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Abstract

The chapter is devoted to the design of an intelligent neural network-based
control system for underwater robots. A new algorithm for intelligent con-
troller learning is derived using the speed gradient method. The proposed
systems provide robot dynamics close to the reference ones. Simulation
results of neural network control systems for underwater robot dynamics with
parameter and partial structural uncertainty have confirmed the perspectives
and effectiveness of the developed approach.
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7.1 Introduction

Underwater Robots (URs) promise great perspectives and have a broad
scope of applications in the area of ocean exploration and exploitation. To
provide exact movement along a prescribed space trajectory, URs need a
high-quality control system. It is well known that URs can be considered as
multi-dimensional nonlinear and uncertain controllable objects. Hence, the
design procedure of URs control laws is a difficult and complex problem
[3, 8].
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Modern control theory has derived a lot of methods and approaches to
solve appropriate synthesis problems such as nonlinear feedback lineariza-
tion, adaptive control, robust control, variable structure systems, etc [1, 4].
However, most of these methods for control systems synthesis essentially use
information about the structure of the URs mathematical model. The nature
of the interaction of a robot with the water environment is so complicated
that it is hard to get the exact equations of URs motion. A possible way to
overcome control laws synthesis problems can be found in the class of artificial
intelligence systems, in particular, based on multi-layer Neural Networks
(NNs) [1, 2, 5].

Recently, a lot of publications were devoted to the problems of NNs
identification and control, starting from the basic paper [5]. Many papers
are associated, in particular, with applications of NNs to the problems of URs
control [1, 2, 7].

Conventional applications of multi-layer NNs are based on preliminary
network learning. As a rule, this process is the minimization of the criterion
which expresses overall deviations of NN outputs from the desirable values,
with given NN inputs. The network learning results in NN weight coefficients
adjustment. Such an approach supposes the knowledge of teaching input-
output pairs [5, 7].

The feature of NNs application as a controller consists in the fact that
a desirable control signal is unknown in advance. The desired trajectory
(program signal) can be defined only for the whole control system [1, 2].

Thus, the multi-layer NNs application in control tasks demands a develop-
ment of approaches that take into account the dynamical nature of controllable
objects.

In this chapter, an intelligent NNs-based control system for URs is
designed. A new learning algorithm for an intelligent NN controller, which
uses the speed gradient method [4], is proposed. Numerical experiments with
control systems containing the proposed NN controller were carried out in
different scenarios: varying parameters and different expressions for viscous
torques and forces. Modeling results are given and discussed.

Note that the choice of a NN regulator is connected with the principal
orientation of the neural network approach to a priori uncertainty, which
characterizes any UR. In fact, matrices of inertia of the UR’s rigid body are not
exactly known, as well as the added water mass. Forces and torques of viscous
friction are unknown and uncertain functional structure parameters. Hence,
an UR can be considered as a controllable object with partial parameter and
structure uncertainties.



7.3 Intelligent NN Controller and Learning Algorithm Derivation 149

7.2 Underwater Robot Model

The UR mathematical model traditionally consists of differential equations
describing its kinematics

q̇1 = J(q1)q2 (7.1)

and its dynamics

D(q1)q̇2 + B(q1, q2)q2 + G(q1, q2) = U, (7.2)

where J (q1) is the kinematical matrix; q1, q2 are the vectors of generalized
coordinates and body-fixed frame velocities of the UR; U is the control forces
and torques vector; D is the inertia matrix taking into account added masses of
water; B is the Coriolis – centripetal term matrix; G is the vector of generalized
gravity, buoyancy and nonlinear damping forces/torques [3].

The lack a priori knowledge of the mathematical structure and the param-
eters of the UR model matrices and the UR model vectors can be compensated
by an intensive experimental research. As a rule, this way is too expensive
and takes a long time. One alternative approach is connected with the usage
of the intelligent NN control.

7.3 Intelligent NN Controller and Learning Algorithm
Derivation

Our objective is to synthesize an underwater robot NN controller in order to
provide the UR movement along a prescribed trajectory qd1 (t) , qd2(t).

Firstly, we consider the control task with respect to the velocities qd2 (t).
Let us define the error as:

e2 = qd2 − q2 (7.3)

and let’s introduce the function Q as a measure of the difference between
desired and real trajectories:

Q =
1
2
eT
2 De2, (7.4)

where the matrix of inertia is D > 0.
Furthermore, we use the speed gradient method developed by A.

Fradkov [4]. According to this method, let compute the time derivative of Q:

Q̇ = eT
2 Dė2 +

1
2
eT
2 Ḋe2. (7.5)
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From
q2 = qd2 − e2 (7.6)

and one has
D(q1)q̇2 = D(q1)q̇d2 − D(q1)ė2. (7.7)

Using the first term of the dynamics Equation (7.2), one can get the following:

D(q1)ė2 = D(q1)q̇d2 + B(q1, q2)qd2−
− B(q1, q2)e2 + G(q1, q2) − U, (7.8)

and thus the time derivative of function Q can be written in the following
form:

Q̇ = eT
2 (D(q1)q̇d2 + B(q1, q2)qd2−

− B(q1, q2)e2 + G(q1, q2) − U) +
1
2
eT
2 Ḋe2. (7.9)

After mathematical manipulation, one gets

Q̇ = eT
2 (D(q1)q̇d2 + B(q1, q2)qd2 + G(q1, q2) − U)−

− eT
2 B(q1, q2)e2 +

1
2
eT
2 Ḋ(q1)e2 =

= eT
2 (D(q1)q̇d2 + B(q1, q2)qd2 + G(q1, q2) − U)+

+ eT
2 (

1
2
Ḋ(q1) − B(q1, q2)e2).

As known, there is a skew-symmetric matrix in the last term, hence, this term
is equal to zero, and we obtain the following simplified expression:

Q̇ = eT
2 (D(q1)q̇d2 + B(q1, q2)qd2 + G(q1, q2) − U). (7.10)

Our aim is to implement an intelligent UR control [1] based on neural
networks. Without loss of generality of the proposed approach, let’s choose
a two-layer NN (Figure 7.1). Let the hidden and output layers have H and
m neurons, respectively (m is equal to the dimension of e2). For the sake
of simplicity, one supposes that only the sum of weighted signals (without
nonlinear transformation) is realized in the neural network output layer. The
input vector has N coordinates.

Let’s define wij as the weight coefficient for the i-th input of the j-th neuron
of the hidden layer. So, these coefficients compose the following matrix

w =

⎡
⎢⎢⎣

w11 w12 ... w1N

w21 w22 ... w2N

... ... ... ...
wH1 wH2 ... wHN

⎤
⎥⎥⎦ . (7.11)
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Figure 7.1 Neural network structure.

As a result of the nonlinear transformation f (w, x), the hidden layer output
vector can be written in the following form:

f(w, x) =

⎡
⎣

f1(wT
1 x)

...
fH(wT

Hx)

⎤
⎦ , (7.12)

where wk denotes the k-th raw of matrix w and x is the NN input vector.
Analogously, let’s introduce the matrix W whose element Wli denotes the

transform (weight) coefficient from the i-th neuron of the hidden layer to the
l-th neuron of the output layer.

Once the NN parameters are defined, the underwater robot control signal
(NN output) is computed as follows:

U = y(W, w, x) = W · f(w, x). (7.13)

Substitution of this control into (7.10), allows us to get

Q̇ = eT
2 (D(q1)q̇d2 + B(q1, q2)qd2+

+ G(q1, q2) − W · f(w, x)). (7.14)

To derive the NN learning algorithm, we apply the speed gradient method
[4]. For this, we compute the partial derivatives of the time derivative of
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function Q with respect to the adjustable NN parameters – matrices and W .
Direct differentiation gives

∂Q̇

∂W
= −e2f

T (w, x). (7.15)

It is easy to demonstrate that if we choose all activation functions in the usual
form

f ( x ) = 1/(1 + e−τ x), (7.16)

this implies the following property

∂

∂wij
fi(wT

i x) = fi(wT
i x)[1 − fi(wT

i x)]xj . (7.17)

Let’s introduce the following additional functions

φi(wT
i x) = fi(wT

i x)[1 − fi(wT
i x)] (7.18)

and the matrix

Φ(w, x) = diag(φ1(wT
1 x)...φH(wT

Hx)). (7.19)

Hence, direct calculation gives

∂Q̇

∂w
= −ΦW T e2x

T . (7.20)

As a final stage, one can write the NN learning algorithm in the following
form:

W (k+1) = W (k) + γe2f
T (w, x),

w(k+1) = w(k) + γΦW Te2x
T , (7.21)

where γ is the learning step, k is the number of iterations.
The continuous form of this learning algorithm can be presented as

Ẇ = γe2f
T (w.x),

ẇ = γΦWe2x
T (w.x).

(7.22)

Such an integral law of the NN-regulator learning algorithm may cause
unstable regimes in the control system, as it takes place in adaptive systems
[4]. The following robust form of the same algorithm is also used:

Ẇ = γe2f
T (w.x) − αW,

ẇ = γΦWe2x
T (w.x) − αw,

(7.23)
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where constant α > 0.
Now, let’s consider which components should be included in the NN

input vector. The NN controller is oriented to compensate an influence of
the appropriate matrix and vector functions, and thus, in the most common
case, the NN input vector must be composed of q1, q2, e2, qd2 and their time
derivative.

The NN learning procedure leads to the reduction of function Q, and thus,
in ideal conditions, the error e2 converges to zero and the UR follows the
desired trajectory

q2(t) → qd2(t). (7.24)

If the UR trajectory is given by qd1 (t), one can choose

qd2(t) = J−1(q1)(q̇d1(t) + k(qd1(t) − q1(t))), (7.25)

where k is a positive constant. From the kinematics Equation (7.1), it follows
that

q̇1(t) → q̇d1(t) + k(qd1(t) − q1(t)) (7.26)

and
ė1(t) + ke1(t) → 0, (7.27)

where
e1(t) = qd1(t) − q1(t). (7.28)

Hence, the UR follows to the planned trajectory qd1 (t).

7.4 Simulation Results of the Intelligent NN Controller

In order to check the effectiveness of the proposed approach, different
computer simulations have been carried out. The UR model parameters were
taken from [6]. The UR parameters are the following:

D = DRB + DA,

where the inertia matrix of the UR rigid body is

DRB =

⎡
⎣

1000 0 200
0 1000 0

200 0 11000

⎤
⎦ ,
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and the inertia matrix of the hydrodynamic added mass is

DA =

⎡
⎣

1000 0 100
0 1100 80

100 80 9000

⎤
⎦ .

Matrices B and G are

B =

⎡
⎣

210 20 30
25 200 70
15 33 150

⎤
⎦ ,

G =
[

0 0 0
]T

.

Vector q2 consists of the following components (linear and angular UR
velocities):

q2 =
[

vx vz ωy

]T
. (7.29)

The NN input is composed by q2 and e2. The NN output (control forces
and torque) is the vector

U =
[

Fx Fz My

]T
. (7.30)

For the NN controller containing 10 neurons in the hidden layer, the
simulation results are given on Figures 7.2 – 7.9.

In the considered numerical experiments, the desired trajectory was taken
as follows:

⎧⎨
⎩

vxd = 0.75m/ sec,
vzd = 0.5m/ sec,
ωyd = −0.15rad/ sec,

0 ≤ t ≤ 250 sec ,

⎧⎨
⎩

vxd = 0.5m/ sec,
vzd = 0.75m/ sec,
ωyd = 0.15rad/ sec .

250 ≤ t ≤ 500 sec

7.5 Modification of NN Control

In previous sections, a NN control was designed. Practically speaking, the
synthesis procedure of the NN regulator does not use any information of
the mathematical model of the controlled object. As one can see, differential
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Figure 7.2 Transient processes in NN control system (α = 0.01, γ = 250).

Figure 7.3 Forces and Torque in NN control system (α = 0.01, γ = 250).
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Figure 7.4 Examples of hidden layer weight coefficients evolution (α = 0.01,γ = 250).

equations describing the underwater robot dynamics have a particular structure
which can be taken into account for solving the synthesis problem of the control
system.

Figure 7.5 Examples of output layer weight coefficients evolution (α = 0.01, γ = 250).
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Figure 7.6 Transient processes in NN control system (α = 0.01, γ = 200).

Figure 7.7 Forces ant Torque in NN control system (α = 0.01, γ = 200).
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Figure 7.8 Examples of hidden layer weight coefficients evolution (α = 0.01, γ = 200).

There exist different ways to solve it. One of the possible approaches is
derived below:

Figure 7.9 Examples of output layer weight coefficients evolution (α = 0.01, γ = 200).
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As mentioned before, the parameters of underwater robots, such as added
masses, moments of inertia, coefficients of viscous friction etc, are not all
exactly known because of the complex hydrodynamic nature of the robot
movement in the water environment.

Let’s suppose that a set of nominal UR parameters can be estimated. Hence,
it is possible to get appropriate nominal matrices D0 (q1), B0 (q1, q2) and
G0 (q1, q2) in Equation (7.2). Let’s denote the deviations of the real matrices
from the nominal ones as ΔD (q1), ΔB (q1, q2) and ΔG (q1, q2), respectively.
So, the following takes place:

D(q1) = D0(q1) + ΔD(q1),
B(q1, q2) = B0(q1, q2) + ΔB(q1, q2),
G(q1, q2) = G0(q1, q2) + ΔG(q1, q2).

(7.31)

Inserting expressions (7.29) into Equation (7.10) gives

Q̇ = eT
2 (D0(q1)q̇d2 + B0(q1, q2)qd2 + G0(q1, q2)+

+ ΔD(q1)q̇d2 + ΔB(q1, q2)qd2 + ΔG(q1, q2) − U). (7.32)

Now let’s choose the control law in the form:

U = U0 + UNN , (7.33)

where

U0 = D0(q1)q̇d2 + B0(q1, q2)qd2 + G0(q1, q2) + Γe2, (7.34)

is the nominal control associated with the known part of the robot dynamics
(matrix Γ > 0 is positively definite) and UNN is the neural network control to
compensate the uncertainty. The scheme of the proposed NN control system
for an underwater robot is given on Figure 7.10.

If the robot dynamics can be exactly determined (and uncertainty does not
take place), the nominal control (7.34) fully compensates undesirable terms
in (7.32) (UNN can be taken as equal to zero) and one has

Q̇ = −eT
2 Γe2 < 0. (7.35)

Thus, functions Q (t) and e2 (t) converge to zero for t → ∞.
In the general case, as follows from (7.32) – (7.34), one has

Q̇ = eT
2 (ΔD(q1)q̇d2 + ΔB(q1, q2)qd2 + ΔG(q1, q2) − UNN ). (7.36)

As one can expect, the use of the nominal component of the control facilitates
the implementation of the proper NN control.
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Figure 7.10 Scheme of the NN control system.

Further steps of the NN controller learning algorithm can be done
practically in the same manner as above (see Equation (7.15, 20 and 21)).

In order to check the derived NN control, mathematical simulations of the
UR control system were carried out. The nominal matrices D0 (q1), B0 (q1, q2)
and G0 (q1, q2) were taken as follows:

D0 = DRB0 + DA0,

DRB0 =

⎡
⎣

1000 0 0
0 1000 0
0 0 11000

⎤
⎦ , DA0 =

⎡
⎣

1000 0 0
0 1100 0
0 0 9000

⎤
⎦ ,

B0 =

⎡
⎣

210 0 0
0 200 0
0 0 150

⎤
⎦ ,

G0 =
[

0 0 0
]T

.

and matrix Γ = diag [0.02, 0.02, 0.02].
Note that the matrices D0, B0 of the nominal dynamics model contain only

diagonal elements which are not equal to zero. This means that the nominal
model is simplified and does not take into account an interaction between
different control channels (of linear and angular velocities). The absence of
these terms in the nominal dynamics results in partial parametric and structural
uncertainty.

Figures 7.11 – 7.18 show the transient processes and control signals
(forces and torque) in the designed system with a modified NN regulator.
The experimental results demonstrated that the robot coordinates converge to
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Figure 7.11 Transient processes with modified NN-control (α = 0, γ = 200).

Figure 7.12 Forces and torque with modified NN control (α = 0, γ = 200).

the desired trajectories. In comparison with the conventional multilayer NN
applications, the weight coefficients of the proposed NN controller are varying
simultaneously with the control processes.
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Figure 7.13 Examples of hidden layer weight coefficients evolution (α = 0, γ = 200).

Figure 7.14 Examples of output layer weight coefficients evolution (α = 0, γ = 200).
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Figure 7.15 Transient processes with modified NN control (α =0.001, γ = 200).

Figure 7.16 Forces and Torque with modified NN control (α = 0.001, γ = 200).
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Figure 7.17 Examples of hidden layer weight coefficients evolution (α =0.001, γ =200).

Figure 7.18 Examples of output layer weight coefficients evolution (α =0.001, γ = 200).
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7.6 Conclusions

An approach on how to design an intelligent NN controller for underwater
robots and how to derive its learning algorithm on the basis of a speed
gradient method is proposed and studied in this chapter. The numerical
experiments have shown that high-quality processes can be achieved with the
proposed intelligent NN control. In the study case of producing an UR control
system, the NN learning procedure allows to overcome the parameter and
partial structural uncertainty of the dynamical object. The combination of
the neural network approach with the proposed control, designed using the
nominal model of the underwater robot dynamics, allows to simplify the
control system implementation and to improve the quality of the transient
processes.
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