The sixth hypothesis calculates the time at which the next action in the
interpreter must happen. This may be due to things such as threads with
pending variables, the creation of a new periodic thread, and so forth.
This results in the minimum amount of time until the next action that
the interpreter can handle, which then define τ for the next application
of the Big Step rule.

During an execution step, threads may change the values of instance
variables in objects. However, such changes are not committed to the object
state immediately: instead they are stored in the pending field of the Thread

52 3 Semantics

constructs, hiding the values from other threads until time has progressed
sufficiently to cover the time specified by the active PartialDuration of the
Thread .

The resolution of pending values and durations are handled in the Big Step

rule by the first hypothesis, which considers the prior state of the executing
model and the time that the model will be updated to. The vdmrt1 object
represents the state of the interpreter after the time is set to τ and all pending
values are committed for threads currently ready to commit, i.e. those with
PENDING status and with remaining elapsed time equal to the time delta
between the old and updated times.

Furthermore, all pending threads that have their values committed are
returned to RUNNABLE status if they have remaining work to do, and the
remaining pending threads have the elapsed time, from the PartialDuration
at the head of their body , decremented by the time delta between the old and
updated times. All threads with empty bodies are checked to ensure they have
COMPLETED status and altered if necessary.

The behaviour of value commit and time update is contained in the se-
mantic function shown in Figure 3.2. Note that the post-condition of the
function depends on the mergePending function, which is a helper function
that merges the pending values of a thread into the object states those values
are associated with.

The new semantics presented in [P85] solves the weaknesses identified
in [P87] by disallowing e.g. static access to variables, and therefore forcing
cross-CPU reads of variables to use bus communication. This does not restrict
the expressive power of the language but makes the distribution and share of
data or functionality explicit to the user.

Contribution 14. A new SOS semantics for the full VDM-RT notation
without the weaknesses identified in [P87].

3.3 Co-Simulation Semantics

Co-simulation is one approach that supports simulation of a system where
different notations are used from different domains. In this section we will
consider semantic work done to allow a co-simulation with the VDM-RT
language being used as a DE simulator. Co-simulation has been attempted
by others (e.g. Ptolemy II [22], Modelica [40, 15], Cosimate) as described in
Section 2.3.4.

3.3 Co-Simulation Semantics 53

commitPendingValuesAndUpdateTime:VDMRT × Time → VDMRT
commitPendingValuesAndUpdateTime(vdm, τ)vdm ′ ==
pre τ ≥ vdm.τ
post vdm ′.τ = τ ∧
∀idc ∈ dom vdm.cpus ·
∀idt ∈ dom vdm.cpus(idc).threads ·

let thr = vdm.cpus(idc).threads(idt),
thr ′ = vdm ′.cpus(idc).threads(idt)) in

(thr .body = [] ⇒ thr ′.status = COMPLETED) ∧
(thr .status = PENDING ⇒

let stept = τ − vdm.τ in
let (dt , d

′
t) = ((hd thr .body).elapsed , (hd thr ′.body).elapsed) in

[dt = stept ⇒
(thr ′.pending = { } ∧
thr ′.body = tl thr .body ∧
(thr ′.body 6= [] ⇒ thr ′.status = RUNNABLE) ∧
let objects = vdm.cpus(idc).objects

pending = thr .pending in
vdm ′.cpus(idc).objects = mergePending(objects, pending))]∧

[dt 6= stept ⇒ d ′
t = dt − stept])

Figure 3.2: Definition of commitPendingValuesAndUpdateTime

3.3.1 A Co-Simulation Semantics for VDM

To perform any simulation between a DE and CT simulator that is based on
time synchronization, it is necessary to fix the notion of time, used by the
simulators, to standard time units, as mentioned in [P87]. In the case of VDM
this also requires the corresponding units used to define the capacity of CPUs
and busses to be defined.

An initial description of a VDM-RT semantics with an embedded co-
simulation engine has been described by Verhoef et al. in [53, 147, 145].
This presentation mixes the behaviour of the co-simulation with with the DE
simulator i.e. VDM-RT, and presents a framework where it may be possible
to use any CT simulator but where it is difficult to use other DE simulators.

This semantics inspired the creation of a new SOS semantics [P84] that
defined a new semantics model that extracted the co-simulation out of the
VDM-RT semantics and presented it as a standalone semantics. This has two
primary advantages: the first is that this provides a clear, modular architec-
ture; and the second is that it allowed us to consider requirements for each of
the semantics taking part in a co-simulation.

54 3 Semantics

3.3.2 Semantics of a Generic Co-Simulation Framework

The work in [P84] inspired the creation of a generic co-simulation framework
that could be applied to any notation that respected a number of constraints.
In [P18] we present a semantics for generic co-simulation of heterogenous
models. The framework defines two types of semantics that can be used with
the framework:

• Single-state Simulation Semantics (SSS) and

• Transactional Simulation Semantics (TSS),

It also lists a number of common and SSS/TSS specific constraints. The com-
mon constraints generally require the semantics to be able to “step” based
on time, and be able to take shared state into account. The main difference
between SSS and TSS is that the complete state of SSS always is observable
while TSS may hide transactional updates until a certain time has passed.

The static state for a co-simulation with a SSS-type and TSS-type simu-
lator is given by the configuration (Config):

Config = TSS × SSS × Σ× Time × Time × Event-set× Tag

where TSS and SSS represents the TSS-type and SSS-type simulators. Σ
represents the shared state between the simulators. The first Time represents
the current time, and the second Time represents a time bound that must be
respected by single-state simulator semantics; Event-set is the set of Events
generated by SSS for the TSS models to react to. The Tag is a token to record
which of the two semantics models took the last step.

The behaviour of the co-simulation is described by the transition relation,
cs−→ which is a relation over configurations. The two inference rules, in Fig-

ure 3.3, define the high-level behaviour of the co-simulation semantics. The
first rule, TSS Step, takes a configuration, previously stepped by 〈SSS〉 and uses
the transition rule tss−→ to step the 〈TSS〉 simulator. The second rule, SSS Step,
takes the output of the TSS Step rule as input and uses the transition rule sss−→ to
step the 〈SSS〉 simulator. Each of the rules merges back in the state changes
performed by the individual simulators according to the function shown in
Figure 3.4.

The two simulators 〈TSS〉 and 〈SSS〉 described above can be replaced by
e.g. a customized VDM interpreter for 〈TSS〉, and a differential equation sim-
ulator, like 20-sim, for the 〈SSS〉 simulator; each of which has been shown
to be useful in performing a co-simulation in the DESTECS project. Further

3.3 Co-Simulation Semantics 55

TSS Step

(tss, σ, τ, events)
tss−→ (tss ′, σ′, τ ′b)

σ′′ = mergeStates(σ, σ′, 〈TSS〉)
(tss, sss, σ, τ, τb , events, 〈SSS〉) cs−→ (tss ′, sss, σ′′, τ, τ ′b , events, 〈TSS〉)

SSS Step

(sss, σ, τb)
sss−→ (sss ′, σ′, τ ′, events ′)

σ′′ = mergeStates(σ, σ′, 〈SSS〉)
(tss, sss, σ, τ, τb , events, 〈TSS〉) cs−→ (tss, sss ′, σ′′, τ ′, τb , events

′, 〈SSS〉)

Figure 3.3: Inference rules for the behaviour of the co-simulation engine.

mergeStates: Σ× Σ× Tag → Σ
mergeStates(σo , σt , tag) == σo†{id 7→ σt(id) | id ∈ domσt∧tag = σo(id).#2}

Figure 3.4: Function to merge two shared states, taking only the values paired
with a specific tag value.

details about the constraints of the simulators and usage in the DESTECS
project can be found in [P18].

Contribution 15. A new generic co-simulation framework to co-
simulate two different types of semantic models.

3.3.3 The Semantics of VDM in a Co-Simulation Setting

The VDM-RT semantics needed to be extended to integrate into the co-
simulation framework from [P18]. The semantics of VDM-RT uses transac-
tions, and therefore it can only be integrated into the co-simulation framework
as a TSS simulator. The extensions required to achieve this is mainly focused
on the external communication where state is shared with other simulators.
In [P86] we describe how the VDMRT record is extended with two new
fields sharemap and eventmap representing the shared state and the handlers
for events that may be generated by others (SSS simulators):

56 3 Semantics

DE :: cpus : CPUs
busses : Busses
classes : Classes

time : Time
sharemap : SharedMap
eventmap : EventMap

The extension to the semantics is confined to a single rule, Big Step, in the
VDM-RT semantics. The extensions shown in Figure 3.5 extends the original
rule DE Big Step in Figure 3.5. The rule is extended in three places: line 1 and
9 handles the synchronization between the internal VDM state and that of
the co-simulation based on the sharemap, line 5 handles execution of event
handlers based on the eventmap.

DE Big Step

de1 = updateDEFromShared(de, σo) (1)
de2 = commitPendingValuesAndUpdateTime(de1, τ) (2)

de2 busses−→ de3 (3)
de4 = createPeriodicThreads(de3) (4)
de5 = createEventThreads(de4, events) (5)
de6 = doContextSwitches(de5) (6)

de6 exec−→ (de7, τb) (7)
τ ′b = min(τb ,minPendingCommitTime(de7)) (8)
σs = extractValuesFromDE(de7) (9)

(de, σo , τ, events)
vdmrt−→ (de7, σs , τ

′
b)

Figure 3.5: Definition of the DE Big Step rule.

These small semantic changes illustrate that the semantic definition of
VDM-RT easily integrates with the co-simulation without requiring substan-
tial modifications to the language. The modifications only extract informa-
tion, updates shared state, or creates new threads as a result of an external
event. The changes does not influence the semantics of the language but rather
control the semantics steps and updates shared state in VDM between the
steps.

An possible implementation1 of the DE Big Step might be able to optimize
the execution by skipping the new additions in Figure 3.5 line 1, 5 and 9 in the
cases where the exec−→ neither reads or writes shared state. The result is that the

1 See Section 2.3.4 for more detail about an implementation of the VDM-RT interpreter in
a co-simulation setting.

3.3 Co-Simulation Semantics 57

standard Big Step transition rule from the VDM-RT semantics can be used for
these cases and thus speeding up any implementation since communication
with the co-simulation framework is not needed in these cases. The argument
for allowing such an optimization is that the update/extract of shared state in
the first and last hypothesis of the DE Big Step rule is an identity function in
these cases where the model neither reads or writes shared state. The same
applies to the fifth hypothesis that creates new event threads, where the set
of events always is empty when the shared state is unchanged. For practical
usage such semantics optimisations are essential for the user.

Contribution 16. An extension to the VDM-RT semantics integrating it
with the co-simulation framework [P18] from Contribution [C15].

4
Conclusion

This chapter summarizes and concludes the results achieved in this thesis.
The objectives of the thesis defined in Chapter 1 are related to the tool au-
tomation and semantics contributions in Chapters 2 and 3. The various kinds
of automated analysis, and the underlying semantics definitions comprise the
results of this thesis.

4.1 Introduction

This thesis provides various automated kinds of analysis for software systems
that have been formally specified; it also includes translations between spec-
ification languages. The primary focus is validation of specifications but the
area of verification is also introduced. The ability to model embedded reactive
control systems that rely on higher-fidelity environment representations is
made possible by the definition of a co-simulation framework and supported
by a well-defined semantics.

The purpose of this chapter is to evaluate the outcome of the thesis, and
assess to what extent the objectives have been met. Section 4.2, summarises
the research contributions made. Section 4.3, evaluates to what extent the re-
search contributions meet the objectives of the thesis as defined in Chapter 1.
Finally, future work is described and presented in Section 4.4.

4.2 Research Contributions

The research contributions are grouped into two main categories: tool au-
tomation and semantics. The contributions are shown in Figure 4.1 which
illustrates how some contributions form a basis for others. The contributions
are grouped in the categories described in Chapter 2 with the addition of
the Semantics category that shows how the semantic contributions provides a
foundation that other contributions rely upon.

59

60 4 Conclusion

Interpreter
[C2]

Measure
[C1]

GUI
[C3]

External
[C4]

External Code

CT
[C5]

Time Validation
[C6]

Architecture
[C7]

Architecture exploration

VDM Co-sim
[C8]

DESTECS
[C9]

Co-simulation

UML
[C10]

Alloy
[C11]

Assert
[C13]

Check
[C12]

VDM SOS
[C14]

Co-sim SOS
[C15]

VDM Co-sim
[C16]

Complements
Semantic basis
Contributions basis
Grouping of tightly connected contributions

Semantics

Validation

Translation

Verification

Figure 4.1: Contribution overview.

4.2.1 Tool Automation

The contributions of this PhD thesis that relate to tool automation, as de-
scribed in Chapter 2, enable various kinds of automated analysis and trans-
formation with the primary focus on validation. Section 2.3.1, describes how
run-time termination checks of recursive functions can be enabled during in-
terpretation by the use of measure functions [C1], and how an interpreter can
be made deterministic during interpretation but also during debugging [C2].
The contributions [C3] and [C4] describe how a foundation is defined which
allows the integration of a graphical interface with an interpreter for run-time
manipulation of a specification, and how external code can be used with a
specification during run-time without changing the formal language.

Section 2.3.2, describes how the testing process of VDM specifications
can be automated using combinatorial testing, and how the generated tests
can be reduced using shape reduction; a new construct to express parallelism
is also described [C5].

Section 2.3.3, describes two contributions that enable analysis of time
constraints [C6] at run-time and the automatic generation of multiple archi-
tectures for a specification of a distributed system; based on the number of
CPUs and busses, and deployment of artifacts [C7]. Section 2.3.4, describes
how the interpreter from [C2] is extended to enable co-simulation of specifi-

4.3 Evaluation of Contributions 61

cations which represents systems that require a high-fidelity representation of
the environment and thus consist of both a discrete-event (DE) controller and
a continuous-time (CT) environment [C8]. This has been further extended and
comprises the DESTECS tool [C9] used throughout the DESTECS project for
a number of industrial case studies.

Section 2.4, describes two types of translations. The first translation is be-
tween VDM and UML and enables VDM specifications to be represented as
UML class diagrams; it also enables a translation between UML sequence di-
agrams into the representation of combinatorial testing feature of VDM [C10].
The second translation is a translation from VDM to Alloy with focuses on
implicit specifications [C11]. This translation then enables a new approach to
check and evaluate implicit specifications through the static analysis provided
by the Alloy analyser [C12]. Section 2.5, describe how assertions can be ex-
pressed using existing VDM expressions that then can be used in combination
with the static analysis provided by the Alloy analyser [C13].

4.2.2 Semantics

The contributions described in Chapter 3 define the semantic foundation re-
quired for contribution [C2] and [C8] from Chapter 2. Section 3.2, identifies
where the semantics, existing prior to this work, is lacking precision. This
is then addressed in a new semantics given to the real-time extension of
the VDM language using an SOS style that forms the basis of the VDM
interpreter [C14]. Section 3.3.2, addresses the semantic challenges of co-
simulation and defines a new semantics framework allowing two types of se-
mantics models to be joined in a co-simulation [C15]. Finally, Section 3.3.3,
describes how the semantics for VDM-RT from [C14] is extended to en-
able VDM to integrate with the co-simulation framework as one of the two
semantics models [C16].

4.3 Evaluation of Contributions

In this section, the contributions described in Chapters 2 and 3 are evaluated
with respect to the evaluation criteria listed in Section 1.7. Evaluation of the
industrial impact of the work in this thesis is outside the scope of this thesis;
however, the tools developed during this PhD project that implements all
contributions, except [C7, C11, C12, C13], have been used by the industrial
partners during the DESTECS project as well as commercially outside the
DESTECS project.

62 4 Conclusion

A relation between the contributions, and the evaluation criteria as listed
in Section 1.7, is presented in Figure 4.2. The figure illustrates an informal
ranking of the contributions that provides an overview of how the individual
contributions fulfil the general criteria. The scale used in the figures indicates
to what extent the contributions fulfil the criteria measured in the figures, the
closer to the edge of the circle the greater the contribution.

An evaluation of all contributions is described below, with respect to
the evaluation criteria. The evaluation relates to each of the individual fig-
ures from Figure 4.2, except for Figure 4.2f which illustrates to what extent
all the contributions add to the overall fulfilment of the evaluation criteria.
Note that the semantics contributions are excluded from the figure since they
serve as the underlying foundation behind the contributions in Figure 4.2a.
Section 4.3.6, prioritises the contributions according to their academic con-
tribution.

[C13]

[C12]

[C11]

[C10]

[C9]

[C8] [C7]

[C6]

[C5]

[C4]

[C3]

[C2]

[C1]

(a) Semantics Foundation

[C13]

[C12]

[C11]

[C10]

[C9]

[C8] [C7]

[C6]

[C5]

[C4]

[C3]

[C2]

[C1]

(b) Language Completeness

[C13]

[C12]

[C11]

[C10]

[C9]

[C8] [C7]

[C6]

[C5]

[C4]

[C3]

[C2]

[C1]

(c) Reduction of Manual Labour
[C13]

[C12]

[C11]

[C10]

[C9]

[C8] [C7]

[C6]

[C5]

[C4]

[C3]

[C2]

[C1]

(d) Fidelity of Embedded Con-
trol Systems

[C13]

[C12]

[C11]

[C10]

[C9]

[C8] [C7]

[C6]

[C5]

[C4]

[C3]

[C2]

[C1]

(e) Integration with Other Tools

[C13]

[C12]

[C11]

[C10]

[C9]

[C8] [C7]

[C6]

[C5]

[C4]

[C3]

[C2]

[C1]

(f) Combined Overview

Figure 4.2: Relation between contributions and evaluation criteria.

4.3 Evaluation of Contributions 63

4.3.1 Semantics Foundation

The various kinds of analysis developed in Chapter 2 are all centred around
the VDM formal modelling language, and the co-simulation framework. The
VDM-SL dialect is already standardised and semantics have also been given
to VDM++ prior to this work. The VDM-RT dialect did not have a sufficient
strong semantic foundation, and thus a new semantics has been provided. A
co-simulation semantics has also been given for the co-simulation that has
been implemented, and used throughout the DESTECS project; including an
extension semantics to the VDM-RT semantics that clearly describes how it
integrates into the co-simulation framework. The only contributions that do
not depend on the semantics of a language are [C3, C4]; these contributions
extend the run-time interaction with the VDM interpreter and have intention-
ally been designed to avoid language changes. A graphical representation of
this is illustrated in Figure 4.2a.

4.3.2 Language Completeness

The analysis of a specification can only be complete if the chosen analysis
covers the complete modelling language used throughout the specification;
otherwise the analysis must be comprised of one or more types of analysis
that in combination covers the complete modelling language.

The contributions defined in Section 2.3 are complete with regard to the
executable subset of VDM. However, this excludes non-executable specifi-
cations that make use of e.g. implicitly defined functions or operations. The
contributions in Section 2.5 describes how it is possible to complement the
validation analysis with formal verification enabling implicit specifications
to be checked; this analysis is limited to a subset of VDM-SL excluding e.g.
recursive functions. The completeness is illustrated in Figure 4.2b where it
can be seen that validation does not alone provide a complete analysis of all
possible models expressed in VDM.

4.3.3 Reduction of Manual Labour

In general, all contributions in Chapter 2 reduce manual labour. However, the
contribution [C1] requires the user to manually extend the specifications with
measure functions, and in return the run-time termination checks of recursive
functions will be enabled. The three contributions that in particular reduce
manual labour as illustrated in Figure 4.2c are: the interpreter [C2] itself, the
combinatorial testing [C5] that in a compressed way can generate large test

64 4 Conclusion

suites, and at the same time use new reduction techniques to improve the test
representation. Lastly, there is the automatic generation of alternative archi-
tectures and deployments for VDM-RT models [C7] that in combination with
the run-time check of time constraints checking [C6] automatically checks
various architectures and deployments of a system without user interaction.

4.3.4 Fidelity of Embedded Control Systems

The discrete-event (DE) domain of VDM is not sufficient to represent the
physical environment required for an embedded reactive control system that
relies heavily on a high-fidelity environment representation, and thus a co-
simulation solution has been developed. This enables two languages to be
combined in a simulation using individual simulators and notations for each
language. This solution has been used with success in the DESTECS project
on a number of industrial case studies [148]. The semantics work behind this
solution is described in Chapter 3 as three contributions [C14, C15, C16],
which have been implemented into a simulation tool [C8, C9] described in
Section 2.3.4. Figure 4.2d, illustrates that these alone contribute to the fidelity
of a embedded reactive control system but in full comply with the required
criteria.

4.3.5 Integration with Other Tools

An integration with other tools has been found desirable and in Figure 4.2e
it is illustrated how the individual contributions relate to the criteria. An in-
tegration is in particular desirable for e.g. visualization both in the form of a
translation between VDM and UML [C10] as described in Section 2.4.1 but
also by enabling visualization as part of a simulation. In Section 2.3.1.3 it is
described how the interpreter is extended to allow models to be graphically
presented during interpretation while accepting user input [C3] but also how
the specification may access information from other sources or in other ways
manipulate with other tools or systems [C4]. Finally, in Section 2.4.2 a trans-
lation between VDM and Alloy is presented enabling VDM specifications to
be analysed by the Alloy Analyzer [C11, C12].

4.3.6 Academic Prioritisation of Contributions

This section prioritises the contributions based on the academic value and
generality. The prioritisation is done in three groups and is illustrated in Fig-
ure 4.3. The group of most significant contribution is [C15, C9]; they define a

4.4 Future Work 65

generic co-simulation framework which is generally applicable for other DE
and CT languages. This means that it can be applied to other formal languages
without requiring any change to the semantics.

The groups of second most significant contributions are [C1, C3, C4, C5,
C6, C7] these are new but not directly applicable for other formal languages
due to the tight coupling with the VDM language and tooling. However, they
can still serve as a starting point for others but require customisation.

Last, is the group of contributions [C2, C8, C10, C11, C12, C13, C14,
C16] that are new to VDM, but are inspired by existing theory that has already
been applied to tools for other formal languages. These contributions con-
tribute little new theory, but they have played a central role in the fulfilment
of the objectives of this PhD project; thereby contribution to the industrial
adoption of formal methods.

Interpreter
[C2]

Measure
[C1]

GUI
[C3]

External
[C4]

External Code

CT
[C5]

Time Validation
[C6]

Architecture
[C7]

Architecture exploration

VDM Co-sim
[C8]

DESTECS
[C9]

Co-simulation

UML
[C10]

Alloy
[C11]

Assert
[C13]

Check
[C12]

VDM SOS
[C14]

Co-sim SOS
[C15]

VDM Co-sim
[C16]

Complements
Semantic basis
Contributions basis
Grouping of tightly connected contributions

Most Significant
Contribution

Second Most Significant
Contribution

Third Most Significant
Contribution

Figure 4.3: Contribution prioritisation overview.

4.4 Future Work

In this section, some directions for future work are given. These are grouped
into three of the categories from Figure 2.1 in Chapter 2: Validation, Transla-
tion and Formal Verification.

66 4 Conclusion

4.4.1 Validation

Interpreter
The VDM interpreter presented in [P87] does not fully conform to the seman-
tics. It interprets logical expressions using standard left to right evaluation
which semantically is equivalent to McCarthy logic [100] instead of standard
Logic of Partial Functions (LPF) [7, 63, 9] used in the standard of VDM-SL.
Therefore, it is worth investigating to what extent a change from McCarthy
logic to LPF adds complexity or if a better solution exists than the one pro-
posed. Likewise, discrepancies with the new VDM-RT semantics [C14] could
be addressed.

Measure Functions
The measure functions [C1] used for run-time termination check of recursive
functions cannot be expressed over tree structures. However, from a theoret-
ical point of view this should be possible. Therefore, it could be investigated
if this claim is true and what, if any, changes or additions are needed in VDM
to support these structures.

Code Integration
It would be desirable to extend the ability to use graphical user interfaces dur-
ing interpretation [C3] with capabilities like the ones from B-Motion Studio.
The main challenge is the handling of dynamic object creation that needs to
be solved before a tool like B-Motion Studio can be integrated. However, if
possible it will significantly lighten the user task of creating graphical inter-
faces. Likewise, the integration of external code [C4] could be extended with
the capabilities to seamlessly integrate with other languages than Java.

Combinatorial Testing
The combinatorial testing feature [C5] may, in the future, be improved by
using other techniques for test reduction and thus removing test sequences
which are over represented. Alternatively, other techniques can be used where
static analysis is used to generate tests so that all parts of a specification are
covered [24].

The combinatorial test generation could also be improved by generating
test sequences directly to a permanent storage instead of memory, and thus
removing the memory restriction on the number of tests that can be generated.
Finally, it could be extended to use multiple coordinated interpreters to better
utilize many core systems.

4.4 Future Work 67

Real-Time Extensions
The timing constraints for VDM-RT specifications are currently expressed in
a custom syntax [C6]. However, it might be beneficial to use full temporal
logic and the associated notation to express such timing constraints. It would
also be worth completing the implementation for the automatic generation of
architectures [C7] and evaluate to what extent it is automatically possible to
rank architectures when used in combination with the timing constraints.

Co-simulation
The co-simulation presented in this thesis could be compared to a solution
using a single language to describe elements of both the DE and CT domain.
It could then be evaluate to what extent development tools could be reused.

It will also be advantageous to investigate how the simulation frame-
work [C15] can be extended to support a N-ary simulation between multiple
〈TSS〉 and 〈SSS〉. It is believed that a simulation including multiple 〈TSS〉
simulators is possible with only minor adjustments. However, combining
multiple 〈SSS〉 simulators may be significantly more challenging if they are
represented by CT simulators that share elements that interact; if no interac-
tion exists between the CT specifications then it is believed to be possible to
integrate them within the framework.

4.4.2 Translation

UML Translation
The translation between VDM and UML [C10] mainly focuses on the static
structure in VDM with the exception of the limited work done with sequence
diagrams and combinatorial testing. It is believed that further work can be
done to extend the translation to include sequence diagrams and state dia-
grams. A translation between OCL and the pre-, post-conditions and invari-
ants of VDM can also be developed to enrich the UML representation of
a VDM specification or to allow UML models annotated with OCL to be
translated to VDM for further analysis and refinement. Finally, it would also
be beneficial to investigate to what extent the translation can cope with large
industrial specifications that may consist of thousands of classes.

Alloy Translation
The translation between VDM and Alloy is rather limited [C11], and to be-
come truly useful it must be extended, and a fully automatic translation must
be implemented.

68 4 Conclusion

4.4.3 Formal Verification

Formal verification has only briefly been touched in this thesis with the gen-
eration of proof obligations and model finding by the use of the Alloy an-
alyzer. However, it will be a significant contribution to be able to translate
VDM specifications and its proof obligations into an intermediate language
shared among automated theorem provers, and thereby enable support for
theorem provers. The existing work only considers a small subset of VDM-
SL for a translation to HOL. However, a connection to the Isabelle theo-
rem prover using a HOL logic is planned for the European research project
COMPASS [36].

The support for static analysis is almost non-existent, for the VDM lan-
guage but would be of great value; existing theories can be used to perform
analysis of VDM specifications e.g. deadlocks. The outcome of the analysis
performed by translating a number of VDM specifications to Alloy [C11]
has indicated that the existing tool support in the area is insufficient. The
proposed use of VDM expressions [C13] may also be integrated into the
VDM language to allow system level properties to be specified within VDM
and then later used in proofs and static checking.

Part II

Publications

69

5
The Overture Initiative – Integrating Tools for

VDM

The paper presented in this chapter has been accepted as a Software Engi-
neering Note publication.

[P74] Peter Gorm Larsen, Nick Battle, Miguel Ferreira, John Fitzger-
ald, Kenneth Lausdahl, and Marcel Verhoef. The Overture Initia-
tive – Integrating Tools for VDM. SIGSOFT Softw. Eng. Notes,
35(1):1–6, January 2010.

The content of this chapter has been excluded due to copyright restrictions
but can be obtained though the respective publisher.

71

http://dl.acm.org/ft_gateway.cfm?id=1668864&type=pdf&CFID=140697333&CFTOKEN=75149541
http://dl.acm.org/ft_gateway.cfm?id=1668864&type=pdf&CFID=140697333&CFTOKEN=75149541
http://dl.acm.org/ft_gateway.cfm?id=1668864&type=pdf&CFID=140697333&CFTOKEN=75149541
http://dl.acm.org/ft_gateway.cfm?id=1668864&type=pdf&CFID=140697333&CFTOKEN=75149541

6
Connecting UML and VDM++ with Open Tool

Support

The paper presented in this chapter has been accepted as a peer-reviewed
conference paper.

[P89] Kenneth Lausdahl, Hans Kristian Agerlund Lintrup, and Peter
Gorm Larsen. Connecting UML and VDM++ with Open Tool Sup-
port. In Ana Cavalcanti and Dennis R. Dams, editors, Proceedings
of the 2nd World Congress on Formal Methods, volume 5850 of
Lecture Notes in Computer Science, pages 563–578, November
2009. Springer-Verlag. ISBN 978-3-642-05088-6.

The content of this chapter has been excluded due to copyright restrictions
but can be obtained though the respective publisher.

73

http://link.springer.com/chapter/10.1007%2F978-3-642-05089-3_36
http://link.springer.com/chapter/10.1007%2F978-3-642-05089-3_36
http://link.springer.com/chapter/10.1007%2F978-3-642-05089-3_36
http://link.springer.com/chapter/10.1007%2F978-3-642-05089-3_36
http://link.springer.com/chapter/10.1007%2F978-3-642-05089-3_36
http://link.springer.com/chapter/10.1007%2F978-3-642-05089-3_36

7
Translating VDM to Alloy

The paper presented in this chapter has been accepted as a peer-reviewed
conference paper.

[P83] Kenneth Lausdahl. Translating VDM to Alloy. In Einar Broch
Johnsen and Luigia Petre, editors, Integrated Formal Methods, vol-
ume 7940 of Lecture Notes in Computer Science, pages 46–60.
Springer Berlin Heidelberg, 2013. 10th International Conference,
IFM 2013.

The content of this chapter has been excluded due to copyright restrictions
but can be obtained though the respective publisher.

75

http://link.springer.com/chapter/10.1007/978-3-642-38613-8_4
http://link.springer.com/chapter/10.1007/978-3-642-38613-8_4
http://link.springer.com/chapter/10.1007/978-3-642-38613-8_4
http://link.springer.com/chapter/10.1007/978-3-642-38613-8_4
http://link.springer.com/chapter/10.1007/978-3-642-38613-8_4

8
A Deterministic Interpreter Simulating a

Distributed Real Time System using VDM

The paper presented in this chapter has been accepted as a peer-reviewed
conference paper.

[P87] Kenneth Lausdahl, Peter Gorm Larsen, and Nick Battle. A De-
terministic Interpreter Simulating a Distributed Real Time System
using VDM. In Shengchao Qin and Zongyan Qiu, editors, For-
mal Methods and Software Engineering, volume 6991 of Lecture
Notes in Computer Science, pages 179–194, 2011. Springer-Verlag.
ISBN 978-3-642-24558-9.

The content of this chapter has been excluded due to copyright restrictions
but can be obtained though the respective publisher.

77

http://link.springer.com/chapter/10.1007%2F978-3-642-24559-6_14
http://link.springer.com/chapter/10.1007%2F978-3-642-24559-6_14
http://link.springer.com/chapter/10.1007%2F978-3-642-24559-6_14
http://link.springer.com/chapter/10.1007%2F978-3-642-24559-6_14
http://link.springer.com/chapter/10.1007%2F978-3-642-24559-6_14
http://link.springer.com/chapter/10.1007%2F978-3-642-24559-6_14

9
Combinatorial Testing for VDM

The paper presented in this chapter has been accepted as a peer-reviewed
conference paper.

[P79] Peter Gorm Larsen, Kenneth Lausdahl, and Nick Battle. Combi-
natorial Testing for VDM. In Proceedings of the 2010 8th IEEE In-
ternational Conference on Software Engineering and Formal Meth-
ods, SEFM’10, pages 278–285, Washington, DC, USA, September
2010. IEEE Computer Society. ISBN 978-0-7695-4153-2.

The content of this chapter has been excluded due to copyright restrictions
but can be obtained though the respective publisher.

79

http://dx.doi.org/10.1109/SEFM.2010.32
http://dx.doi.org/10.1109/SEFM.2010.32
http://dx.doi.org/10.1109/SEFM.2010.32
http://dx.doi.org/10.1109/SEFM.2010.32
http://dx.doi.org/10.1109/SEFM.2010.32

10
Combining VDM with Executable Code

The paper presented in this chapter has been accepted as a peer-reviewed
conference paper.

[P107] Claus Ballegaard Nielsen, Kenneth Lausdahl, and Peter Gorm
Larsen. Combining VDM with Executable Code. In John Der-
rick, John Fitzgerald, Stefania Gnesi, Sarfraz Khurshid, Michael
Leuschel, Steve Reeves, and Elvinia Riccobene, editors, Abstract
State Machines, Alloy, B, VDM, and Z, volume 7316 of Lecture
Notes in Computer Science, pages 266– 279, 2012. Springer-Verlag.
ISBN 978-3-642- 30884-0.

The content of this chapter has been excluded due to copyright restrictions
but can be obtained though the respective publisher.

81

http://link.springer.com/chapter/10.1007%2F978-3-642-30885-7_19
http://link.springer.com/chapter/10.1007%2F978-3-642-30885-7_19
http://link.springer.com/chapter/10.1007%2F978-3-642-30885-7_19
http://link.springer.com/chapter/10.1007%2F978-3-642-30885-7_19
http://link.springer.com/chapter/10.1007%2F978-3-642-30885-7_19
http://link.springer.com/chapter/10.1007%2F978-3-642-30885-7_19
http://link.springer.com/chapter/10.1007%2F978-3-642-30885-7_19

11
Run-Time Validation of Timing Constraints for

VDM-RT Models

The paper presented in this chapter has been accepted as a peer-reviewed
workshop paper.

[P125] Augusto Ribeiro, Kenneth Lausdahl, and Peter Gorm Larsen.
Run-Time Validation of Timing Constraints for VDM-RT Models.
In Sune Wolff and John Fitzgerald, editors, Proceedings of the 9th
Overture Workshop, number ECE-TT-2 in Technical Report Series,
pages 4–16, June 2011.

The content of this chapter has been excluded due to copyright restrictions
but can be obtained though the respective publisher.

83

http://eng.au.dk/fileadmin/DJF/ENG/PDF-filer/Tekniske_rapporter/Technical_Report_ECE-TT-2-SAMLET.pdf
http://eng.au.dk/fileadmin/DJF/ENG/PDF-filer/Tekniske_rapporter/Technical_Report_ECE-TT-2-SAMLET.pdf
http://eng.au.dk/fileadmin/DJF/ENG/PDF-filer/Tekniske_rapporter/Technical_Report_ECE-TT-2-SAMLET.pdf
http://eng.au.dk/fileadmin/DJF/ENG/PDF-filer/Tekniske_rapporter/Technical_Report_ECE-TT-2-SAMLET.pdf
http://eng.au.dk/fileadmin/DJF/ENG/PDF-filer/Tekniske_rapporter/Technical_Report_ECE-TT-2-SAMLET.pdf

12
Semantics Focused Papers

The papers presented in this chapter has been submitted as journal papers.

[P18] Joey W. Coleman, Kenneth Lausdahl, and Peter Gorm Larsen.
Semantics for Generic Co-simulation of Heterogenous Models. Sub-
mitted for publication to the Formal Aspects of Computing journal,
April 2013.

[P86] Kenneth Lausdahl, Joey W. Coleman, and Peter Gorm Larsen. The
Execution Semantics of VDM Real-Time in a Co-Simulation Envi-
ronment. Submitted for publication to the International Journal on
Software Tools for Technology Transfer, June 2013.

The content of this chapter has been excluded due to copyright restrictions
but can be obtained though the respective publisher.

85

Bibliography

[1] J.-R. Abrial. The B Book – Assigning Programs to Meanings. Cambridge University
Press, August 1996.

[2] Jean-Raymond Abrial. Data semantics. In IFIP Working Conference Data Base
Management, pages 1–60, 1974.

[3] Jean-Raymond Abrial. Modeling in Event-B: System and Software Engineering.
Cambridge University Press, New York, NY, USA, 1st edition, 2010.

[4] Bernhard K. Aichernig and Peter Gorm Larsen. A Proof Obligation Generator for
VDM-SL. In John S. Fitzgerald, Cliff B. Jones, and Peter Lucas, editors, FME’97:
Industrial Applications and Strengthened Foundations of Formal Methods (Proc. 4th
Intl. Symposium of Formal Methods Europe, Graz, Austria, September 1997), vol-
ume 1313 of Lecture Notes in Computer Science, pages 338–357. Springer-Verlag,
September 1997. ISBN 3-540-63533-5.

[5] Paul Ammann, Paul E. Black, and Wei Ding. Model Checkers in Software Test-
ing. Technical report, NIST-IR 6777, National Institute of Standards and Technology,
2002.

[6] Kyriakos Anastasakis, Behzad Bordbar, Geri Georg, and et al. On challenges of Model
Transformation from UML to Alloy. In Software & Systems Modeling, volume 9 of
1, pages 69–86. Springer, 2010.

[7] H. Barringer, J.H. Cheng, and C.B. Jones. A Logic Covering Undefinedness in
Program Proofs. Acta Informatica, 21:251–269, 1984.

[8] Nick Battle. VDMJ User Guide. Technical report, Fujitsu Services Ltd., UK, 2009.
[9] Juan Bicarregui, John Fitzgerald, Peter Lindsay, Richard Moore, and Brian Ritchie.

Proof in VDM: A Practitioner’s Guide. FACIT. Springer-Verlag, 1994. ISBN 3-540-
19813-X.

[10] D. Bjørner and C.B. Jones, editors. The Vienna Development Method: The Meta-
Language, volume 61 of Lecture Notes in Computer Science. Springer-Verlag, 1978.

[11] Peter Breuer and Jonathan Bowen. Towards Correct Executable Semantics for Z. In
J.P. Bowen and J.A. Hall, editors, Z User Workshop, pages 185–209. Springer-Verlag,
1994. Cambridge.

[12] J. F. Broenink, P. G. Larsen, M. Verhoef, C. Kleijn, D. Jovanovic, K. Pierce, and
Wouters F. Design Support and Tooling for Dependable Embedded Control Software.
In Proceedings of Serene 2010 International Workshop on Software Engineering for
Resilient Systems, pages 77–82. ACM, April 2010.

[13] Jan Broenink. D1.4 — Project final report. Technical report, The DESTECS Project
(INFSO-ICT-248134), February 2013.

[14] Jan F. Broenink. Modelling, Simulation and Analysis with 20-Sim. Journal A Special
Issue CACSD, 38(3):22–25, 1997.

87

88 Bibliography

[15] J.F. Broenink. Object-oriented modeling with bond graphs and modelica. In Proceed-
ings of the International Conference on Bond Graph Modeling and Simulation, pages
163–168. Western Multi Conference, Simulation Series Vol. 31, No.1, Proceedings
1999 International Conference on Bond Graph Modeling and, 1999. 009 R99.htm.

[16] Thomas John Hørlyck Christensen. Extending the VDM++ Formal Specification Lan-
guage with Type Inference and Generic Classes. Master’s thesis, Aarhus University,
Computer Science Department, April 2007.

[17] David M. Cohen, Siddhartha R. Dalal, Michael L. Fredman, and Gardner C. Patton.
The AETG System: An Approach to Testing Based on Combinatorial design. IEEE
Transactions on Software Engineering, 23(7):437–444, July 1997.

[P18] Joey W. Coleman, Kenneth Lausdahl, and Peter Gorm Larsen. Semantics for Generic
Co-simulation of Heterogenous Models. Submitted for publication to the Formal
Aspects of Computing journal, April 2013.

[19] Dan Craigen, Susan Gerhart, and Ted Ralston. An International Survey of Industrial
Applications of Formal Methods, volume Volume 1 Purpose, Approach, Analysis and
Conclusions. U.S. Department of Commerce, Technology Administration, National
Institute of Standards and Technology, Computer Systems Laboratory, Gaithersburg,
MD 20899, USA, March 1993.

[20] CSK. The Dynamic Semantics of CSK VDM++ VICE. Technical report, CSK
Corporation, Japan, 2005. Company Confidential.

[21] Sergiu Dascalu and Peter Hitchcock. An Approach to Integrating Semi-formal and
Formal Notations in Software Specification. In SAC ’02: Proceedings of the 2002
ACM symposium on Applied computing, pages 1014–1020, New York, NY, USA,
2002. ACM.

[22] J. Davis, R. Galicia, M. Goel, C. Hylands, E.A. Lee, J. Liu, X. Liu, L. Muliadi,
S. Neuendorffer, J. Reekie, N. Smyth, J. Tsay, and Y. Xiong. Ptolemy-II: Hetero-
geneous concurrent modeling and design in Java. Technical Memorandum UCB/ERL
No. M99/40, University of California at Berkeley, July 1999.

[23] A.J.J. Dick, P.J. Krause, and J. Cozens. Computer aided transformation of Z into
Prolog. In J.E. Nicholls, editor, Z User Workshop, Oxford 1989, Workshops in
Computing, pages 71–85. Springer-Verlag, 1990.

[24] Jeremy Dick and Alain Faivre. Automating the Generation and Sequencing of Test
Cases from Model-Based Specifications. In J.C.P. Woodcock and P.G. Larsen, edi-
tors, FME’93: Industrial-Strength Formal Methods, pages 268–284. Formal Methods
Europe, Springer-Verlag, April 1993. Lecture Notes in Computer Science 670.

[25] E. Dürr and J.v. Katwijk. VDM++, A Formal Specification Language for Object
Oriented Designs. In COMP EURO 92, pages 214–219. IEEE, May 1992.

[26] E.H. Dürr and N. Plat (editor). VDM++ Language Reference Manual. Afrodite
(esprit-iii project number 6500) document, Cap Volmac, August 1995.

[27] Eugène Dürr, Stephen Goldsack, and Nico Plat. Rigorous Development of Concurrent
and Real-Time Object-oriented Systems, March 1994. Tutorial presented at TOOLS
Europe ’94, Versailles, France.

[28] René Elmstrøm, Peter Gorm Larsen, and Poul Bøgh Lassen. The IFAD VDM-SL
Toolbox: A Practical Approach to Formal Specifications. ACM Sigplan Notices,
29(9):77–80, September 1994.

Bibliography 89

[29] Houda Fekih, Leila Jemni Ben Ayed, and Stephan Merz. Transformation of B
Specifications into UML Class Diagrams and State Machines. In Proceedings of
the 2006 ACM symposium on Applied computing, pages 1840 – 1844. ACM, 2006.
ISBN:1-59593-108-2.

[30] J. S. Fitzgerald, P. G. Larsen, S. Tjell, and M. Verhoef. Validation Support for Real-
Time Embedded Systems in VDM++. In Bojan Cukic and Jing Dong, editors, Proc.
HASE 2007: 10th IEEE High Assurance Systems Engineering Symposium, pages 331–
340. IEEE, November 2007.

[31] J. S. Fitzgerald, P. G. Larsen, and M. Verhoef. Vienna Development Method. Wiley
Encyclopedia of Computer Science and Engineering, 2008. edited by Benjamin Wah,
John Wiley & Sons, Inc.

[32] John Fitzgerald and Peter Gorm Larsen. Modelling Systems – Practical Tools and
Techniques in Software Development. Cambridge University Press, The Edinburgh
Building, Cambridge CB2 2RU, UK, Second edition, 2009. ISBN 0-521-62348-0.

[33] John Fitzgerald, Peter Gorm Larsen, Paul Mukherjee, Nico Plat, and Marcel Verhoef.
Validated Designs for Object–oriented Systems. Springer, New York, 2005.

[34] John Fitzgerald, Peter Gorm Larsen, Ken Pierce, and Marcel Verhoef. A Formal
Approach to Collaborative Modelling and Co-simulation for Embedded Systems. To
appear in Mathematical Structures in Computer Science, August 2013.

[35] John Fitzgerald, Peter Gorm Larsen, and Shin Sahara. VDMTools: Advances in
Support for Formal Modeling in VDM. ACM Sigplan Notices, 43(2):3–11, February
2008.

[36] John Fitzgerald, Peter Gorm Larsen, and Jim Woodcock. Modelling and Analysis
Technology for Systems of Systems Engineering: Research Challenges. In INCOSE,
Rome, Italy, July 2012.

[37] J.S. Fitzgerald and C.B. Jones. Proof in the Validation of a Formal Model of a Tracking
System for a Nuclear Plant. In J.C. Bicarregui, editor, Proof in VDM: Case Studies,
FACIT Series. Springer-Verlag, 1998.

[38] Oana Florescu, Jeroen Voeten, Marcel Verhoef, and Henk Corporaal. Reusing
Real-Time Systems Design Experience Through Modelling Patterns. In Forum on
specification and Description Languages (FDL). ECSI, 2006. Received the best
paper award at FDL 2006. This paper is available on-line at
http://www.es.ele.tue.nl/premadona/publications/FVVC06.
pdf.

[39] Gordon Fraser and Franz Wotawa. Improving Model-Checkers for Software Testing.
In Seventh International Conference on Quality Software (QSIC 2007). IEEE, 2007.

[40] Peter Fritzson and Vadim Engelson. Modelica - A Unified Object-Oriented Language
for System Modelling and Simulation. In ECCOP ’98: Proceedings of the 12th Eu-
ropean Conference on Object-Oriented Programming, pages 67–90. Springer-Verlag,
1998.

[41] Brigitte Fröhlich. Program Generation based on Postconditions. In M.H. Hmaza,
editor, Software Enginerring (SE’97). IASTED, ACTA Press, November 1997.

[42] Brigitte Fröhlich. Towards Executability of Implicit Definitions. PhD thesis, TU Graz,
Institute of Software Technology, September 1998.

[43] Norbert E. Fuchs. Specifications are (preferably) executable. Software Engineering
Journal, pages 323–334, September 1992.

http://www.es.ele.tue.nl/premadona/publications/FVVC06.pdf
http://www.es.ele.tue.nl/premadona/publications/FVVC06.pdf

90 Bibliography

[44] Guy Gallasch and Lars M. Kristensen. Comms/CPN: A communication infrastructure
for external communication with design/CPN. In 3rd Workshop and Tutorial on Prac-
tical Use of Coloured Petri Nets and the CPN Tools (CPN’01), pages 75–90. DAIMI
PB-554, Aarhus University, aug 2001.

[45] Marie-Claude Gaudel. Testing can be Formal, too. In Peter Mosses and Michael
Schwartzbach, editors, TAPSOFT’95: Theory and Practice of Software Development,
pages 82–96. CAAP/FASE, Springer, 1995.

[46] Andy Gravell, Peter Nederson, and So Bj. Executing formal specifications need not
be harmful. Software Engineering Journal, 11:104–110, 1996.

[47] M.A. Groothuis, A.S. Damstra, and J.F. Broenink. Virtual prototyping through co-
simulation of a cartesian plotter. In Emerging Technologies and Factory Automation,
2008. ETFA 2008. IEEE International Conference on, pages 697–700. IEEE Industrial
Electronics Society, September 2008.

[48] I.J. Hayes and C.B. Jones. Specifications are not (Necessarily) Executable. Software
Engineering Journal, pages 330–338, November 1989.

[49] Robert M. Hierons, Kirill Bogdanov, Jonathan P. Bowen, Rance Cleaveland, John Der-
rick, Jeremy Dick, Marian Gheorghe, Mark Harman, Kalpesh Kapoor, Paul Krause,
Gerald Lüttgen, Anthony J. H. Simons, Sergiy Vilkomir, Martin R. Woodward, and
Hussein Zedan. Using Formal Specifications to Support Testing. ACM Comput. Surv.,
41(2):1–76, 2009.

[50] Michael G. Hinchey and Jonathan P. Bowen. To formalize or not to formalize? IEEE
Computer, 29(4):18–19, April 1996.

[51] C.A.R Hoare. Communicating Sequential Processes. Communications of the ACM,
21(8), August 1978.

[52] J. Hooman and M. Verhoef. Formal semantics of a VDM extension for distributed
embedded systems. In D. Dams, U. Hannemann, and M. Steffen, editors, Concur-
rency, Compositionality, and Correctness, Essays in Honor of Willem-Paul de Roever,
volume 5930 of Lecture Notes in Computer Science, pages 142–161. Springer-Verlag,
2010.

[53] Jozef Hooman and Marcel Verhoef. Formal Semantics of a VDM Extension for
Distributed Embedded Systems. In Correctness, Concurrency and Compositionality,
LNCS Festscrift Series, 2008. Festscrift to honour professor Willem-Paul de Roever,
Springer.

[54] Akram Idani and Yves Ledru. Object oriented concepts identification from formal B
specifications. Formal Methods System Design, 30(3):217–232, 2007.

[55] ISO. Information Processing Systems — Open Systems Interconnection — LOTOS
— A Formal Description Technique Based on the Temporal Ordering of Observational
Behaviour. Technical Report ISO8807, International Standards Organization, 1989.

[56] ISO. Information technology – Z formal specification notation – Syntax, type sys-
tem and semantics. Technical Report ISO/IEC 13568, International Organization for
Standardization, 2002.

[57] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press,
Heyward Street, Cambridge, MA02142, USA, revised edition, February 2012. ISBN-
10: 0262017156.

[58] Jonathan Jacky. The Way of Z: Practical Programming with Formal Methods.
Cambridge University Press, November 1996.

Bibliography 91

[59] Jim Johnson. My Life Is Failure: 100 Things You Should Know to Be a Better Project
Leader. Standish Group International, 2004.

[60] C.B. Jones and R.C.F. Shaw. Case Studies in Systematic Software Development.
Prentice Hall International, 1990.

[61] Cliff B. Jones. Systematic Software Development Using VDM. Prentice-Hall Interna-
tional, Englewood Cliffs, New Jersey, second edition, 1990. ISBN 0-13-880733-7.

[62] Cliff B. Jones. Scientific Decisions which Characterize VDM. In J.M. Wing, J.C.P.
Woodcock, and J. Davies, editors, FM’99 - Formal Methods, pages 28–47. Springer-
Verlag, 1999. Lecture Notes in Computer Science 1708.

[63] Cliff B. Jones and Kees Middelburg. A typed logic of partial functions reconstructed
classically. Technical Report 89, Department of Philosophy, Utrecht University, April
1993.

[64] Stuart Kent and Richard Moore. An Axiomatic Semantics for VDM++: OO Aspects,
1993.

[65] Soon-Kyeong Kim, Damian Burger, and David Carrington. An MDA Approach
Towards Integrating Formal and Informal Modelling Languages. In Ian Hayes
John Fitzgerald and Andrzej Tarlecki, editors, FM’2005: Formal Methods, pages
448–464, Berlin Heidelberg, July 2005. FME, Springer.

[66] J.C. Knight, K.S. Hanks, and S.R. Travis. Tool support for production use of formal
techniques. In Software Reliability Engineering, 2001. ISSRE 2001. Proceedings. 12th
International Symposium on, pages 242–251, 2001.

[67] Lukas Ladenberger, Jens Bendisposto, and Michael Leuschel. Visualising Event-B
Models with B-Motion Studio. In Proceedings of the 14th International Workshop
on Formal Methods for Industrial Critical Systems, pages 202–204. Springer-Verlag,
November 2009.

[68] Regine Laleau. On the Interest of Combining UML with the B Formal Method for the
Specification of Database Applications. In ICEIS, pages 56–63, 2000.

[69] K. Lano. Expressing the Semantics of VDM++ in RTL, 1994.
[70] P. G. Larsen, B. S. Hansen, H. Brunn, N. Plat, H. Toetenel, D. J. Andrews, J. Dawes,

G. Parkin, et al. Information technology – Programming languages, their environ-
ments and system software interfaces – Vienna Development Method – Specification
Language – Part 1: Base language, December 1996.

[71] Peter Gorm Larsen. Evaluation of Underdetermined Explicit Definitions. In
M. Bertran M. Naftalin, T. Denvir, editor, FME’94: Industrial Benefit of Formal
Methods, pages 233–250. Springer-Verlag, October 1994.

[72] Peter Gorm Larsen. Response to “the formal specification of safety requirements for
storing explosives”. Formal Aspects of Computing, 6(5):565–568, 1994.

[73] Peter Gorm Larsen. Ten Years of Historical Development: “Bootstrapping” VDM-
Tools. Journal of Universal Computer Science, 7(8):692–709, 2001.

[P74] Peter Gorm Larsen, Nick Battle, Miguel Ferreira, John Fitzgerald, Kenneth Lausdahl,
and Marcel Verhoef. The Overture Initiative – Integrating Tools for VDM. SIGSOFT
Softw. Eng. Notes, 35(1):1–6, January 2010.

[P75] Peter Gorm Larsen, Nick Battle, Miguel Ferreira, John Fitzgerald, Kenneth Lausdahl,
and Marcel Verhoef. The Overture Initiative – Integrating Tools for VDM. In Min
Zhang and Volker Stolz, editors, Harnessing Theories for Tool Support in Software,
pages 9–19, November 2010.

92 Bibliography

[76] Peter Gorm Larsen and John Fitzgerald. Recent Industrial Applications of VDM
in Japan. In Jonathan Bowen Paul Boca and Peter Gorm Larsen, editors, FACS
2007 Christmas Workshop: Formal Methods in Industry, Electronic Workshops in
Computing. British Computer Society, December 2007.

[77] Peter Gorm Larsen and Poul Bøgh Lassen. An Executable Subset of Meta-IV with
Loose Specification. In VDM ’91: Formal Software Development Methods. VDM
Europe, Springer-Verlag, March 1991.

[P78] Peter Gorm Larsen and Kenneth Lausdahl. Overture/VDM Tools Status. Handout at
SEFM20 Tool Workshop, September 2010. Second edition.

[P79] Peter Gorm Larsen, Kenneth Lausdahl, and Nick Battle. Combinatorial Testing for
VDM. In Proceedings of the 2010 8th IEEE International Conference on Software
Engineering and Formal Methods, SEFM ’10, pages 278–285, Washington, DC, USA,
September 2010. IEEE Computer Society. ISBN 978-0-7695-4153-2.

[80] Peter Gorm Larsen, Kenneth Lausdahl, and Nick Battle. The VDM-10 Language
Manual. Technical Report TR-2010-06, The Overture Open Source Initiative, April
2010.

[81] Peter Gorm Larsen and Wiesław Pawłowski. The Formal Semantics of ISO VDM-SL.
Computer Standards and Interfaces, 17(5–6):585–602, September 1995.

[82] Kenneth Lausdahl. Enhancing Formal Modelling Tool Support with Increased
Automation. Technical Report ECE-TR-4, Aarhus University, October 2011.

[P83] Kenneth Lausdahl. Translating VDM to Alloy. In Einar Broch Johnsen and Luigia
Petre, editors, Integrated Formal Methods, volume 7940 of Lecture Notes in Com-
puter Science, pages 46–60. Springer Berlin Heidelberg, 2013. 10th International
Conference, IFM 2013.

[P84] Kenneth Lausdahl, Joey W. Coleman, and Peter Gorm Larsen. Towards a Co-
simulation Semantics of VDM-RT/Overture and 20-sim. In Nico Plat, Claus Balle-
gaard Nielsen, and Steve Riddle, editors, Proceedings of the 10th Overture Workshop,
number CS-TR-1345 in Technical Report Series, pages 30–37. Computing Science,
Newcastle University, August 2012.

[P85] Kenneth Lausdahl, Joey W. Coleman, and Peter Gorm Larsen. Semantics of the VDM
Real-Time Dialect. Technical Report ECE-TR-13, Aarhus University, April 2013.

[P86] Kenneth Lausdahl, Joey W. Coleman, and Peter Gorm Larsen. The Execution Seman-
tics of VDM Real-Time in a Co-Simulation Environment. Submitted for publication
to the International Journal on Software Tools for Technology Transfer, June 2013.

[P87] Kenneth Lausdahl, Peter Gorm Larsen, and Nick Battle. A Deterministic Inter-
preter Simulating A Distributed real time system using VDM. In Shengchao Qin
and Zongyan Qiu, editors, Formal Methods and Software Engineering, volume 6991
of Lecture Notes in Computer Science, pages 179–194, Berlin, Heidelberg, October
2011. Springer-Verlag. ISBN 978-3-642-24558-9.

[88] Kenneth Lausdahl and Hans Kristian Lintrup. Coupling Overture to MDA and UML.
Master’s thesis, Aarhus University/Engineering College of Aarhus, December 2008.

[P89] Kenneth Lausdahl, Hans Kristian Agerlund Lintrup, and Peter Gorm Larsen. Con-
necting UML and VDM++ with Open Tool Support. In Ana Cavalcanti and Dennis R.
Dams, editors, Proceedings of the 2nd World Congress on Formal Methods, volume
5850 of Lecture Notes in Computer Science, pages 563–578, Berlin, Heidelberg,
November 2009. Springer-Verlag. ISBN 978-3-642-05088-6.

Bibliography 93

[P90] Kenneth Lausdahl and Augusto Ribeiro. Automated Exploration of Alternative
System Architectures with VDM-RT. In Sune Wolff and John Fitzgerald, editors,
Proceedings of the 9th Overture Workshop, number ECE-TT-2 in Technical Report
Series, pages 17–31, June 2011.

[P91] Kenneth Lausdahl, Marcel Verhoef, Peter Gorm Larsen, and Sune Wolff. Overview of
VDM-RT Constructs and Semantic Issues. In Ken Pierce, Nico Plat, and Sune Wolf,
editors, Proceedings of the 8th Overture Workshop, number CS-TR-1224 in Technical
Report Series, pages 57–67, September 2010.

[92] Y. Ledru and L. du Bousquet. An Executable Formal Specification of a Test Generator.
In Automated Software Engineering 06. IEEE, 2006.

[93] Yves Ledru, Frédéric Dadeau, Lydie du Bousquet, Sébastien Ville, and Elodie Rose.
Mastering Combinatorial Explosion with the Tobias-2 Test Generator. In ASE ’07:
Proceedings of the twenty-second IEEE/ACM international conference on Automated
software engineering, pages 535–536, New York, NY, USA, 2007. ACM.

[94] Yves Ledru, Lydie du Bousquet, Olivier Maury, and Pierre Bontron. Filtering TO-
BIAS Combinatorial Test Suites. In M. Wermelinger and T. Margaria-Steffen, editors,
FASE 2004, pages 281–294, Springer-Verlag Berlin Heidelberg, 2004. LNCS 2984.

[95] M. Leuschel and M. J. Butler. ProB: an automated analysis toolset for the B method.
STTT, 10(2):185–203, 2008.

[96] Michael Leuschel and Michael Butler. Prob: A model checker for b. In Keijiro
Araki, Stefania Gnesi, and Dino Mandrioli, editors, FME 2003: Formal Methods,
volume 2805 of Lecture Notes in Computer Science, pages 855–874. Springer Berlin
Heidelberg, 2003.

[97] B. Mahony and Jin Song Dong. Blending Object-Z and Timed CSP: an introduction
to TCOZ. In Software Engineering, 1998. Proceedings of the 1998 International
Conference on, pages 95–104, 1998.

[98] Petra Malik, Lindsay Groves, and Clare Lenihan. Translating Z to Alloy. In Abstract
State Machines, Alloy, B and Z, volume 5977/2010 of Lecture Notes in Computer
Science, pages 377–390. Springer, 2010.

[99] Paulo J. Matos and Jo ao Marques-Silva. Model Checking Event-B by Encoding into
Alloy. In Abstract State Machines, B and Z, volume 5238/2008 of Lecture Notes in
Computer Science, page 346. Springer, 2008.

[100] J. McCarthy. A Basis for a Mathematical Theory of Computation. In Western Joint
Computer Conference, 1961. Then published in: Computer Programming and Formal
Systems (P.Braffort, D.Hirstberg eds.) North Holland 1967, 33–70.

[101] Leonid Mikhailov, Michael Butler, Leonid Mikhailov, and Michael Butler. An ap-
proach to combining b and alloy. In In Proc. of ZB 2002, volume 2272 of LNCS, pages
140–161. Springer-Verlag, 2002.

[102] R. Milner. A calculus of communicating systems. LNCS 92, 1980.
[103] A.K. Mok. Towards mechanization of real-time system design. In A.M. van Tilborg

and G.M. Koob, editors, Foundations of Real-Time Computing. Formal Specifications
and Methods. Kluwer Academic Publishers, 1991.

[104] David Holst Møller and Christian Rane Paysen Thillermann. Using Eclipse for
Exploring an Integration Architecture for VDM. Master’s thesis, Aarhus Universi-
ty/Engineering College of Aarhus, June 2009.

94 Bibliography

[105] Paul Mukherjee, Fabien Bousquet, Jérôme Delabre, Stephen Paynter, and Peter Gorm
Larsen. Exploring Timing Properties Using VDM++ on an Industrial Application.
In J.C. Bicarregui and J.S. Fitzgerald, editors, Proceedings of the Second VDM
Workshop, September 2000. Available at www.vdmportal.org.

[106] P. Naur and (Ed.) B. Randell. Software Engineering: Report on a Conference spon-
sored by the NATO Science Committee. Garmisch, Germany, 7th to 11th October
1968, Brussels, Scientific Affairs Division, NATO, January 1969.

[P107] Claus Ballegaard Nielsen, Kenneth Lausdahl, and Peter Gorm Larsen. Combining
VDM with Executable Code. In John Derrick, John Fitzgerald, Stefania Gnesi, Sarfraz
Khurshid, Michael Leuschel, Steve Reeves, and Elvinia Riccobene, editors, Abstract
State Machines, Alloy, B, VDM, and Z, volume 7316 of Lecture Notes in Computer
Science, pages 266–279, Berlin, Heidelberg, 2012. Springer-Verlag. ISBN 978-3-642-
30884-0.

[P108] Claus Ballegaard Nielsen, Kenneth Lausdahl, and Peter Gorm Larsen. Using the
Overture Tool as a More General Platform. In Franco Mazzanti, editor, iFM 2012 &
ABZ 2012 - Proceedings of the Posters & Tool demos Session, pages 1–34. CNR-ISTI,
June 2012.

[109] Jacob Porsborg Nielsen and Jens Kielsgaard Hansen. Development of an Over-
ture/VDM++ Tool Set for Eclipse. Master’s thesis, Technical University of Denmark,
Informatics and Mathematical Modelling, August 2005. IMM-THESIS-2005-58.

[110] Carlos Nunes and Ana Paiva. Automatic Generation of Graphical User Interfaces
From VDM++ Specifications. In ICSEA 2011, The Sixth International Conference on
Software Engineering Advances, pages 399–404, 2011.

[111] Carlos Alberto Loureiro Nunes. Automatic Generation of Graphical User Inter-
faces From VDM++ Specifications. Master’s thesis, Faculty of Engineering of the
University of Porto, July 2011.

[112] Vadim Okun and Paul E. Black. Issues in Software Testing with Model Checkers.
In Edmund Clarke, Masahiro Fujita, and David Gluch, editors, Proc. 2003 Interna-
tional Conference on Dependable Systems and Networks (DSN-2003), San Francisco,
California, June 2003. IEEE Computer Society.

[113] Pierre Bontron Oliver Maury, Yves Ledru and Lydia du Bousquet. Using TOBIAS
for the automatic generation of VDM test cases. In J. Fitzgerald J. Bicarregui and
P.G. Larsen, editors, VDM Workshop 3, Copenhagen, Denmark, July 2002. Part of the
FME 2002 conference.

[114] Jan Peleska. Formal Methods for Test Automation – Hard Real-Time Testing of Con-
trollers for the Airbus Aircraft Family. In Integrating Design and Process Technology,
IDPT-2002. Society for Design and Process Science, 2002.

[115] Ken Piece, John Fitzgerald, Carl Gamble, Yunyun Ni, and Jan F. Broenink. Collabo-
rative Modelling and Simulation — Guidelines for Engineering Using the DESTECS
Tools and Methods. Technical report, The DESTECS Project (INFSO-ICT-248134),
September 2012.

[116] K. G. Pierce, C. J. Gamble, Y. Ni, and J. F. Broenink. Collaborative modelling and co-
simulation with destecs: A pilot study. In 3rd IEEE track on Collaborative Modelling
and Simulation, in WETICE 2012. IEEE-CS, June 2012.

[117] Ken Pierce, John Fitzgerald, and Carl Gamble. Modelling faults and fault tolerance
mechanisms in a paper pinch co- model. In Proceedings of the ERCIM/EWICS/Cyber-

Bibliography 95

physical Systems Workshop at SafeComp 2011, Naples, Italy (to appear). ERCIM,
September 2011.

[118] Daniel Plagge and Michael Leuschel. Validating Z Specifications using the ProB
Animator and Model Checker. In Integrated Formal Methods (IFM 2007), LNCS
4591, pages 480–500. Springer-Verlag, 2007.

[119] Nico Plat and Peter Gorm Larsen. An Overview of the ISO/VDM-SL Standard.
Sigplan Notices, 27(8):76–82, August 1992.

[120] Gordon D. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University, 1981.

[121] Gordon D. Plotkin. A structural approach to operational semantics. Journal of Logic
and Algebraic Programming, 60–61:17–139, July–December 2004.

[122] Ben Potter, David Till, and Jane Sinclair. An Introduction to Formal Specification and
Z. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2nd edition, 1996.

[123] G. M. Reed and A. W. Roscoe L. A Timed Model for Communicating Sequential
Processes. In Theoretical Computer Science, pages 314–323, 1988.

[124] Augusto Ribeiro and Peter Gorm Larsen. Proof Obligation Generation and Dis-
charging for Recursive Definitions in VDM. In Jin Song and Huibiao, editors,
The 12th International Conference on Formal Engineering Methods (ICFEM 2010).
Springer-Verlag, November 2010.

[P125] Augusto Ribeiro, Kenneth Lausdahl, and Peter Gorm Larsen. Run-Time Validation of
Timing Constraints for VDM-RT Models. In Sune Wolff and John Fitzgerald, editors,
Proceedings of the 9th Overture Workshop, number ECE-TT-2 in Technical Report
Series, pages 4–16, June 2011.

[126] D. Richard Kuhn and Vadim Okum. Pseudo-Exhaustive Testing for Software. In SEW
’06: Proceedings of the 30th Annual IEEE/NASA Software Engineering Workshop,
pages 153–158, Washington, DC, USA, 2006. IEEE Computer Society.

[127] Peter Froome Robin Bloomfield and Brian Monahan. SpecBox: A toolkit for BSI-
VDM. SafetyNet, Software Engineering for Real Time Systems(5):4–7, 1989.

[P128] John Rohde, Sune Wolff, Thomas Skjødeberg Toftegaardand Peter Gorm Larsen,
Kenneth Lausdahl, Augusto Ribeiro, and Poul Ejnar Rovsing. Towards Green ICT,
chapter 13: Optimizing Energy Usage in Private Households, pages 185–209. River
Publishers, 2010.

[129] A. Romanovsky and M. Thomas (Eds.). Industrial deployment of system en-
gineering methods providing high dependability and productivity, volume ISBN
978-3-642-33169-5 of Lecture Notes in Computer Science. Springer-Verlag, 2012.

[130] Alexander Romanovsky. DEPLOY: Industrial Deployment of Advanced System En-
gineering Methods for High Productivity and Dependability. ERCIM News, 74:54–55,
July 2008.

[131] Adriana Sucena Santos. VDM++ Test Automation Support. Master’s thesis, Minho
University with exchange to Engineering College of Arhus, July 2008.

[132] Linda B. Sherrell and Doris L. Carver. Experiences in Translating Z Designs to
Haskell Implementations. Software Practice and Experience, 24(12):1159–1178,
December 1994.

[133] Colin Snook and Michael Butler. UML-B: Formal modeling and design aided by
UML. ACM Trans. Softw. Eng. Methodol., 15(1):92–122, 2006.

96 Bibliography

[134] J. M. Spivey. The Z notation: a reference manual. Prentice Hall International (UK)
Ltd., Hertfordshire, UK, UK, 1992.

[135] Andrzej Tarlecki and Morten Wieth. A Naive Domain Universe for VDM. In Dines
Bjørner, C.A.R. Hoare, and Hans Langmaack, editors, VDM ’90 VDM and Z – Formal
Methods in Software Development, pages 552–579. VDM Europe, Springer-Verlag,
April 1990.

[136] The-Standish-Group. The Chaos Report. http://www.projectsmart.co.uk/docs/chaos-
report.pdf, 1995.

[137] The-VDM-Tool-Group. The Rose-VDM++ Link. Technical report, CSK Systems,
January 2008.

[138] The VDM Tool Group. VDM Toolbox API. Technical report, CSK Systems, January
2008.

[139] The VDM Tool Group. The Dynamic Link Facility for VDM++. Technical report,
SCSK Corporation, January 2013.

[140] B.D. Theelen, O. Florescu, M.C.W. Geilen, J. Huang, P.H.A. van der Putten, and
J.P.M. Voeten. Software/hardware engineering with the parallel object-oriented spec-
ification language. In Proceedings of the ACM-IEEE International Conference on
Formal Methods and Models for Codeesign (MEMOCODE), pages 139–148, Los
Alamitos (USA), 2007. IEEE Computer Society.

[141] S.H. Valentine. Z– , an executable subset of Z. In J.E. Nicholls, editor, Z User
Workshop, York 1991, Workshops in Computing, pages 157–187. Springer-Verlag,
1992.

[142] P. van der Spek. The overture project: Designing an open source tool set. Master’s
thesis, Delf University of Technology, August 2004.

[143] P. van der Spek, N. Plat, and C. Pronk. Syntax error repair for a java-based parser
generator. SIGPLAN Not., 40(4):47–50, 2005.

[144] Margus Veanes, Colin Campbell, Wolfgang Grieskamp, Wolfram Schulte, Nikolai
Tillmann, and Lev Nachmanson. Model-Based Testing of Object-Oriented Reac-
tive Systems with Spec Explorer. In Formal Methods and Testing, pages 39–76.
Springer-Verlag, 2008. vol. 4949.

[145] Marcel Verhoef. Modeling and Validating Distributed Embedded Real-Time Control
Systems. PhD thesis, Radboud University Nijmegen, 2009.

[146] Marcel Verhoef, Peter Gorm Larsen, and Jozef Hooman. Modeling and Validating
Distributed Embedded Real-Time Systems with VDM++. In Jayadev Misra, Tobias
Nipkow, and Emil Sekerinski, editors, FM 2006: Formal Methods, Lecture Notes in
Computer Science 4085, pages 147–162. Springer-Verlag, 2006.

[147] Marcel Verhoef, Peter Visser, Jozef Hooman, and Jan Broenink. Co-simulation of
Real-time Embedded Control Systems. In Jim Davies and Jeremy Gibbons, editors,
Integrated Formal Methods: Proc. 6th. Intl. Conference, Lecture Notes in Computer
Science 4591, pages 639–658. Springer-Verlag, July 2007.

[148] M.H.G. Verhoef. Co-simulation enhances the dialogue between design disciplines. In
N. Roos, editor, Bits & Chips, pages 54 – 55, October 2012. in Dutch.

[149] Sander Vermolen. Automatically Discharging VDM Proof Obligations using HOL.
Master’s thesis, Radboud University Nijmegen, Computer Science Department, Au-
gust 2007.

Bibliography 97

[150] Sander Vermolen, Jozef Hooman, and Peter Gorm Larsen. Automating Consistency
Proofs of VDM++ Models using HOL. In Proceedings of the 25th Symposium on
Applied Computing (SAC 2010), Sierre, Switzerland, March 2010. ACM.

[151] Carlos Vilhena. Connecting between VDM++ and JML. Master’s thesis, Minho
University with exchange to Engineering College of Arhus, July 2008.

[152] Alan Wassyng and Mark Lawford. Lessons learned from a successful implementation
of formal methods in an industrial project. In Keijiro Araki, Stefania Gnesi, and Dino
Mandrioli, editors, FME 2003: Formal Methods, volume 2805 of Lecture Notes in
Computer Science, pages 133–153. Springer Berlin Heidelberg, 2003.

[153] Alan Wassyng and Mark Lawford. Software tools for safety-critical software
development. Int. J. Softw. Tools Technol. Transf., 8(4):337–354, August 2006.

[154] Michael Westergaard and Lars Kristensen. The access/cpn framework: A tool for
interacting with the cpn tools simulator. In Giuliana Franceschinis and Karsten Wolf,
editors, Proceedings of the 30th International Conference on Applications and Theory
of Petri Nets, pages 313–322. Springer Berlin / Heidelberg, 2009.

[P155] Sune Wolff, Peter Gorm Larsen, Kenneth Lausdahl, Augusto Ribeiro, and
Thomas Skjødeberg Toftegaard. Facilitating Home Automation Through Wireless
Protocol Interoperability. In WPMC’09: The 12th International Symposium on
Wireless Personal Multimedia Communications, September 2009.

[156] Jim Woodcock and Jim Davies. Using Z – Specification, Refinement, and Proof.
Prentice Hall International Series in Computer Science, 1996.

[157] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John Fitzgerald. Formal
Methods: Practice and Experience. ACM Computing Surveys, 41(4):1–36, October
2009.

[158] John Wordsworth. Software development with Z - a practical approach to formal
methods in software engineering. International computer science series. Addison-
Wesley, 1992.

	Abstract
	Resumé
	Acknowledgements
	I Overview
	1 Introduction
	1.1 Modelling of Software Systems
	1.2 Formal Modelling Languages
	1.3 Modelling of Physical Systems
	1.4 Motivation
	1.5 Research Method
	1.6 Research Objectives
	1.7 Evaluation Criteria
	1.8 Published Work
	1.9 Outline and Reading Guide

	2 Tool Automation
	2.1 Overture in a Historical Perspective
	2.2 Development
	2.3 Validation
	2.4 Translation
	2.5 Formal Verification

	3 Semantics
	3.1 Existing VDM Semantics Efforts
	3.2 The VDM Real-Time Semantics Developed in this PhD Project
	3.3 Co-Simulation Semantics

	4 Conclusion
	4.1 Introduction
	4.2 Research Contributions
	4.3 Evaluation of Contributions
	4.4 Future Work

	II Publications
	5 The Overture Initiative – Integrating Tools for VDM
	6 Connecting UML and VDM++ with Open Tool Support
	7 Translating VDM to Alloy
	8 A Deterministic Interpreter
	9 Combinatorial Testing for VDM
	10 Combining VDM with Executable Code
	11 Run-Time Validation of Timing Constraints for VDM Models
	12 Semantics Focused Papers
	Bibliography

