
PART II

Basic Statistical Design Techniques





3
Classical Monte-Carlo and Data Analysis

for Yield

Agood statistical method can give a speed-up against running all combinations
of parameters. Monte-Carlo is so such a technique and practically the most
general one. For this reason, most designers use it since many years, but we
also want to give clarifications on which uncertainties are usually involved
with the different methods. First we focus on MC estimation methods for
single real values, like the partial yield or the mean or standard deviation of a
certain performance.

Statistics is often regarded as a boring topic. The statistical theory seems
to come with a wild bunch of concepts and special terms. Without computers
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136 Classical Monte-Carlo and Data Analysis for Yield

many people would probably agree on this. However, having a computer
enables you to do virtual experiments, and running those many times, till you
got the feeling “now the results are indeed quite stable.” This way there is no
need to do any special calculation: Just setup your problem in a kind of virtual
testbench, run it, and collect the data. This way you can build up a very good
feeling for statistical data and the uncertainty coming with it.

Unfortunately, too often in real design work it is the other way round: You
set up your Monte-Carlo analysis, wait for some hours, inspect the results
briefly, and you are done—without much reflection and without detailed and
critical result interpretations. Figure 3.1 shows how different even a simple
uniform (rectangular) distribution can look like. It also shows nicely how
random MC can be. In Chapter 6 we will also check for randomness in
higher dimension, with further surprising results. Of course, also in Gaussian
distributions there is such randomness intrinsic to the sampling process!

On the other hand, in spite of runtime problems and special statistical
terms, there are good reasons to do problem solving in a statistical way, and
surprisingly sometimes MC can be quite efficient! It can be much faster than
some people claim and also some speed-up techniques can be applied further—
some with very low risks, some with more, some with big speed-up, some
with speed-up only in certain cases. We will tell you how to get as much
as possible from MC step by step. In Chapters 3–5, we use classical MC
techniques available in all circuit simulators, no need for expensive tools!

Our goal is: You should get a feeling for statistics, as you have a
feeling for circuits!

This is important, because we have to go beyond pure descriptive statistics,
and statements like “The proportion of fail samples is 2% in our current
MC run”! “Speed-up” sounds good, but is sometimes risky! Sometimes
speed-up methods work straight forward, but in other cases there is no one-
to-one comparison possible, because two algorithms come with different
prerequisites. All-in-all, we as designers have many options and for sure,
in reality you have to deal with uncertainties, probability, and statistics, so in
the first chapters we focus on the consequences of this for design verification,
e.g., yield analysis. Later we extend this to multi-variate analysis, addressing
the correlations between performances and statistical variables. This is a bit
more complex but can also lead to deeper design understanding! It is also
more difficult but doing it efficiently has triggered the invention of several
advanced techniques beyond random Monte-Carlo. Later we also extend the
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Table 3.1 When to use what regarding basic statistical techniques
Class Analysis Limitations Applications
MC univariate
analysis

Classical diagrams
(histogram, cumulated
histogram, quantile plots)

Your eye has to decide First inspection if the
design works
meaningful, debugging

Sample yield Need a lot of points for
stable statistic

Yield verification

CPK Data has to be normal
distributed

Yield verification. Use
the generalized CPK

for non-normal data.
MC
multi-variate
analysis

Classical diagrams
(scatter plots)

Your eye has to decide Check if parameters
are correlated or not

Correlations,
contributions,
performance model
coefficients

Usually many points
needed for stable
results

Understand
relationships between
statistical variables and
performances

techniques to support not only yield analysis, but also design optimization for
yield improvements.

Some math should not be skipped, so we want to build up intuition about
probability density functions (pdf), Monte-Carlo, yield estimation, confidence
intervals, etc., but also some terms and measures—less well known in the
circuit design community—are also very useful and basically simple, like
percentiles, sampling methods, estimates, cumulative distribution function
(cdf), worst-case distances, normal quantile plots, etc.

What do we want from numerical algorithms in general and statistical
methods in specific?

• Of course speed matters, but usually the time spent is highly dominated
by circuit simulation times (including netlisting and extraction of perfor-
mances) and not by internal runtimes of the statistical parts. This means
we need trustable results with a moderate count of simulations. Otherwise
we cannot use the methods during the design tweaking phase or in an
optimization loop.

• Accuracy matters as well, the results from a MC analysis depend on
chance and vary statistically. Usually there is a trade-off between speed
and accuracy, but algorithms have also some numerical and systematic
errors. Such errors should not increase much for nonlinear problems, at
high yields or non-normal distributions.

• For application to complex real-world designs, we also need scalability.
Algorithms with strong increase in simulation effort for complex designs
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featuring many variables (like >1,000) are usually quite limited in
application.

• We also need robustness, because circuits often work in a highly nonlinear
way. Random data can contain outliers, and also simulations can fail
due to nonconvergence. To be scalable, efficient, and robust we often
need adaptive algorithms and models. For instance, ranking methods are
usually much more robust than classical least-square methods, but this
comes with the price of lower efficiency.

• The results should be easy to understand and come with an accuracy
indication. For instance, trusting results based on strong assumptions
(like data is normal) or extrapolation is riskier than results based on mild
assumptions (like pdf has finite variance) and interpolation.

• The setup should be easy, and the results should not depend too much on
user settings. Bad settings should be reported including suggestions for
an improved setup.

Note [Keynes]: We will deal with many formulas and definitions. From school
you may remember that probability itself has been often introduced a bit
arbitrarily by the axioms of Kolmogorov, similar to the geometry axioms
from Euclid! There are meaningful other interpretations on what probability
or geometry “is,” but luckily very often for engineers such philosophical
details do not matter much! As we can use in our computer near-ideal random
number generators we have almost no limitations, whereas in reality often the
concept of probability as a kind of limit “frequency of occurrence” is not so
easily applicable, because some unknown parameters change the probabilities
over time.

For Further Reading:
Around Monte-Carlo there is a lot of literature. As a starting point, best pick
the references related to circuit design, but actually it is very interesting to
see also MC working in other fields of science and engineering. Note: If you
search for “yield estimation” you will often find pure electrical engineering
papers, in general or for math literature it is better to search for “percentiles.”

• R. E. Walpole, R. H. Myers, S. L. Myers, K. Ye, Probability & Statistics
for Engineers & Scientists, 9th Edition, Prentice Hall, 2012.

• D. M. Lane, Online Statistics Education: An Interactive Multimedia Co-
urse of Study, (http://onlinestatbook.com/2/estimation/confidence.html).

• H. Schmid and A. Huber, Measuring a Small Number of Samples, and
the 3σ Fallacy: Shedding Light on Confidence and Error Intervals, IEEE
Solid-State Circuits Magazine, vol. 6, no. 2, pp. 52–58, 2014.



140 Classical Monte-Carlo and Data Analysis for Yield

• S. Kotz and N. Johnson, Process Capability Indices, Taylor & Francis,
1993.

3.1 Corners vs. Monte-Carlo

In a corner analysis the design is stressed at well-defined critical parameter
combinations, and this is quite a straightforward scheme. However, what is
really Monte-Carlo? How general is it? Besides that Monte-Carlo is a city in
the south of Europe, we found no single best definition.

This is the nicest statement about Monte-Carlo I ever heard:
One single Monte-Carlo point can tell you more about the circuit, then

hundred nominal simulations.
In MC we mimic our real-world system in a computer and use statistical

models to include production variations. Even if models are not accurate, MC
is useful because we can check our design on robustness. So even one MC
sample result is much closer to real world production samples than a nominal
simulation, which is actually (partly) an artificial best case (e.g., regarding
mismatch)—a kind of Potemkin village. So do not fool yourself and skip
doing a MC analysis! A nominal simulation is actually simply not so much
“nominal” as you may think! It is more a concept for testing ideas, and to
put the design in an almost ideal state. If designers create a real prototype,
e.g., on a PCB, they will not create something close to a nominal simulation,
they will create one Monte-Carlo sample!

One important measure for robustness is the production yield, but also
others (like mean and standard deviation sigma of our output performances)
can be of designer’s and quality engineer’s interest. Therefore, MC has found
a huge number of applications, like in weather forecasting, chart analysis,
biology, etc.

However, mathematicians have another view on MC; here you find things
like “Monte-Carlo integration has this and that characteristics,” so basically it
works “amazingly well,” e.g., completely independent on shape and dimen-
sions and correlations! So MC is integration? The good thing with math is
you can really prove something under certain well-defined prerequisites. And
indeed the yield can be related to an integral, and we can prove accurate
convergence of the sample yield to the true yield. In a wider sense MC is any
technique making use of random numbers for solving problems! The problem
itself might have no real relation to random numbers, e.g., integration is a
perfect example (see Figure 3.2), like also possible with many other methods
(like Simson’s rule, etc.).



3.1 Corners vs. Monte-Carlo 141

Figure 3.2 Monte-Carlo integration on a circle for calculating π.

Note: The mathematicians seem to “love” integrals and the yield, because
there we have proven convergence! You cannot prove that the sample mean,
standard deviation, median, etc. will converge in general! In addition: The
simplest way of doing MC would be just to run it and look to the performances
plots graphically, just to get a feeling how large the performance spreads
are, e.g., by placing markers. However, to get histograms you also need
an automated performance evaluation (e.g., to get the 3dB-bandwidth BW).
For yield analysis you also need specifications (like BW > 20 MHz). These
additional entries are almost a prerequisite for all automated methods, so we
will not always mention them (Figure 3.2).

One can really prove under very mild assumptions (namely that the samples
are identically and independently distributed—i.i.d.) that the MC convergence
speed is 1/

√
n for the yield integral! This sounds that MC speed is quite

moderate compared to algorithms like Newton-Raphson having quadratic
convergence. For example integration by Riemann’s sum (giving 1/n speed)
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or even by Simpson rule is significantly faster, but amazingly not if you do
that in higher dimensions (each random variable gives one new dimension) as
we have in real circuit problems!

Note that the good behavior of Monte-Carlo also in cases of high com-
plexity is a huge advantage over practically all other algorithms! A corner
analysis becomes more difficult if you need to treat many variables, but MC
yield estimation not! This problem of “dimensionality” comes back to us
and to anybody if we want to improve Monte-Carlo or just replace it by
something faster!

For its general applicability, we should see in MC not only integration,
more something like an art of dealing with statistics in a numerical way. In a
computer we have many more options and access to variables than we would
have in statistical data coming from a vote or from a fab! And we can also take
ideas from analytical and combinatorial approaches to tailor the algorithm to
our problem structure.

It looks like MC is inaccurate due to slow convergence, but it can be
even worse. For more difficult estimates than the sample yield, we may need
many more quite fuzzy prerequisites and maybe we cannot prove that the
distribution is normal but only asymptotically normal or we simply cannot
easily tell the 1/

√
n convergence starts with a low n like 20 or with a large n

like 200,000. In some cases, already simple estimates like the sample mean
will not even converge at all (inconsistent estimates)! On the other hand,
advanced MC schemes may give a much higher convergence rate, but only
under restrictions and it may happen that also the convergence stops at some
point, like beyond 20,000!

Luckily MC can often be done this way that some self-checking for
accuracy is possible (beside just to make a “golden” run with 1000× more
points). A simple way is splitting the data in two equal parts, evaluate them
separately, and then compare the results.This kind of cross-correlation analysis
is the simplest, not the most efficient one, and many other ways exist. A very
crafty method is “bootstrap,” which we will discuss in Chapter 5.

As mentioned, behind the scenery MC uses statistical models (see
Figure 3.3), so each statistical parameter is described by its probability density
function (pdf); in many of the cases as normal Gaussian distribution given by
a certain mean μ and standard deviation σ.

However, the designer’s real interest is usually in the performance vari-
ations, and in between both there is a long often highly nonlinear circuit
simulation. So there is usually a kind of curtain between the user getting just
the MC results and the true population defined by the statistical models and
the often very complex circuit behavior! In MC (but not in a production)
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Figure 3.3 Statistical section of a simulator model card for a typical ultra-deep sub-um
process.
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we can inspect the statistical models and can obtain the exact value of
mean and sigma for all statistical parameters, but we cannot do that for the
circuit performances. It is not even clear what kind of distribution the circuit
performances follow! As circuits often act nonlinear, the originally Gaussian
distributions usually appear “distorted,” so becoming non-Gaussian at the
output!

To give a first summary of corner vs. MC and statistics:

• Verification using foundry-provided corner combined with environmen-
tal corners is only leading to a trustable verification if your design is pure
CMOS logic and if mismatch has almost no impact!

• Foundry-corner-based verification is inaccurate for typical analog cir-
cuits and performances, so it can lead to under-design. It might also lead
to over-design, e.g., if the foundry corners are related to 6σ, but you design
a high-performance circuit and you are already happy with 2σ yield.

• For yield analysis you need statistical techniques, but by only inspecting
the sample yield you need many MC samples, especially for high-yield
verification .

• The corner method may become time-consuming too if you have to cover
many variables and performances.

Is “Worst-Case” a precise term? Indeed if something is bad, you can
probably make it still even worse, but of course if our design spec is for a
certain temperature range like –40–125°C, it makes not much sense add
too much further margins. Only some margin can be usually justified due
to model inaccuracies. When we talk about WC it is something like a
“realistic” WC, i.e., we search for the WC parameter combination within
the specified environmental ranges and with a certain (minimum) yield.
Pure “digital” WC corners sets like FF, SS, FS, and SF will only represent
the speed WC for CMOS logic (for a certain yield like 5σ). To extend
the corner idea for analog many PDK model set-ups come with further
corners, like slowR, fastR, slowC, and fastC. So in principle including
also these and all combinations in a corner verification gives you a further
insurance. However, the effort increases a lot and you can still not treat
well mismatch and correlations. Also on “sigma” you will typically over-
design, when combining the 5σ slowR with 5σ-FF and 5σ-slowC corner.
Quantifying the overall sigma of such combination is not easy and would
rely on further assumptions. Better directly use statistical methods and use
corners more to test design improvements and ideas, from time to time,
and as small double-check.
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Table 3.2 Overview on corner analysis vs. Monte-Carlo
Corners Process MC

Simulation effort for pure CMOS Low Medium
Simulation effort for large # of device types High Medium
Check timing for full-custom digital designs Yes Not efficient
Correct device correlation No Yes
Check operating conditions of analog designs Yes Yes, but harder to analyze
Check analog performance variability Inaccurate Yes
Estimate production yield No Yes
Estimate for worst-case performance Inaccurate Yield-related
Obtaining process parameter sensitivities Too inaccurate Yes1)

Obtaining parameter & performance
correlations

No Yes1)

1)See Chapter 5.

With MC methods or gathering and analyzing measured data, you can
almost never prove anything, at best only disprove. For instance, your analysis
based on assuming a normal Gaussian distribution might be completely
meaningful, but this does not mean that the data is really coming from a
normal Gaussian pdf, it might be probably also from a Gaussian mix or
from a Gaussian distribution with cut at ±9σ, or from a Student-100, etc.
Only if you would fully disprove all such alternatives, you might be able to
convince other people that in this case assuming a normal Gaussian is really
the only correct method. Typically at some point you have to take the risk
of relying on statistical methods, as you also take some risk in relying on
models, etc.

Note: We named this subsection “Corners vs. Monte-Carlo,” but later (in
Chapters 7 and 9) we will see that both methods can be combined, which
means we can make the—native and quite fast—corner verification method-
ology more accurate by fully adapting it to our analog problems and to
include mismatch. This way we get better understanding and can also
solve difficult problems efficiently like the verification of high yield targets
(like 6σ or 1 ppb).

3.2 Questions and Answers:Test Yourself

There are some limitations to MC and also other questions come up, especially
as many designers have at least some basic knowledge about statistics which
they may remember:
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1. What would happen if all our element parameter distributions would
be uniform instead of Gaussian? How would that change the histogram
of PSRR or IDD?
It would usually change not much, so the histograms may still look quite
Gaussian! This is due to “central limit theorem” CLT. The uniform pdf
has a clear cut (roughly at 1.5σ, whereas the normal pdf has no limit),
these cuts would almost disappear. For instance, a differential pair
could give 3σ maximum offset roughly, because one transistor could
be at 1.5σ in the worst-case and the other too, giving 3σ in total. And
the more variables are involved the less the cuts have an impact!
Already summing e.g., ten uniform variables will give a distribution
which is very similar to a true (uncut) normal Gaussian distribution!

2. The “central limit theorem CLT” tells us that if we add the samples
from many different statistical variables we will anyway approach
the normal distribution to a high degree—even independently on the
distribution shape of the original variates! So also a MC analysis on a
circuit design should give normal histograms?
No, because the CLT comes with further restrictions like need for finite
sigmas of the individual distributions. Also in circuit design we often
do not add up enough statistical variables to obtain really a good
approximation; and circuits do not always simply add variables, also
multiplication and division appear!

3. Assume the requirements for the CLT are fulfilled, how
fast will we approach the normal distribution?
Also this depends on several factors: If we add samples
from a uniform distribution, then a good approximation
is often already reached if adding just 10 samples. However, this
approximation is usually only good in the distribution center, like
μ ±2σ, but not at 5σ!

4. MC is an almost universal method if you are inter-
ested in the yield—that is mathematically proven. And
another assumption is usually that if we extend the
number of MC points, we can always improve accuracy
on estimates like the mean.
Even this assumption is not correct, it is not true for the mean on a
Pareto distribution or for the standard deviation of a Student-2! In
both cases we would observe that the sample variations grow instead
of becoming smaller.
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5. Is MC working correctly if we have an infinite number of statistical
variables in our design? Can we allow a random number of random
variables?
Good news, random MC will still converge, e.g., the yield estimation
would be not impacted at all, but unfortunately many MC extensions
run into problems (e.g., LHS and LDS, see Chapter 6).

6. If the distribution of a certain output performance is not
Gaussian, can we still make estimations (e.g., on yield)
from this MC data?
Also here MC is flexible and reliable! For instance you
may assume another specific distribution (like lognormal or Weibull)
or use more general theorems like Chebyshev theorem (which makes
no pdf shape assumptions, only the variance has to exist)!

Chebyshev’s theorem states that the proportion of observations
falling within k standard deviations σ of the mean μ is at least 1 – (1/k2)
(for k > 1), so the ±3σ area covers at least only 90% (much less than
99.7% for a normal distribution!).

3.3 Important Definitions and Concepts

To prepare a MC analysis, the design environment or the simulator needs
access to statistical models (see Figure 3.3). And typically the technology
parameters follow a continuous probability density function pdf (x), e.g., they
show a normal or lognormal behavior but there are also many other well-
known distributions and all have their meaning and application. pdf(x)dx gives
us the probability P that the random variable is within the interval (x, x + dx),
so the pdf is related to the frequency of occurrence.

When taking random samples (X1, X2, X3, . . . Xn) from the pdf we can put
the data into a histogram and get a staircase approximation to the probability
density function pdf. The cumulated histogram, showing the yield, is giving
an approximation to the cdf—the cumulated distribution function (sometimes
also called integrated distribution function). This approximation is called
the empirical cdf and is a staircase-shape monotonous function, like the cdf
starting from y (first sample) = 0 to y (last sample) = 1.

Figure 3.4 shows the Cauchy distribution, not the normal distribution!
This gives an example that it is quite easy to choose the wrong distribution.
Actually many distributions have a center and tail regions (featuring the rare
events causing pain); and look bell-shaped.
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Figure 3.4 Pdf and cdf of a typical continuous distribution.

Also discrete pdfs exist, e.g., the sample yield or dice can only take discrete
values. Mathematically the differences often do not matter, e.g., both kinds can
be displayed in a histogram, and we use the same formulas for yield estimation,
mean, standard deviation, etc. Only the concept of density is more difficult in
the discrete case, because mathematically we require Dirac pulse functions;
the cdf is a staircase function for discrete distributions (like the empirical cdf,
Figure 3.5d.).

Manipulating Histograms? To visualize MC data the histogram is a good
starting point, but one big question is how to choose the number of bins.
If you want high resolution you need to select a large bin count (like 30
for 200 MC points). This gives quite a noisy histogram with many small
peaks, so if you want to demonstrate that your MC data depends highly
on chance this is a good method! If you want to demonstrate that you
can trust the MC data a lot better use a very small bin count. Actually
the optimum number of bins depends on MC count and on distribution
type. For normal data and not too small counts, Sturges formula might be
used bin = log2(n) + 1, but it smoothes quite much, so you will probably
not see if your distribution has two or more modes! Many programs use
bin =

√
n or 2n0.33 (Rice’s rule). Note, that the cumulated histogram has

several advantages: You can directly readout the yield and the binning
does not matter so much, as even with bin count = n you would still get
a monotonic plot, i.e., actually there is no need for binning! A general
problem with histograms is that the tail region that dominates the yield
is hard to check in the cumulated plot just the deviation from 1.0 counts,
and 0.1% is almost impossible to read out.



3.3 Important Definitions and Concepts 149

a
b

c
d

F
ig

ur
e

3.
5

H
is

to
gr

am
s

w
ith

di
ff

er
en

t
bi

n
co

un
ts

,
cu

m
ul

at
ed

hi
st

og
ra

m
,

an
d

em
pi

ri
ca

l
cd

f
pl

ot
(o

p-
am

p
of

fs
et

vo
lta

ge
,

20
0

po
in

ts
M

C
ru

n)
—

ta
il

re
gi

on
m

ar
ke

d
ye

llo
w

.



150 Classical Monte-Carlo and Data Analysis for Yield

The cdf behaves like the yield, so it starts at y = 0, ends at y = 1. Often
the x-range is from –∞ to ∞, but sometimes it is limited (as for the uniform),
to positive values or a certain range.

cdf (s) =

s∫

−∞
pdf dx (3.1)

The cdf and pdf are programmed into the random generators of the simulator,
and the parameters (like mean and standard deviation for a normal distribution)
are read from model files. Often the reverse task is required, like you want to
hit a certain yield Y = 90% so the cdf is 0.9, and now you want to search which
spec-setting is required to hit this point. This requires the inverse function to
the cdf; the cdf−1 is usually just called the percentile function. For the uniform
distribution, the pdf is constant and the cdf (or cdf−1) is a linear ramp. For
a normal Gaussian distribution the cdf or cdf−1 is nonlinear, but if we have
uniform random variables between 0 and 1 we can generate any other kind
of distribution by using the cdf−1 as transformation. This is not necessarily
the easiest way to practically generate random numbers for a certain wanted
distribution (like normal, Cauchy, exponential, lognormal, etc.), but for the-
oretical analysis this can be helpful, so later in the chapter about advanced
Monte-Carlo sampling methods we focus often on uniform distributions.

Prometheus – Johann Wolfgang von Goethe:

Bedecke deinen Himmel, Zeuss, Cover thy spacious heavens,
Mit Wolkendunst. Zeus, With clouds of mist.

It looks that Zeus followed Prometheus “advise”, and covered not only the
sky but many other things too. Statistics can be interpreted in different ways,
like talking about “frequencies of occurrence” or use it in where we have a
“lack of information”.

Note, the parameters defining a certain distribution are fix numbers—
sometimes known (if you inspect the model setup files), sometimes unknown
(if the sampling involves a nonlinear circuit simulation)! We need “tricky”
inference techniques to obtain such true fix parameters, if we only have the
random samples available, and the accuracy of such inference can be quite
limited.

Many things rely on modeling—not only MC models—so designers often
need to add some extra-margin for this, like make wires wider than needed acc.
to electro-migration or IR drop requirements or let circuit work to 20% higher
fclk than needed or add 0.25 dB because of some test equipment limitations.



3.3 Important Definitions and Concepts 151

Also, MC analysis requires margins due to confidence interval widths.
Fortunately, even if the models are not perfect, using them is the best you
can do and they can help to make a design robust against changes (like in T,
in VDD or from mismatch). Truly at some points designers have to trust or
make a decision how much they trust (like defining a confidence level) or use
another algorithm, run more MC points, etc.

Many variables follow a normal Gaussian distribution, and the pdf of the
standard normal distribution is given by:

N(x, 0, 1) =
1√
2π

e−x2
(3.2)

“Standard” means its mean is zero and the standard deviation is unity. The cdf
of a normal distribution is related to the error function, which is unfortunately
not easy to express in terms of simpler functions; it is just a new function like
Bessel functions, etc.

If we have a sample Y from N (0, 1), we can get normal distribution with
mean μ and standard deviation σ N (μ, σ) by this linear transformation:

Y ′ = μ + σY (3.3)

μ is a measure of location and σ a measure of scale.
Moreover, note that this transformation can be applied also for many

non-Gaussian distributions, so the concept of location and scale can be used
quite generally. Not only the mean is a measure of location, and the standard
deviation is not the only measure of scale. For each class of distribution fitting
to the concept of location-scale there is an optimum estimator, for instance for
the Cauchy distribution the median is stable, but the sample mean would not
even converge!

Linear circuits like amplifiers perform the same linear transformation
(often unfortunately we often do not know the parameters). So if we look
to linear measures in an amplifier (like voltage and current, but not power or
level in dB), also the output measures will be normally distributed, just scaled,
and shifted. A diode characteristic is often an almost exponential function that
would lead to lognormal data. Leakage currents often follow this kind of
distribution.

Normal or Gaussian? Should we call the discussed famous distribution
the “normal” distribution or “Gaussian” distribution? Normal fits a bit
better because also several generalizations of the “normal Gaussian”
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distribution are called Gaussian as well! In opposite to the normal Gaussian
distributions, these feature more parameters, so they are more “flexible,”
e.g., can also be tweaked to fit for asymmetric or long tail data. The
simplest and most important “generalized” Gaussian is the Student’s t
distribution (so it’s not called according to Carl Friedrich Gauss, but
another famous statistician who has published a work on it under the
pseudonym “Student”).

3.4 Expected Values

One major outcome from a MC analysis is getting sample values—usually
displayed in a histogram—for the different circuit performances. These sam-
ples, either a single MC result or the whole collection, depend on chance,
but what the user wants to know are the real distribution parameters behind
them. Besides the distribution parameters itself (like mean μ and sigma σ for
a normal Gaussian distribution), also other characteristics are very essential
and can be accurately calculated if we know the pdf analytically. This is often
not the case unfortunately, so we aim for a statistical estimate, which is an
estimate of a property of a distribution, calculated from given samples from
the distribution. It is quite important to realize that the parameter μ is not
something dependent on chance, but a sample estimate like the sample mean
m depends on chance, as the whole data set depends on chance.

Let us start with an example: If we roll dices, we are often interested in
the expected value E (or mean value or average value), when betting on dices.
It can be easily calculated; the pdf is discrete and we assume a fair dice with
pdf(i) = 1/6.

E (X) = 1 · 1/6+2 · 1/6+3 · 1/6+4 · 1/6+5 · 1/6+6 · 1/6 = 3.5 (3.4)

We can easily generalize this example to make it applicable for other cases:

Expected value E (X) = x1P1 + x2P2 + ... or ∫ x · p · dx
Remember: ∫ p · dx = 1 (3.5)

Mean μ =
∫ ∞

−∞
xp dx = E (X) (3.6)

Lookup: The mean can be calculated for most random distributions in general.
The same name μ is often also used for the location parameter for a normal
distribution, but there is a function parameter.Also for lognormal distributions
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we often use a parameter named μ, but in this case it is not identical to the
expected value!

Another measure of location is the median or the mid-point, and a measure
for the width of a distribution is e.g., the spread or the standard variation σ.

In the general case, the expected value is an integral, and we can express
other important definitions by using integrals or expected values:

Variance V = E([X − μ]2) =:
∫ ∞

−∞
(X − μ)2 · p · dx (3.7)

Standard deviation σ =
√

V (3.8)

YieldY = E(δ (x)) = ∫ δ (x) pdx with δ (x) = 1 if circuit pass else 0
(3.9)

As mentioned, mathematically the overall yield is given as the full parameter
space volume integral over the product of the indicator function δ and the
joint pdf (note: in almost all real cases we have more than one statistical
variable, so the pdf is a function of multiple variables x). For independent
random variables the joint pdf is given as the product of the individual pdfs.
However, taking correlations into account is actually also easy, because you
can usually decompose the overall distribution into independent “principal”
variables (using so-called principal component analysis PCA), and in fact this
is often done in the model files anyway.

The indicator function gives a 1 in the pass (or acceptability) region
(the region where all performances are in-spec) and 0 in the fail regions.
As the indicator function is 0 in the fail regions, we can alternatively also
calculate the yield as volume integral over the joint pdf only over the pass
region.

All these measures like mean, standard variation, yield, etc. rely on the
true distribution pdf (and their integrals), but as circuit designers we usually
do not know the pdf of our outputs and usually we cannot accurately integrate
(only finite sums)! Actually, all the formulas look similar, and we can indeed
use the same methods for integration, but not all methods converge equally
well and a method may work fast and accurate on the mean and variance, but
not on the yield. The reason is simply that the pdf is often a smooth and easy
to integrate function; and this is often also true for many circuit performances
like offset voltage. However, the indicator function needed for yield analysis
is nonsmooth, so we can expect more difficulties. So especially for yield and
high-yield analysis many special techniques have been developed, whereas
for getting the mean or variance just Monte-Carlo integration is often good
enough (although not perfect, regarding speed).
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3.5 Estimates, Bias Error, and Confidence Intervals

Remember: Usually the real measures of the circuit performances (pdf, mean,
variance, etc.) are not available analytically, we can only estimate them from
our actual MC result. This means that any estimate (e.g., the mean of the MC
data) depends on chance! The circuit is actually doing a mapping from the
(element) parameter space (often containing thousands of variables) to the
performance space (often a dozen).

Some important estimators for the measures we discussed in the previous
chapter are:

Sample yield = npass/n (3.10)

Sample mean m = 1/n
∑

xi (3.11)

Sample variance V = 1/(n − 1)
∑

(xi − m)2 (3.12)

Sample standard deviation σ =
√

V (3.13)

Sample median (50% point): cdfemp(p50) = 0.5 (3.14)

Estimates are not the same as the true distribution values or expected values,
actually even different names should be used, like mean μ vs. sample mean
μ, but often this is not done due to laziness, unfortunately. Often the laziness
comes with small risks only, because s and σ might differ by only 5%, but in
other cases, like yield analysis, the differences can be much larger.

The big question is: If mean and sample mean are not the same, how
much can we trust such so-called statistical estimates? Actually, we can even
use different estimators for the inference on the mean μ, e.g., for a Gaussian
distribution the mean and the median are identical, so should we use the sample
mean or the sample median for inference on parameter μ?

As an engineer you know it is often not good enough to have only a point
estimate, you also need an error estimation. Usually there are two kinds of
errors:

1. Uncertainty due to statistical variance

• Reduce it as much as you want by increasing the number of MC
samples

2. Systematic errors (bias)

• 1/n
∑

(xi – μ)2 is also converging to variance but has finite-sample
bias

• Outliers impact the mean much more than the median
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Systematical errors often cannot be reduced so easily by just increasing the MC
count. However, if you can indeed run a huge MC analysis you can estimate
the error in yield estimation quite well (because the sample yield has no bias
error). We can also do many MC analyses and look to the variations in the
estimates from one MC analysis to the other. By running many thousands of
MC analyses, we can “easily” find out in which interval 90% of the estimates
are in, but unfortunately this is very time-consuming. Indeed such statistical
variations can be treated by so-called confidence intervals; in many cases
you can calculate confidence intervals giving a lower and upper confidence
bound CI = [LCB, UCB] also without doing such huge repeated MC analysis.
However, the user must be aware of the fact that also confidence intervals are
derived from the available MC data depending on chance, which means that
also confidence intervals depend on chance and are nothing else than estimates
[Hoekstra]! In addition, you almost never get 100% confidence that the true
measure (yield, mean, standard deviation, etc.) is in a certain range. Such
statistical uncertainties lead to the need of a kind of statistical design margin,
e.g., even if your sample yield and your yield target is 99%, you still should
not fully trust it! What you can trust (more) is the lower confidence bound
LCB, which might be only 97%. So actually you need some amount of over-
design, because only if your design is a bit better giving 99.7% then the lower
confidence bound (LCB) might be indeed equal or above your 99% target. So
in this case we actually work with 0.7% over-design; how large this statistical
over-design margin is depends on the used estimator (like sample yield, CPK,
etc.) and the number of MC points. Later, in Chapter 5 when discussing worst-
case distances WCD, we will also learn about statistical methods without such
sampling error—so in theory without need for statistical design margins and
so potentially less or even zero over-design.

There are also many other aspects in our inference, like: Can we guarantee
that for an almost infinite number of MC points the error will really approach
zero, or will there be a remaining bias error? How much will the calculation
be impacted by outliers? In many cases the mean is more efficient than the
median, but the median is far more robust against outliers!

Truly these aspects are important for EDA software implementations and
need careful tweaking. There is simply no best estimator regarding efficiency,
bias, robustness, and calculation effort. Only for a certain class of distributions
some algorithms may outperform others, but usually you can always provide
counter example cases, so only quite complex algorithms are flexible enough
to deal with difficult real-world problems. In effect the progress in EDA tools
is often in such details, not directly observable by the user.
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A MC key problem is that the variance in the estimates is often quite large.
More advanced techniques, beyond MC, are typically much better in this
aspect, but they may come with more assumptions and if these assumptions
are not valid such advanced methods often introduce a significant bias error!
For this reason designers using such advanced methods should be clearly aware
of which underlying assumptions have been taken and if that is compatible to
the design under investigation and the wishes on accuracy.

How to measure “speed-up” and “design efficiency”? EDA vendors
are often asked how large efficiency improvements are in a new software
version or by using a new feature. In math this is interestingly by far not
so easy to tell compared to the use of a faster compute server. “Speed-up”
sounds always good, but is sometimes risky! And the risk is sometimes
hard or impossible to quantify. In the statistical sense speed-up often
means “variance reduction”. Lowering the standard deviation by 2×
usually translates to the option to use 4× less simulation points, but only if
the variance reduction can be achieved without adding a systematic (bias)
error. In addition, one assumption often used is that we have the “normal”
1/

√
n relationship, which is also not always the case.
Sometimes variance reduction methods work straight forward: If you

measure something in lab, you hope that your single measurement value
x1 is close to the real value. Of course doing the measurement again can
lead to another value, and e.g., always taking the last value is not a too bad
approach, but if noise is present we can expect quite significant variations
still. To get a more stable estimate we could take the average value; and
another approach would be to ignore all extreme values, so taking the
median value. However, not all cases are simple like this, and not always
it is so easy to see (or even calculate) the gain in accuracy, to check for
prerequisites, and to clarify the advantages and disadvantages.

In circuit design you can do even more than a clever data analysis,
e.g., you can inspect the statistical model parameters, you can create
clever testbenches and do hand calculations on offsets; or we can run not
only random sets for the setting of statistical variables, but set them in a
systematic way. Some methods are based on sampling and with confidence
intervals, we can tell about accuracy, but we cannot easily quantify if an
assumption like “data is Gaussian” is valid! Also we sometimes need to
compare statistical and non-statistical methods, and hard error limits like
ε < εmax should be treated differently than statements about variance, and
the choice of test cases has a big impact on statements about speed-up too.
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If one estimate has 1/
√

n convergence and second one has [log(n)]s/n,
then the speed-up of the second one might be impressive, but actually it
depends on which settings of n (e.g., representing number of simulations)
and s (e.g., number of statistical parameters) is regarded as meaningful.
Of course, we hope that we pick realistic values, like designers can
effort running n = 500 points, but seldom 500M ones. Also the type of
circuits can vary a lot (having s ranging e.g., from 1 to 30 or more). In
addition, during the design tweaking phase we may take more risks than for
sign-off.

Last not least, sometimes the speed-up is a bit theoretical, e.g., maybe
you simply do not really need to know the sigma of an offset voltage with
0.5% accuracy which may require indeed 10,000 simulations using an old
standard method; or a new method needs 10 times less simulation points,
but it cannot run all these in parallel like the other old-fashioned “slow”
method.

3.6 Basic Data Analysis for Normal Gaussian Data

If the data is normally distributed you can make quite easily a detailed data
analysis, using many school book techniques, but how to check for normality?
The easiest way is an eye inspection of the histogram, which provides a picture
approximating the probability density pdf of the performance data. Here the
problem arises on how many bins you should set: More bins leads to more
noise, but too few bins can make an inspection also difficult. Most difficult
is to decide whether the data follows a normal distribution also regarding
tail shape, because here you have often only few data points and also it is not
easy to decide if a certain curvature is normal Gaussian (i.e., according to
e−x2) or not. So looking to many histogram examples is a good training, but
we can do even better.

Indeed, the so-called normal quantile plot solves the problem of curvature
inspection, because it shows a kind of transformed cdf plot (actually the x-axis
is the inverse normal cdf, also named z-score, and the y-axis is the sorted data).

For normal distributions the data should fit to a straight line in the (normal)
quantile plot. Also an interpretation for nonstraight lines is quite easy. For
instance if there is a clear lower limit the quantile plot will start horizontally
(see Figure 3.6).

If data is long-tailed, the quantile plot gets shaped like arctan, for short
tails it would look like hyperbolic tangent (like IC(Vin) of a differential pair),
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Figure 3.6 (a) Histogram and (b) normal quantile plot from an op-amp – tail region marked
in yellow.

for asymmetric (skewed) data we get a kind of J or reversed J shape. For
more details, look at Figure 3.7; it also shows the relation to the kurtosis k
(normalized central 4th order moment of the distribution, more in Chapter 4
when we discuss non-normal data).

The “trick” is usually how to know if a deviation in the quantile plot
is just a random effect or really a systematic non-normality. For this reason

Figure 3.7 How to interpret normal quantile plots.
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some tools (like RealTime MC) add (sample yield) confidence intervals to
the quantile plot, but if the non-normality is only mild, then a decision is
usually still difficult. In particular, in the tail regions, a decision is often tough
to make because there we have usually only a few samples, so any statistic
will not be very stable. In Chapter 4 we will discuss non-normal distribu-
tions in more detail, and we also demonstrate numerical tests for normality
(Figure 3.8).

If we are sure that the data follows a normal distribution, then we can
calculate also confidence intervals (CI) quite easily, because the normal cdf
and pdf is analytically tractable. Due to this, like we can calculate the sample
mean directly from the data, we can also calculate CI from the data. Note that
we calculate the CI for the sample estimate like sample mean m, not for the fix
(but often unknown) distribution parameter μ! Like the sample estimate also
the CI depend on chance! We can only expect that in average it will correct,
according to its confidence level. If our assumption on normality is violated,
then also the CI calculation will get wrong. In such cases confidence intervals
from a normal approximation can be at best approximated CI and usually
better methods exist (like bootstrap, Chapter 6).

Another method to get a confidence interval would be just doing our MC
analysis again and again. For instance to calculate the CI on sample mean
m, we can do a MC analysis very often, with different seeds but with the
same count n. And we will observe that also the sample mean m will be
approximately normally distributed.

In this case the standard error (SE) as the standard deviation of the sampling
distribution of a statistic (most commonly of the mean) is given by SE = s/

√
n

(with standard deviation s). And the confidence interval for a confidence level

Figure 3.8 Excel steps to show normal quantile plot.
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of 95% will be around the mean with ±1.96SE = ±1.96s/
√

n; so ±2s/
√

n is
a good rule of thumb for the 95% confidence interval (for the sample mean of
a normal distribution)—compare this to Figure 1.11.

Note : Often we are only interested in single-sided specs or single-sided
CIs, so only the upper “outliers” degrade the yield, so the risk for being out of
desired range like >2σ is actually only app. 2.5% not 5%. If you are already
happy with lower confidence then the CI becomes narrower, but you take
more risk, so usual confidence levels range from 75% to 99%. The higher the
confidence level, the lower the risk making a wrong decision, but actually
already small deviation in the model can lead to severe errors also in the
confidence intervals!

A detailed analysis has been done by William Sealy Gosset on normal
distributions. He derived that the confidence interval on the sample mean m is
related to the Student’s t distribution, and the factor 2 in our formula is slightly
a function of the sample count n. In older days engineers used lookup tables,
now almost all statistical tools and EDA software directly provide the user
the confidence intervals based on Student’s t distribution; “Student” was the
pseudonym which Mr. Gosset used for his article.

Also the CI for the standard deviation can be calculated analytically,
and again we could double-check it by repeated MC (like in Figure 3.9).

Figure 3.9 50 MC results on the sample yield (log(1 – Y ) in red) for a Gaussian distribution.
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The CI for s is related to the chi2 distribution. As a rule of thumb, for n = 200
the 95% CI on s is app. ±10%.Actually the distribution is slightly asymmetric,
so the real value is +11/–9%. This is no surprise, because upper “outliers” are
more likely than lower ones (there will be no negative values).

Note: You can find an incredible number of papers on confidence intervals
CI, but most of them are related to the mean. However, circuit designers are
usually most interested in the standard deviation, like for offset voltage, or
in the yield. CIs on these are a bit more difficult, but usually also available
in design environments. In particular, the tail region of a distribution is of
high interest and here different CI methods can really give different results. In
tail regions like beyond 99% any statistic will rely on quite few samples, so
CI become wide, maybe too wide to make design decisions! This is a major
motivation for the advanced methods in Chapters 6 and 7.

Functions and Distributions. Most people think of the probability density
function pdf when talking about distributions like the normal or uniform
ones. This is just because the pdf looks like the most important graph, the
histogram, giving the frequency of occurrence. The histogram is also good
for identifying distributions by eye inspection. However, we have seen that
for check on normality, for yield estimation or confidence intervals also
other functions matter. Maybe go through this chapter again, and look
up what function is for what! Often indeed the cumulated distribution
function cdf (the integral of the pdf) is even more helpful, because it is
directly related to yield and to the probability that a variable X falls into a
certain interval [a, b]. The reason why the cdf is not so famous is just that it
often looks not so characteristic, because the integration e.g., smooth out
edges, and the point of highest density is much harder to see. Also the
inverse cdf (the percentile function) matters. For instance, the factor “2”
used in our approximation for the 95% confidence interval is coming
from the Student-t distribution, but not its pdf but from the inverse cdf.
Actually knowing this (and not much more) is already extremely helpful
when doing statistics.

3.6.1 The Yield Estimation Problem

We discussed basic estimates and confidence intervals. And one outcome was
that for simple estimates like sample mean or standard deviation we usually
do not need many MC points—often 200 points are enough to decide if offset
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voltage is small enough, but how many points are needed to verify the yield
with a certain significance?

Using the sample yield the accuracy (e.g., Y confidence interval) depends
on Y itself and on the sample count n. For ±1% absolute accuracy ΔY and a
yield of 50% app. 11000 points are needed (confidence level at 95%—quite
a typical value), and at 98% yield we need roughly 800 points. Unfortunately
also 800 simulations is not that low, and 1% absolute error in yield is not that
accurate, because it matters much if your loss is 1% or 3%, or even 0.1%
vs. 2.1%! Actually looking to the yield loss or to the error in terms of sigma
yield estimation is generally more stable in the distribution center than for tail
regions.

Focusing on the relative yield loss error we would need to look at
log(1 – Y ), and Figure 3.9 is showing this for a repeated MC run. Looking to
the spread in y-direction gives quite a native feeling on how “instable” MC
results can be (a constant Δy in this plot is related to a certain fix relative
error, due to the log y-axis).

Note: In this plot the spec is set to 3.0 giving a true yield of 4σ. Therefore, we
almost never get a fail within n = 1024 MC points, so at some point we reach
Y = 1.0 and log(1 – Y ) becomes infinite (the red curve plot stops there). The
green curve is an extrapolation, and in the extrapolation region the variations
are even larger.

If your circuit is well designed, then often a short MC run shows no fails, so
the sample yield becomes 100%, but of course this is typically too optimistic.
To be on the safe side you may ask again for a confidence interval. The yield
confidence interval problem has been solved by Clopper-Pearson, resulting in
a quite complex formula using the beta function, but if you have no fails, then
already the “Rule of Three” is a very good approximation for the 95% CI:

CI(Y) = [1 − 3/n, 1.0] (3.15)

This way we can also easily calculate how many points the MC run should
include till we can decide with 95% confidence if the design fulfills a certain
desired yield:

n ≥ 3/(1 − Ytarget) (3.16)

Already this simple formula demonstrates very well our verification problems,
because it will lead to the fact that high yield verification needs a lot of MC
points, usually much more than for obtaining stable values for sample mean
and standard deviation of the performance values! Look at Table 3.3 for more
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Table 3.3 Verification with sample yield according to the rule of three
Yield in True Single-sided Number of MC
Sigma CPK Yield Loss Points (if No Fails) Comment
0 sigma 0 50% 4 is of low interest
1 sigma 0.33 15.9% 17 is of low interest
2 sigma 0.67 2.3% 130 the minimum realistic yield target
3 sigma 1 0.14% 2200 often used as target
4 sigma 1.33 0.003% 95K often the limit for pure MC sample yield
5 sigma 1.67 290 ppb 10M typical for blocks in high-volume chips
6 sigma 2 1 ppb 3G typical for memory

details, it includes also the process capability index CPK which has a strong
connection to the “yield in sigma” (see next Section 3.6.2).Also note that there
is no simple reciprocal relation between yield loss (failure rate) and sigma; it
is a special nonlinear relation you have to be aware of. For instance from 2σ

to 3σ we have roughly to divide by 20 to treat the loss, but from 5σ to 6σ it is
already 290 (look also at Table 1.3).

A distribution with a constant failure rate is the exponential distribution,
playing a key role in radioactivity. One distribution with such tail behavior
but a “Gaussian center” is the so-called logistic distribution; if you want
a power law tail instead, you would end up in the Student’s t distribu-
tion. Actually many distributions exists, and all have their meaning and
application.

Already these numbers will typically lead to long simulation runs, but if
you have indeed failed samples the lower yield confidence limit will be even
lower and we need even more MC samples (see Figure 3.10, some more details
and further screenshots can be found at [Iastate]), and the convergence rate
will be 1/

√
n – not 1/n as the simple rule of 3 may suggest!

Note : The are many confidence interval approximations in the mathematical
literature. Look up that the interval from a normal approximation can be
very bad [Schmid], because the sample yield distribution can be highly non-
normal! Do not use it, better use Clopper-Pearson or Agresti-Coull (both are
slightly on the pessimistic side compared to the “Rule of Three”).

If the design is perfect (like >6σ, giving almost no fails) and we want to
ensure just 3σ only we will need typically app. 2000 points, but if the design
is truly only 3.15σ we need app. 16,000 points to make an accurate enough
decision based on counting failed samples. If we use the CPK (next chapter)
we would need only approximately 1100 points. However, if we allow no
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Figure 3.10 Required random MC count to verify a 4σ design based on sample yield vs.
CPK [Iastate].

design margin both sample yield and CPK would require an infinite number
of points. So we have an over-design vs. speed trade-off.

The Binomial Distribution. Looking to yield means dealing with pass
and fail only, i.e., doing investigations on a binomial distribution. Its
“accurate” confidence interval has been first calculated by C.J. Clopper
and E.S. Pearson, in 1934. Although many laws exists which give the
normal Gaussian distribution a strong preference, especially for a large
number of samples, it is by far not the only important distribution.
If we use the normal approximation to the binomial distribution for the
confidence interval, we get the simpler so-called Wald interval. It is easier
to calculate and often used, but unfortunately it can be far too optimistic.
For instance, having a CPK of 1.5 and a huge set of 100,000 MC points
the CI from the normal approximation would be still 3× too optimistic on
yield loss, for IC design better forget the Wald interval (even the “Rule of
3” is better in this case).

The reason for the large number of points at high yields is that such yield
analysis based on outer samples, the tail samples—and these are rare; any
statistics based on them will have quite large variations and will be quite
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unstable. When looking just to 3σ verification, one may still accept to run
2,000 to 16,000 samples at least for fast-running testbenches, but during the
design phase you typically need many such runs, and remember already for a
failure rate of 1000 ppb (0.0001% or 4.75σ) the numbers get huge: we need
1,000,000 samples as a real minimum giving us hope just only to observe a
fail (no confidence interval included!); having no fails (so the design should
be even much better than 4.75σ) the 95% confidence limit would dictate
us 3,500,000 samples, and for a design margin like 0.33σ (roughly 5× less
loss) we would typically need 6,000,000 MC points, and for less over-design
even more!

There are many known attempts to solve this general yield verification
problem. One is to go back to the original yield definition and solving the
yield integral by other means than MC. For instance, a numerical integration
by Riemann’s sum would have 1/n convergence rate if we would only have
one statistical variable, and Simpsons’s rule would be even faster! However,
both methods will slow down in higher dimensions – and may become even
slower than MC. On the other hand, we will also demonstrate methods which
require theoretically even no such “design margin,” so coming in theory with
almost no need for over-design.

3.6.2 Sample Yield vs. CPK

If we can assume a normal distribution, we can solve the problem of verifying
the partial yield also in another way (Figure 3.11). We can calculate a much less
quantized estimation by creating a Gaussian fit to the data and we can calculate
a yield estimate from this fit by using the cdf of the normal distribution, which
is related to the error function. The process capability index method is exactly
doing this, and the big advantage of the CPK is that we can even get a realistic
yield estimate (so below 100%) if there are no fail samples! This way we can
obtain a yield estimate with tighter confidence interval, but the user should be
aware of potential systematic errors.

Note: To get the total yield from the different CPKs for each spec we
need multi-variate techniques and correlations. This will be discussed in
Chapter 5.

The CPK is given as:

CPK = |USL − μ|/3σ (for single-sided upper spec limit)
CPK = |μ − LSL|/3σ (for single-sided lower spec limit) (3.17)

CPK = min(|μ − LSL|/3σ, |USL − μ|/3σ) (for double-sided specs)
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Figure 3.11 CPK flow (prerequisite is of course a stable process).

Note: From the mathematical view point the use of the min function is a
horrible approach, because there would be no sensitivity to the nondominating
spec-side till we reach the balance. A much better approach—also in conjunc-
tion with optimization—is to calculate two CPKs for both spec-sides and then
calculating back to yield for both. To combine them into one we just have to
add the yield loss and can again transform back from yield to CPK via inverse
error function! Later we will have a similar problem for the worst-case distance
(WCD) approach, and we can solve it similarly.

The CPK formula is actually a kind of normalized spec margin or
performance margin approach. The normalization is done in terms of
sigma of the output distribution, this sigma and the “yield in sigma” are
only the same if we really have a normal Gaussian output (performance)
distribution, which often cannot be assured so easily. The whole approach
is a continuous one, whereas the sample yield is more a yes/no or 1-bit
ADC approach. From circuit design you know 1-bit ADCs have higher
quantization noise but no nonlinearity, whereas multi-bit ADC have much
better SNR, so the CPK method is more similar to analog or multi-bitADC
style! Also for optimization and debugging avoid binary specs; it is simple
waste of information! Sometimes it might be indeed “native” to use a spec
like “power-up circuit OK”, but in such case better look to start-up time
directly and create an “analog” spec!

The CPK measures the relative performance variation (e.g., due to mismatch
and process variations); actually by putting the distance of spec limit vs. mean
in relation to the standard deviation, for double-sided specs it also takes the
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spec-centering into account. One practical advantage in using the CPK instead
of yield values is that the CPK values are more manageable, e.g., CPK = 1
means 0.135% loss and is equivalent to a spec distance of 3σ. A CPK of 2
means 1ppb loss, which is already a very small value. Usually you require at
least a CPK beyond unity.

As the CPK depends on μ and σ, we can also easily calculate a CPK
variance V = σ2 and the CPK confidence interval (±2σ for 95% confidence).

σ C2
PK1/9n + C2

PK/2n (3.18)

e.g., σ CPK ∼= 5% at n = 250 & CPK = 1

Even for CPK = 2 the variance of the CPK (σCPK in Equation (3.18)) is quite
small for already moderate MC counts. This means that using the CPK we only
need MC counts in the order of hundreds, even for high-yield verification!
Whereas yield estimation by sample yield Y = npass/n would require often
billions of points (Figure 3.12).

One may wonder whether the CPK method—equivalent to a Gaussian
fit—is the “best” method. In fact, it really is, in some way, but only if it is
really sure that the data comes from a normal Gaussian distribution! In this
case also the method for determining the two parameters, mean and sigma,

Figure 3.12 Classical split flow using CPK for normal data and sample yield as backup
(in addition we can use most advanced methods described in following chapters) (courtesy:
MunEDA).
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by the well-known estimates sample mean and sample standard deviation is
optimum, e.g., more efficient than the use of the median instead of the mean.
The underlying theory is fundamentally given by the concept of maximum
likelihood (ML). In ML estimation (MLE) we determine the parameters so that
the probability to get the given data is maximized.At this point we recommend
looking to dedicated mathematical literature, and we also want to mention that
although the concept of maximum likelihood sounds so general, there are still
some cases in which it should be complemented with further techniques. For
instance, ML parameter estimation is often quite sensitive to outliers and often
also not the easiest method (e.g., it is hard to apply for a tri-angular or a Cauchy
distribution).

The Moment Method. To categorize distributions we can e.g., look to
the pdf or to the quantile plot, but we can also do it based on the so-called
distribution moments. Look at the equations for mean and variance; these
are the first and second moment of the distribution. We can simply extend
the idea by using higher exponents. The 3rd moment is called skew s
and measures the asymmetry, and the 4th order moment is the kurtosis
k, measuring the tail behavior (to some degree). Usually the moment
are taken around the mean (central moments), also the higher moments
are usually normalized to the standard deviation. This avoids getting too
extreme numbers, and makes the “shape” measurement independent from
the distribution scale. For instance a Gaussian distribution has a kurtosis
of 3.0 and zero skew. In the past, moment fitting was the most commonly
chosen method for data fitting, but MLE is even more general (e.g., it can
be applied even if the higher moments are infinite, like for the Cauchy
distribution).

Table 3.4 lists also other methods for yield estimation, as a non-normal
distribution can be non-normal in many different ways there is almost no
single best method. Also the result interpretation is usually more difficult than
for the normal case: For the CPK we have to deal with the two distribution
parameters for location and scale plus the spec limit; for non-normal cases
things become more complicated.

3.6.3 Confidence Interval-Based Autostop for MC

The user is interested in MC results having a certain minimum accuracy, which
is related to the width of the confidence intervals. As confidence interval
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Table 3.4 MC yield estimation techniques
Name Method Limitations Comment
Sample yield Nonparametric yield

estimation
Large variance, so wide
CI

Standard method in
design
environments, no
bias error

CPK Gaussian fit Only accurate for
normal distributions

Standard in QA

Kernel density
estimation
(KDE)

Kernel density fit
(almost nonparametric)

Limited extrapolation
capabilities, so hardly
suited for high-yield
estimation

Difficult setting for
smoothing
bandwidth,
available in math
packages

Multi-
parameter
fit

e.g., [Lange] using
generalized lambda
distributions

Bad fit e.g., for
multimodal
distributions or for long
tails with cuts

Available in
advanced design
environments

Nonparametric
fit plus tail
modeling

e.g., KDE and Pareto fit
to tail

Limited accuracy for
Gaussian distributions
or for long tails with
cuts

No easy
interpretation of
parameters,

Generalized
CPK

See Chapter 4 and
[Weber]

Limited accuracy e.g.,
for long tails with cuts

Available in
RealTime MC

calculation for the sample yield is quite simple, this has been exploited in
many design environments to implement a kind of MC autostop feature. This
could reduce the setup effort for the designer, e.g., he/she only has to set a
certain minimum and maximum number of points, a certain yield target to be
verified, and the simulator “decides” when to stop.

Figure 3.13 show the MC run of a very good design with no spec fails, so
the yield and the lower CI limit always increases. This way we will cross the
desired yield level at some count n.

A spec-fail would push down Y and CI limits (see Figure 3.14).
The position for spec fails of course depends on the random MC walk, so

on MC seed value. In this case the design is too bad to achieve desired yield
target; so even the upper yield confidence bound UCB is worse than the yield
target! If your design is really bad, like giving a fail already in the first five MC
points, the autostop could come very early. Here the 95% CI is approximately
[0.08,0.90], so if your target yield is 90% or higher, the MC autostop would
be triggered. Statistically this is correct and you would save a lot of time. On
the other hand, it might be inconvenient, maybe the yield is low due to quite
an uninteresting spec that is not fully confirmed or you are also interested
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Figure 3.13 Sample yield confidence limits for a MC run with no fails.

Figure 3.14 Sample yield confidence limits for a MC run containing fails.
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in looking to histograms, for which you should have many more points. It
could also happen that the autostop comes very late, just because your target
yield and your actual design yield are close together. In such cases, autostop
does not help on speed but of course on accuracy. For these reasons, even
when using autostop, the specification of a minimum and maximum count (or
runtime) makes sense.

An autostop feature might be also implemented based on other confidence
intervals, like on sample standard deviation s (Figure 3.15) or when reaching
a certain accuracy level for a contribution analysis (Chapter 5). Usually also
plots for checking how stable the mean estimation is are available, but often
the MC mean m is of lower interest, because it is for Gaussian distributions
close to the nominal simulation (Figure 3.16). As you know how stable m is
depends on σ.

CI width follows the chi2 distribution and approximately a 1/
√

n law.
Also you can see that it is quite symmetric if it is tight enough (like for large n).
With larger confidence level (like 99%) the CI would be larger. A meaningful
autostop criteria could be e.g., obtained from the relative error on the standard
deviation, like |UCB(s) – LCB(s)|/s < 0.05. Note: Often CI calculations
for mean and sigma are based on normal approximations, so you may add
some safety margin to be prepared for non-normal distributions (see next
chapter).

Figure 3.15 Sample standard deviation confidence limits for typical MC run.
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Figure 3.16 Sample mean confidence limits for typical MC run (same circuit as in
Figure 3.15).

Essentially all most advanced statistical analyses typically feature such
autostop (although they may execute much more steps than a pure MC
analysis). This way the user does not need to know in advance how many
simulations are needed; instead he/she sets a certain accuracy level for a
certain estimate, like sample yield or standard deviation, or maybe more
advanced estimates like CPK or generalized CPK (see Chapter 4) or
correlations (see Chapter 5).

Testing in Quality Assurance. In MC with autostop, we do basically
one test and decide whether we should continue our analysis or not. In
quality assurance this is a standard technique too, but often reality creates
more problems. Imagine that e.g., the testing of chip is costly or even
destructive. How should a company check if a delivery e.g., of 1,000,000
parts, is fine or not? For cost reasons, it makes sense to test only a small
subset, and if e.g., all chosen samples are fine, we could extend the testing
(more samples, more costly tests). This is called sequential testing, and in
principle designers or EDA tools can do the same, e.g., going beyond
simple MC autostop. For instance, it may make sense to exploit that some
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tests in the MC setup run quickly (e.g., simple DC or AC simulations),
but others take much more simulation time (transient noise analysis, load-
pull analysis, etc.).

3.7 Questions and Answers

1. In PDK’s normal distributions often have cuts for the process param-
eters, e.g., at 5σ (so you will never get samples for these variables
beyond ±5σ). Can you still use the CPK and sample yield?
Yes, the sample yield works for all kinds of distributions anyway!
The CPK is slightly too pessimistic if your distribution is a normal
distribution with cuts.

2. Can MC handle correlations correctly?
Yes, there is no problem at all on this. For some advanced non-
MC statistical analyses correlations might cause problems, but not
in random MC.

3. How many points do you need to get a stable sample
standard deviation and CPK, like ±10%?
There is no hard limit; it depends on confidence
level. For near-normal data, you typically need only
about 200 samples to make the CI ±10% with 95%
confidence. For very long-tail data the CI might be much wider!

4. How many points do you need roughly to get in your
MC result a sample that is as extreme as +3σ or –3σ?
There is again no hard limit for a uniform distribution
you would never get a sample 3σ off from the mean! For
a normal distribution you may need 100 to 300 samples typically, it
depends (pretty much) on chance. Unfortunately you need many more
points for 6σ!

5. Imagine you get 1,000,000 result samples like the height of a good, so
you can calculate mean and sigma, maybe to 1.70m and 0.1m, respec-
tively. So we can also calculate the approximated 95% confidence
interval to 1.70m ± 2 · 0.1/

√
1, 000, 000 = 1.70m ± 0.0002m! This

means the CI is very tight! Imagine you ask 1,000,000 people about
the height of the emperor of China, and you would get these numbers,
do you believe you can get the height this way to an accuracy of
0.0002m = 0.2mm?
Think a bit before you check out Google!
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6. How can I calculate the spec setting for a certain yield?
Via CPK you only have to solve the CPK formula for
the spec limit, so it is easy, but only correct if you really
have a normal distribution. Via sample yield you can do so too, but the
result is much more quantized and only acceptable for low yields, like
90% for a MC run with 100 points.

7. Imagine you are in a certain city and you know all
taxis are numbered from 1 to n with no gaps. You
take a trip and from time to time you see a taxi. How
can you estimate the total number of taxis from your
observations?
We can expect that all numbers appear with the same probability, so
we do estimations on a discrete uniform distribution. One method is to
calculate the mean value and multiply it by 2, but this is not the best
way to do it. Do you have ideas for faster convergence? What about
taking the maximum?

8. Figure 3.10 shows an almost flat curve for the sample
yield at high yield levels. Please look at it and explain
why this makes sense!
For high design yields we will get fails only with a very
low probability, and it matters not much anymore if the design is 5σ

or 6σ if you want to verify only 3σ. For the CPK this is not the case,
because it really exploits the spec margin.

9. We use the term spec or performance margin; and we use differences;
why not ratios? For which type of distributions it would be better
using ratios? With ratios you run into problems with performances
which can have both signs. For lognormal distributions using ratios
would be optimums!

10. Imagine you have an outlier in your almost Gaussian
data and you are using the CPK method for yield
estimation? What happens if you have an upper spec
only, but an outlier at the negative (non-spec) side?
Indeed the mean and even more the sigma would be impacted, so a large
sigma could decrease the CPK, although the outlier would be a pass
sample! Also look at cpk.xls from the River webpage for experiments.
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