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Abstract

In this paper, we present an autonomous car with distributed data processing.
The car is controlled by a multitude of independent sensors. For lane detection,
a camera is used, which detects the lane marks using a Hough transformation.
Once the camera detects these, one of them is selected to be followed by the
car. This lane is verified by the other sensors of the car. These sensors check
the route for obstructions or allow the car to scan a parking space and to park
on the roadside if the gap is large enough. The car is built on a scale of 1:10
and shows excellent results on a test track.
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9.1 Introduction

In modern times, the question of safe traveling becomes more and more
important. Most accidents are caused by human failure, so that in many sectors
of industry the issue of “autonomous driving” is of increasing interest. An
autonomous car will not have problems like being in a bad shape that day
or tiredness and will suffer less from reduced visibility due to environmental
influences. A car with laser sensors to detect objects on the road, sensors that
measure the grip of the road, that calculate speed based on the signals of these
sensors and with a fixed reaction time will reduce the number of accidents and
related costs.
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This chapter describes the project of an autonomous vehicle on a scale
of 1:10, which was developed based on decentralized signal routing. The
objective of the project is to build an autonomous car that is able to drive
autonomously on a scaled road, including the detection of stopping lines,
finding a parking area and parking autonomously.

The project is divided into three sections. The first section is about the car
itself, the platform of the project. This section describes the sensors of the car,
the schematic construction and the signal flow of the car.

The second section is about lane detection, the most important part
of the vehicle. Utilizing a camera with several image filters, the lane marks of
the road can be extracted from the camera image. This section also describes
the calculation of the driving lane for the car.

The control of the vehicle is the matter of the third section. The car runs
based on a mathematical model of the car, which calculates the speed and the
steering angle of the car in real time, based on the driving lane provided by
the camera.

The car is tested on a scaled indoor test track.

9.2 The Testing Environment

Since the car is based on a scaled model car, the test track has to be scaled,
too. Therefore, the test track has the same dimensions as the scaled road that
is used in a competition for cars on a scale of 1:10 that takes place in Germany
every year. As you can see in Figure 9.1, the road has fixed lane marks.
This is important, because it’s about a prototype. On a real road, several

Figure 9.1 Dimensions of the test track.
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types of lane marks exist. From white lines, as in the test track, to pil-
lars and a missing center line, every type of lane marks is expected to
show up.

In order to simplify the lane detection on the test track, it is assumed, that
at all times only one type of lane marks exists. The road has a fixed width and
the radius of the curves measure at least 1 meter. The test track has no slope,
but a flat surface.

9.3 Description of the System

The basic idea for the vehicle is related to a distributed data acquisition strategy.
That means, that all peripherals are not managed by a single microcontroller,
but each peripheral has its own microcontroller, which handles the data
processing for a specific task. All together are used to analyze the data of the
different sensors of the car. Smaller controllers, for instance for the distance
sensors or for the camera, are managed by one main controller. The input of
the smaller controllers is provided simultaneously via CAN.

The base of the vehicle is a model car scaled 1:10. It includes each
mechanical peripheral of a car, like the chassis or the engine. A platform
for the control system is added. Figure 9.2 shows the schematic topview of
the car with the added platform.

The vehicle itself is equipped with two front boards, a side board, a rear
board and the motherboard. All of these boards have one microcontroller for

Figure 9.2 Schematic base of the model car.
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data analysis that is positioned next to the sensors. The front boards provide
infrared sensors for object tracking in the distance.

The infrared sensors of the side board have the task of finding a parking
space and transmitting the information via CAN bus to the main controller,
which undertakes the control of parking supported by the information it gets
from the sensors in the front and back of the car.

The rear board is equipped with infrared sensors, too. It serves the
back of the vehicle only. That guarantees a safe distance to all objects in
the back. The microcontrollers are responsible for the data processing of
each board and send the information to the main controller via CAN bus.
Each of the microcontrollers reacts on the incoming input signals of the
corresponding sensors according to its implemented control. The infrared
sensors are distributed alongside the car as you can see in Figure 9.3.

The motherboard with the integrated main controller is the main access
point of the car. It provides the CAN bus connection, the power supply for
the other boards and external sensors of the car. But primarily it’s the central
communications point of the car and manages the information that comes from
the peripheral boards, including the data from the external sensors, the control
signals for the engine and the servo for the starring angle.

The motherboard gets its power supply from three 5 V batteries. With these
three batteries, the model car is able to drive about one hour autonomously.

The main task for the main controller is the control of the vehicle. It
calculates the speed of the car and the starring angle based on a mathematical
model of the car and the information of the sensors. The external engine driver
sets the speed via PWM. The starring angle of the car is adjusted by the front
wheels. An additional servo controls the wheel’s angle.

Figure 9.3 The infrared sensors distributed alongside the car.
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The camera and its lane detection is the most important component of the
vehicle. It is installed in the middle of the front of the car, see Figure 9.4.
The viewing angle is important for the position of the camera. If the viewing
angle is too small, the pictures of the camera show a near area in front of the
car only, but not the area in the middle distance. If the viewing angle is too
big, the camera shows a big area in front of the car indicating near and far
distances, but the information of the road is so condensed, that an efficient lane
detection isn’t possible. The angle depends also on the height of the camera
and the numerical aperture of the lens. The higher the camera is positioned,
the smaller the viewing angle. For this project, the camera has a height of
30 cm and a viewing angle of 35 degrees. The height and the angle of the
camera are based on experimental research.

Figure 9.5 shows the reduced signal flow of the vehicle. The information
from the infrared sensors is sent to a small microcontroller, as it is visualized
by the spotted lines. In reality, each sensor has its own microcontroller, but to
reduce the complexity of the graphic, they were shown as one. The camera
has its own microcontroller. This controller must be able to accomplish
the necessary calculations for lane detection in time. For the control of the
vehicle by the main controller, it is necessary that all information from all
other controllers are actualized in one calculation step, this is needed for
the mathematical model of the car. The main controller gathers the analyzed
data provided by the smaller microcontrollers, the data from the camera

Figure 9.4 Position of the camera.
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Figure 9.5 Schematic signal flow of the vehicle.

about the driving lane and the information from other sensors like gyroscope
and accelerometer for its calculation. The essential signal flow of all these
components to the main controller is visualized by the solid lines in Figure 9.5.
After its calculation, the main controller sends control signals to the engine
and the servo, which controls the starring angle of the car.

Incremental encoders on the rear wheels detect the actual speed and
calculate the path the vehicle has traveled during the last calculation step
of the mathematical model. The sensors send the data via CAN bus to the
main controller. The vehicle is front-engined, so traction of the rear wheels is
ensured. Potential error in measurement through spinning is avoided.

There are two modules that do not communicate via CAN bus with the
main controller: the first one is the camera, ensuring that the vehicle keeps
the track, the second is a sensor module, which includes the gyroscope
and accelerometer. Both modules do not have a CAN interface, but they
communicate via an USART interface with the main microcontroller.

In the future, the focus will be on an interactive network of several inde-
pendent vehicles based on radio transmission. This will allow all vehicles to
communicate with each other and share information like traction and behavior
of the road, actual position from GPS, or speed. The radio transmission is
carried out with the industry standard called “Zigbee”. An XBEE module of
the company “Digi” undertakes the radio transmission. The module uses an
UART interface for the communication with the main microcontroller on the
vehicle. Via this interface, the car will get information from other cars nearby.
A detailed overview of the data processing system, including the XBEE
module, is shown in Figure 9.6.
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Figure 9.6 Overview of the data processing system.

9.4 Lane Detection

There are several steps needed to accomplish the lane detection.
First, the image has to be analyzed with an In-Range filter. In the second

step, the points that the Hough-transformation has identified as lane marks, are
divided into left and right lane marks. Next, the least squares method is used
to transform the lane marks into a second-degree polynomial, thus providing
the base to calculate the driving lane. Subsequently, the points of the driving
lane are transformed into world coordinates.

Two types of filters are used to get the needed information from the
image. Both are functions from the OpenCV-library. An In-Range filter
is used to detect the white lane marks on the defined test track. The
Hough-transformation calculates the exact position of the lane marks prepar-
ing them for the next steps.

9.4.1 In-Range Filter

The In-Range filter transforms an RGB-image into an 8-bit binary image. It’s
made for the detection of pixels in a variable color range. The transformed
picture has the same resolution as the original picture. Pixels belonging to
the chosen color range are white. All other pixels in the image are black. The
function works with the individual values of the RGB format. The chosen
color is defined by two critical values of this format.

Figure 9.7 shows the result of the In-Range filter.
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Figure 9.7 Comparison between original and in-range image.

9.4.2 Hough-Transformation

The Hough-transformation is an algorithm to detect lines or circles in images,
which in this case means that it investigates the binary image from the In-Range
filter in order to find the lane marks.

The Hessian normal form converts individual pixels, so that they can be
recognized as lines in the Hough space. In this state, space lines are expressed
by the distance to the point of origin and the angle to one of the axes. Due to
the fact that the exact angle of the marks is unknown, the distance to the point
of origin is calculated based on Equation (9.1), utilizing the most probable
angles:

r = x · cos (a) + y · sin (a) . (9.1)

The intersection of the sinusoidals provides an angle and the distance of
the straight line from the origin of coordinates. These parameters create a
new line, so that the majority of the pixels can be detected. Furthermore, the
function from the OpenCV-library returns the start and the endpoint of each
Hough-line. As Figure 9.8 shows, the lines of the Hough-transformation are
precisely mapped on the lane marks of the road.

Figure 9.8 Original image without and with Hough-lines.
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9.4.3 Lane Marks

To provide a more precise calculation, all points along the line are included.
These points are stored in two arrays and then sorted.As a first sorting criterion,
the position of the last driving lane is used. The second criterion for sorting
derives from their position in the image.

As mentioned before, the information in the image regarding long distances
can be critical depending on the viewing angle and height of the camera. In
order to concentrate on noncritical information only, points in the middle area
of the image are used. Figure 9.9 shows the sorted points on the right and the
corresponding Hough-lines on the left side.

9.4.4 Polynomial

To describe the lane marks more efficiently, a second-degree polynomial is
used. The coefficients of the parable are derived by the least-squares method.
A polynomial of a higher degree isn’t needed, because the effort to calculate
the coefficients is too high to make sense in this context, for the speed of the
image processing is one of the critical points of the project. Furthermore, the
area of the road, which is pictured by the camera, is too small. The road is
unable to clone the typical form of a third-degree polynomial.

As visible in Figure 9.10, the parables derived from the sorted points are
mapped precisely on the lane marks of the road. The algorithm to calculate
the coefficients derived from the points of the lane marks is handwritten.

9.4.5 Driving Lane

The driving lane for the car lies between the parables mentioned in the last
chapter. To calculate the position of the points of the driving lane, the average

Figure 9.9 Hough-Lines and sorted points along the Hough-Lines.
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Figure 9.10 Sorted Points and Least-Square Parable.

of two opponent points of the two parables is taken. According to 9.2, the
average for the x- and y-coordinates is calculated.
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In order to simplify the transformation from pixel-coordinates to
world-coordinates, the driving lane is described by a fixed number of points
in the image. The essential feature of these points is that they lie in predefined
rows in the image. So, there is only the need to calculate the horizontal position
of the parable for these points.

Theoretically it is possible that the program delivers an incorrect driving
lane. Mistakes can occur because of flash lights, reflections on the road,
missing lane marks due to different reasons or extreme light conditions, which
are much faster than the auto white balance of the camera can bear. So in
order to avoid mistakes that occur within a short time period, some kind of
stabilization is required. Short time in this case means shorter than one second.

For the purpose of stabilization, the different driving points are stored. The
stabilization works with these stored points in combination with four defined
edge points in the image. First, the algorithm checks if the edge points of the
new image differ from the edge points in the old image.

If the difference between the old points and the new points is low, the
driving lane is calculated and the driving points are stored. In case that the
difference between the points is too big, the driving lane is not updated and
the driving lane is calculated by using the stored points. The algorithm works
with the changes of the stored points. The new points are calculated by using
the difference between the last image and the current one. This difference is
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derived from the change of the difference between the third and second image,
that have been taken before the current one, and the difference between the
second and the first image before the current one.

The critical values for the difference also depend on this calculation. That
means that in curvas, the critical values are higher. If not, only the last three
images are used for the calculation, in order to reduce the noise of the driving
lane. However, in this case, the reaction time of the algorithm is lesser.

The reaction time also depends on the fps (frames per second) of the
camera. For this project, a camera with 100 fps is used and the last fifteen
driving lanes are stored. The number of stored driving lanes for 100 fps is
based on experimental research.

Figure 9.10 shows the driving lane in red color. The four edge points mark
the edge points of the rectangle.

9.4.6 Stop Line

One of the main tasks of the camera is to detect stop lines. Figure 9.11 shows
the dimensions of the stop lines for this test track.

In order to detect stop lines, the algorithm is searching for the main
characteristics. First, the stop line is a horizontal line in the image. If the
angle of a vertical line in the image is defined as zero degrees, that means,
that the perfect stop line has an angle of 90 degree. The algorithm not only
searches for 90 degree lines. The angle for a potential stop line is smaller
than –75 degree and bigger than +75 degree.

The next criterion of a stop line is that it lies on the car traffic lane. So,
the algorithm does not need to search in the complete image for stop lines,
but only in the area of the cars traffic lane. This area is marked by the four
edge points of the rectangle mentioned in the last chapter. Once the algorithm

Figure 9.11 Parables and driving lane.
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finds a potential stop line in the right area with a correct angle, the algorithm
checks the next two characteristics of a stop line: the length and the width of
the stop line.

The length of the stop line is easy to check. The stop line must be as long
as the road is wide, so the algorithm only needs to check the endpoints of the
line. On the left side, the endpoint of the stop line must lie on the middle road
marking. On the right side, the stop line borders on the left road marking from
the crossing road. The stop line and the road marking differ in just one point:
the width.

Since it is not possible to perceive the differences of the width in each
situation, the stop line has no defined end point on this side. So, the algorithm
checks if the end point of the potential stop line lies on or above the right road
marking. It is hard to measure the width of a line in an image that has constant
width and length in reality. The width of the line in the image in pixels depends
on the camera position in relation to the line, the numerical aperture of the
camera lens and the resolution of the camera. So, because in this project the
position of the camera changes from time to time, measuring the width is not
reliable to perceive the stop line. Therefore, the width is not used as a criterion
for stop lines.

Figure 9.12 shows a typical crossing situation. The left image visualizes
the basic situation and the middle image shows the search area as a rectangle.
Here you can see that the stop line on the left side is not covered by the research
area so the algorithm doesn’t recognize the line as a stop line. On the right
image, the stop line ends correctly on the middle road marking. The line in
the image shows that the algorithm has found a stop line. Due to the left road
marking from the crossing road, the line ends outside the real stop line.

9.4.7 Coordinate Transformation

To control the car, the lateral deviation and the course angle are needed.
Both are calculated by the controller of the camera. The scale unit for the

Figure 9.12 Detection of stop lines.



9.4 Lane Detection 205

lateral deviation is meters and degrees for the course angle. Course angle
means the angle of the driving lane which is calculated by the camera.
The lateral deviation is the distance of the car’s center of gravity to the
driving lane when they are at the same level. Since the lateral deviation
is needed in meters, the algorithm has to convert the pixel coordinates
from the image into meters in the real world. The course angle can be
calculated from the pixel coordinates in the image, but this method is
error-prone.

There are two different methods to convert the pixels into meters.
Pixels can be converted via Equations (9.3) and (9.4).

x(u, v) =
h

tan
[(
θ̄ − α

)
+ u 2α

n−1

] · cos
[
(γ̄ − α) + u

2α
n− 1

]
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2α
n− 1

]
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In the equations, x and y are the coordinates in meters. γ stands for the drift
angle of the camera in the plane area and θ stands for the pitch angle of the
camera. α is the numerical aperture of the camera, u and v are the coordinates
of one pixel in the image.

Using this equation, the complete image can be converted into
real-world coordinates. The drawback of this method is that all parameters
of the camera have to be known exactly; every difference between the
numerical aperture in the equation and the exact physical aperture of the
camera lens can cause massive failure in the calculation. Furthermore, this
method needs more calculation time on the target hardware. A big plus of
this method is that the camera can be re-positioned during experimental
research.

The second method is to store references to some pixels in lookup tables.
For these pixels, the corresponding values in meters can be calculated or can be
measured. This method expends much less calculation time but is also much
less precise. With this method, the camera cannot be re-positioned during
experiment research. Every time the camera is re-positioned the reference
tables must be re-calculated.

The method to prefer depends on the project requirements regarding
accuracy and the projects hardware. For this project, the second method is
used. To meet the demands on accuracy, for each tenth pixel of the camera, a
reference is stored.
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9.5 Control of the Vehicle

The driving dynamic of the vehicle is characterized by the linear track model
of Ackermann. As Figure 9.13(a) shows, the model is composed of a rear and
front wheel which are connected by an axe. In order to rotate the vehicle on
its main axe, the steering angle can be set with the front wheel.

To reduce the complexity of vehicle dynamics, three simplifications
are made.

These are:

• Neglect the air resistance, because the vehicle speed is very low;
• Lateral forces on the wheels are linearized;
• No roll of the vehicle about the x and y axis.

Using these simplifications, the created model should differ only marginally
from reality. Linking the transverse dynamics of the vehicle with the driving
dynamics, you can derive the following relation:

r

⎡
⎣ ψ̈ (t)
θ̇Δ (t)
γ̇ (t)

⎤
⎦ =

⎡
⎣ a22 0 0

−1 0 0
0 V 0

⎤
⎦ ·

⎡
⎣ ψ̇ (t)
θΔ (t)
γ (t)

⎤
⎦ +

⎡
⎣ b2

0
0

⎤
⎦ · δ (t) . (9.5)

Because of the equation in the state space, a controller can be designed using
tools such as Matlab Simulink or Scilab X-cos.

Figure 9.13 Driving along a set path: Track model (a); Lateral deviation and heading
angle (b).
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In order to keep the vehicle on the track, the conditions such as heading
angle, the yaw rate and lateral deviation must be known. A gyroscope is
used to detect the yaw rate of the vehicle. The lateral deviation and the
course angle are calculated from the camera. The camera sends the lateral
deviation and the curse angle. Until the next image is analyzed, the coordinates
on the microcontroller stay the same as before. Between two pictures the
lock angle and the transverse deviation were recalculated after each motion.
This is possible because the velocity and yaw rate are known at any time.
Figure 9.13(b) illustrates the relationship of lateral deviation (ΔY) and heading
angle (α).

9.6 Results

This section gives an overview of the project results.
The autonomous car was built with the hardware suggested before.

Experiments on scaled test roads show that the car can drive autonomously.
However, the tests also showed the limitations of this prototype. The effort
for the image processing was undervalued. The on-board processor of the
camera isn’t able to accomplish the necessary calculations in time. In terms
of reaction to this fact, the maximum speed of the car has to be very slow. If
it isn’t, the control of the vehicle gets unstable with a more or less random
driving path. In addition, the car has problems with too sharp curves. The
process to divide the image isn’t dynamic, so in curves the preset section
becomes incorrect and the algorithm isn’t able to calculate a correct driving
path. Thanks to its laser sensors, the car is able to avoid collisions with
baffles.

To improve the performance of the car, the hardware for the image
processing has to be improved. The image processing works stable. Problems
derive from the calculation algorithm of the driving path. At this point in time,
the algorithm doesn’t contain the necessary interrupts for every situation on
the road, but this drawback will be corrected in the second prototype.

9.7 Conclusions

In this chapter, an autonomous vehicle with distributed data acquisition and
control systems has been presented. For control, the vehicle has a number
of independent sensors. The main sensor is a camera with a lane tracking
algorithm, which contains edge detection and Hough transformation. The lane
is verified by laser sensors in the front and side of the vehicle. It is planned
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to build a superordinate control system, which leads a group of autonomous
vehicles using a wireless communication protocol.
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