4

Monte Carlo and Non-Normal Data

We extend the basic methods to address also non-normal data, because using
the normal approximation will often lead to severe over- or underdesign for
circuits. Distribution-free estimations are also possible, but usually lead to
much wider confidence intervals. One example of an advanced non-normal
yield analysis is the application of the new generalized process capability
index CGPK-

If we have no normal distribution, what else can we assume? And how
accurate can our estimates, e.g., on yield be with a limited number of samples?

Indeed, having a good guess on what type the distribution is (such as
lognormal, uniform, and Gaussian mix) always helps to improve estimation
accuracy. If we assume “nothing”, then we can use distribution-free estimates
like the sample yield and have to live with its wide confidence interval and
there is a need for large n [Schmid]!

If we assume no specific shape but have a good estimate for the standard
deviation, we can use the Chebyshev theorem, so actually even for non-normal
distributions, there is a clear theoretical foundation of the spec distance method
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for yield estimation. However, unfortunately, the Chebyshev method leads to
wide confidence limits (see Figure 4.6), whereas the Gaussian fit may lead to
severe systematic error. So you can try to fit the data to another model (instead
of a normal Gaussian one).

For Further Reading:

Older and basic statistical literature focuses (too) often on normal distributions,
but nowadays also non-normal analysis has found a huge interest. Also, the
topic of which model to choose is a hot one, and new techniques like model
selection or model averaging (or fusion) have been created.

e Lange, C. Sohrmann, R. Jancke, J. Haase, B. Cheng, A. Asenov,
U. Schlichtmann, Multivariate Modeling of Variability Supporting
Non-Gaussian and Correlated Parameters, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Vol. 35,
No. 2, pp. 197-210, Feb. 2016.

e Yield Prediction with a New Generalized Process Capability Index
Applicable to Non-Normal Data, Weber, S.; Ressurreicao, T.; Duarte,
C., IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, Vol. 35, No. 6, June 2016, p. 931ff.

4.1 Examples of Non-Normal Distributions

A simple non-normal case is the uniform distribution (e.g., fitting often well
for many discrete components), and if this is the case, we can get even 1/n
convergence instead of 1/y/n. If we add samples from multiple uniform
distributions, the result is not again a uniform distribution, but actually a good
approximation of the normal Gaussian distribution. This is due to the central
limit theorem, so sometimes nature helps us to apply well-known Gaussian
approximations! However, circuits not only do summations or differences! The
sum of normal variates is again normal, but actually the sum of two uniform
variables is giving a triangular distribution, and the sum of two lognormal
variables is not lognormal!

Of course, MC results can look more difficult, e.g., having two modes
(“peaks”)—here we may better assume a mix of two normal distributions
(having already five parameters in total). In such cases, we may need 10x
more samples compared to the fully normal case and in extreme cases may be
even 1000x more (depending on yield, mix ratio, etc.). Gaussian mixes can
be highly non-normal (in opposite to summing normal variates, which still
gives normal Gaussian distributions), and in circuit design, they can occur
if our circuit has different modes (or states) of operation, like a multiplexer
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giving Gaussian outputs in both cases, but overall providing a mix of both due
to duty cycle. In subsection 4.8.2 we give some more examples.

Non-normal methods are needed because circuits really create such non-
normal distributions more or less all the time! And whatever we assume is
almost never the true distribution type! With statistics only, you can select a
type which gives a good fit and good prediction. The only thing we can have
“confidence” in is that at least the data might come from our model, and based
on that, we do estimations with a certain confidence level. Unfortunately,
even if the data pass a normality test, it might be still non-normal or a non-
normal model might fit even better. In a MC analysis, many of the technology
parameter distributions might be indeed normal or lognormal or uniform, but
not your output—for many reasons:

e You have a measurement in dB

e You look for filter passband ripple or settling time

e You have a circuit with 2 modes, often giving a mix of 2 distributions
e DNL of a flash-ADC is defined by max (Vjgset)

e Delay of a CMOS gate ~1/(Vgs — Vro)

e [ ooking to leakage current

e Using |x] in a specification (e.g., |V | is half-normal)

This list shows quite nicely that if something “special’” happens in your design
or just only in your test bench setup, easily non-normal performance data will
be generated! However, unfortunately, it is not always easy to understand
which of the causes have actually taken place. Non-normal data are a frequent
case, and only sometimes strange distributions indeed clearly indicate design
weaknesses.

Experience shows that roughly 35% of all analog measures are so non-
normal (look at Figures 4.12 to 4.14 for examples), and even for a moderate
yield (like 99.8%), estimations based on the normal assumption may become
significantly biased. Only sometimes, the user can easily avoid non-normal
data (e.g., by not using a spec in dB). Often, it is the circuit itself creating
a certain nonlinearity leading to non-normal data. Of course, even circuits
regarded as linear (like passive filters) can create non-normal MC data, if you
inspect performances such as overshoot, phase margin, and poles and zeroes.
It does not mean that it will always happen and you can never trust specific
methods and you would always need to stick to pure random MC and sample
yield: often indeed, the Gaussian approximation is not so bad, and usually,
there is a fix part and the statistical variation is something small on top, like
1+ A, with A < 1. If we would apply a nonlinear operation like f = 1/z,
we would end upin f = 1 — A + A? + ... and still in a very mild form
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a) b) ©)
Figure 4.1 (a) Overdesign, (b) optimum design, and (c) design fail.

of nonlinearity due to A > A?! Unfortunately, there is no guarantee for
this smooth behavior, because there might be stronger nonlinearities, many
variables, many correlations, etc.—or you have to go more in the direction of
not so small A due to circuit specification and technology limitations.

Actually, there is no clear limit, protecting you from making a non-robust
design, to be out-of-spec and to have no need for non-normal techniques—
there is a smooth transition, a slippery gray area (Figure 4.1)!

What is an outlier? This is a sample that would destroy your fit to the
model you “assume”, so actually you have to decide! It is best to inspect
simulation results of the related MC point manually! The usual rules, like
remove points “beyond 657, are only useful if you can assume near-normal
data. The sample yield is quite insensitive to outliers, and they just lower
the overall yield a bit, whereas the Cpk could heavily impact even by one
outlier. For the generalized Cpk, you can use the method recommended in
[Weber]. The decision if a certain sample is an outlier is not always easy to
made, and it could happen that just this “outlier” is truly an indicator that
the currently used model is too simple, actually even wrong! In physics, a
new model can be a real revolution, and some examples are the quantum
Hall effect found in 1980 and the prediction of outer planets.

So if you feel your MC run contains an outlier, then debug it and try to
understand and to “repair” the circuit! However, it could be that it is too
much effort. If you keep all data including outliers you may overdesign
this way. If you completely ignore an outlier you may underdesign, so
another method called winsorization is sometimes also usefull: If e.g., the
outlier is too extreme (like 1E100) just cut it back at least to the 2nd most
extreme sample. This way you can also make sure that e.g., the mean
calculation becomes more robust against outliers.
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In Chapter 7, we will address the problem of extreme samples to some
degree again and in an accurate way by introducing worst-case distances—
generation of corner samples with dedicated yield level!

4.2 ldentification of Non-Normal Distributions

With the normal quantile plot, we can identify a normal distribution, in less
critical cases even with a histogram. Also, numerical tests are available, but
any test based on sampled data has its uncertainty. Already small deviations
to normal behavior can lead to significant yield errors, so you should get a
feeling when the normal assumption might be still applied with acceptable
errors and when not.

Check for Normality? In addition to the normal quantile plot, also pure
numerical tests for normality are available, e.g., the Jarque—Bera test (JB
based on skew s and kurtosis k).

JB=n/6-(s*+ (k —3)%/4)
JB is quite a powerful test, and it combines two measures which can also
be easily interpreted by themselves: skew s is a measure of asymmetry,
and kurtosis k is a measure of the relationship between inner and outer
samples. Symmetric distributions have a skew close to zero, and the
normal Gaussian distribution has a kurtosis of 3. If JB is large (like
beyond 7), we can usually assume that the data are significantly non-
normal. In such cases, we do not use the Cpk. Please also inspect the
spreadsheet example Figure 4.10 for JB calculation.

Identification also for other distributions can be useful, because often the
circuit performances do not follow a normal distribution. Leakage current
follows often an exponential law, so assuming here a lognormal behavior is
much more meaningful than assuming normal data. So a good analysis for this
special case is making a fit to a lognormal distribution and using it for yield
estimation. Such approach will typically lead to more accurate estimations
in terms of variance and systematic errors. However, in the general case one
problem is that it is often hard to say which law we should assume, e.g.,
multiple effects can have an impact, or already the transistor models use very
complex functions. Another interesting problem is how can we treat such
mixed cases, e.g., a weighted sum of normal and lognormal variates that can
vary smoothly from a perfect normal distribution to a full lognormal behavior.
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behavior quite as expected

250-- 4

\ # [normalized) # [normalized)
tail shorter than normal tail longer than normal q‘i} App

Figure 4.2 Two typical normal quantile plots taken from a normal Gaussian distribution
(n = 256).

For statistical problems with one variable, we always have a 1-to-1 relation
from xg to f, but unfortunately that would not be the case for multiple variables
xg = (xg1,xg2,...) . The problem of treating multiple statistical variables will
be covered in this Chapter 4.

Figure 4.2 shows how difficult it can be to identify a normal distribution
via quantile plot; with 256 points, it can be still hard to decide whether the
behavior at +2.5¢ is Gaussian or not. Figure 4.3(b) shows the quantile plot
for a Student-4 distribution (look also to subsection 4.8.1); the yield error in
sigma (indicated by the blue arrow) is already roughly 0.5c, but the quantile
plot is just starting to become distinct.

Let us now investigate how we can improve our estimations when dealing
directly with an arbitrary output distribution.

4.3 Non-Normal Data Analysis via Generalized Cpk

We have already inspected two different yield estimation methods, but only
the sample yield has no systematic error for non-normal data. On the other
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Normalized Yield Loss of MC Analysis
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hand, the Cpx allows us to interpret also small MC data sets efficiently, and
a lower MC count gives the designer a speed-up in making design decisions
(Figure 4.4).

The question is: can we obtain a similar speed-up also in the general
non-normal case, e.g., by making a more detailed result evaluation?

The old state of the art on process capability index is to make a Gaussian
fit, thus extracting the two distribution parameters | and s, and the normalized
spec distance (USL-w)/o gives us a yield estimation. This is a distance method,
and the good thing is that intuitively the yield is indeed well correlated with
the spec distance—although it is not the only measure!

To address this problem, a new generalized Cpk has been developed
[Weber], which features one more parameter “¢” to describe also the tail behav-
ior. This way, the generalized Cpx is quite accurate also for non-normal data,
whereas the Cpk can be easily systematically wrong by 50%, in cases where
the bias of new is only 5%.

Instead of fitting a normal Gaussian pdf, we fit a “generalized Gaussian”
pdf. Also, the fit is not done on the whole data, but only to the spec-sided
part—starting at the distribution mode (instead of the mean).

upper
spec-limit

/1

mean

Normalized Histogram

(ﬂ}App

24 26 28 3 32

distribution tail

Figure4.4 Method ofthe generalized Cpk (Gaussian fitis shown as blue curve; itis obviously
bad).
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Some distributions have multiple modes; here, the Copx would start at
the spec-sided mode. Doing the parametric fit on spec-sided samples has
several advantages; for example, non-spec-sided outliers will have no impact,
and our fitting function can be formulated much easier, so that indeed, one
more parameter (namely t) compared to the “old” Cpgk gives a dramatic
improvement (Figures 4.5 and 4.6).

With the tail parameter #, we can model a much wider range of shapes
(Table 4.1).

Note: Some of these distributions are exactly included in the model, and others
are only approximated. The parameter ¢ is actually a parameter of the model
cdf (see [Weber]); and there is no simple formula as e.g., for the standard
deviation, but we can apply MLE or moment fitting. However, Table 4.1
shows that ¢ can be still easily interpreted, just as a normalized tail parameter;
complementing the location and scale parameters.

Of course, there is no free lunch: as the Cgpk has one more parameter to
fit, the statistical variance becomes larger in near-normal cases compared to

Cpk Bias Error

-------------------------------------------------------------------
...................................................
____________________________________________

-1.00 -0.90 -0.80 -0.70 -0.60 -0.50 -0.40 -
'Cpk=1.00==== SREEE T e e -
Cpk=1.26——+"—""1 ‘ ‘ 4
{Cpke] S
'‘Cpk=2.00__: ! : —

Figure4.5 Comparison of Cpk versus Capk — Cpk bias error for symmetrical cases (Caprk
error is zero): as the Cqpk is also a distance method, we can also calculate the spec limit for
a given target yield.
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Specification from Cpk
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Figure4.6 Calculating back to spec with different methods (lognormal data used as example)

Table 4.1 Distributions and tail parameter
Distribution Tail Parameter t¥  Comment
Uniform -1 short-tail, low kurtosis
Triangular -1<r<0
Parabolic
Typical bimodal distributions like
staggered Gaussian
Gaussian 0 e tail, k =3
Peaky distributions like stacked 1>t>0
Gaussian
Student-t, logistic, etc.
Cauchy +1 1/x? tail, infinite k

the Cpk. This can be nicely seen if we look to the correlation between yield,
Cpk and Cgpxk (look at the scatter plot, Figure 4.7).
As expected, there is a strong correlation with the yield, but the Cpk
is more stable than the Cgpk. So the Cpy is still preferable for clearly
normal distributions, but for already small deviations, the Cpk advantage
of lower variance is compensated by its much larger bias error. This bias—
variance trade-off is very typical and almost impossible to avoid. Actually,
the Cgpk is a clever mix of parametric and nonparametric methods, and in
opposite to a pure nonparametric modeling (e.g., using the empirical cdf),
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Figure 4.7 Correlation between yield, Cpx and Cgpk (normal data, n = 512, Cpk = 1.0,
256 MC runs).

nonparametric and tail modeling [MacDonald], or just using a more complex
model [Lange], we can efficiently model many difficult distributions like bi-
or multimodal distributions and we still fully include the normal Gaussian
distribution.

Figure 4.8 compares the sample yield, Cpx and Cgpk sample count for
verification as a function of the true guaranteed Cpk (by 95% confidence

~

Typical Cgpk behavior

log(N})
n

N
) .
L | Cpx (strong risk to be worse)
e /
p —
08 09 1 11 12 13 14 15 16 17 1.8 19 2

guaranteed Cpk

Figure 4.8 Random MC yield verification count for different estimators (design margin
0.3750).
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interval). It shows that the sample yield is highly inefficient especially for
high yields, but as mentioned, using it requires no extra-margin for any bias
errors due to model limitations (look at the horizontal arrows in Figure 4.8).
It can easily happen that the Cpk is wrong by more than 1o, whereas the
Cgpk bias is usually 5-10x lower. Note that the green curve for the Cgpk is
only an average, as it depends also slightly on the distribution type (vertical
arrows). In the succeeding subchapters, we will give some concrete examples
(for measured production data and for certain mathematical distributions).

Alternative Distribution Fitting Methods. There are indeed many ways
to fit data to a certain distribution (we mentioned MLE and moment
fitting). Instead of using the Cgpk concept we could also do it a bit
differently [Weber]. We could also try to fit over the entire data (like the
Cpx does), or we could also only model the tail (Table 3.3). For instance,
we could assume a triple Gaussian mix to model distributions with up
to three modes, but obviously a high flexibility comes with the price of
many parameters. The advantage of modeling only the tail is some more
flexibility and potentially high accuracy in this region of interest! But
one big question is where to “start” the fit and where the tail begins?
Having enough data, it is indeed possible to answer that question, but
to some degree, it results in a model which depends on the fit for quite
few data points, just the tail points. So the price for low-bias errors is
typically having quite large confidence intervals. For the tail modeling,
typically the generalized Pareto or generalized extreme value distribution
is assumed. Also when using the Cgpk concept, we could plug-in different
distributions, or we may extend the concept with one more parameter to
be able to model the shape of the mode and the one for tail independently.
Also almost completely nonparametric fits are possible, e.g., based on
KDE, but typically they are not well suited for high-yield estimation.

4.4 Analyzing Real Production Data

Of course many statistical methods are not only applicable to MC results, but
also applicable to real data measured in production. The data in this example
(Figure 4.9) have been taken from [Shinde] and come from a USB2 squelch
circuit: trip point has been measured on n = 3,999 silicon samples.

Let us do two analyses: according to [Shinde], let us inspect what we
can estimate if we do not use the full measured data, but only a subset of
25 samples. This is often regarded as minimum requirement for a normal
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Figure 4.9 Data from a fabricated USB interface [Shinde].

data analysis. In many such cases, designers can expect near-normal data for
good reasons, because usually the trip point of a comparator is dominated
by device mismatch—and mismatch can usually modeled well with normal
distributions. Later, let us check this analysis against an analysis taking the
full statistical data into account (Figure 4.10).

The original Intel conference paper exemplified already a yield estimation
on a subset of n = 25 samples. The authors obtain a sample Cpyk of 2.04
(6.120). By visual inspection of the histogram, the authors regarded the data
as normally distributed and they predict 40 as lower yield 95% confidence
limit. This means although the sample Cpk is 2.04—indicating a very good
design—a statistical analysis based on the assumption of normality can only
guarantee a Cpk of 4/3 = 1.333. The difference between 4o lower CI limit
and 6.12¢ sample Cpk would go to zero for n — oo.

This difference looks like a good “safety margin”, but this simple analysis
does not take some important aspects into account: sample skew is s = 0.71,
and the critical specification limit is at the long-tail side. This leads to a
too optimistic Cpk yield prediction! If we apply the Jarque—Bera normality
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Cl07: = KURT(C2:C102) — ameasure of tail behavior
Cl08: = SKEW(C2:C102) - ameasure of unsymmetry
Cl09: = 100/6*(C108*C108 + C107*C107/4)
C109 v I fe =100/6*(C108*C108+C107*C107/4)
A B € D E F

97 0,3951461 -0,265931241 0

98 0,9646656 1,807599664 0

99 0,9106683 1,344881804 0

100 0,2933183 -0,543716415 0

101 0,0116437 -2,268687314 0

102

103 Avg 0,504315 0,02401982

104 Stddev 0,2847205 0,96873295

105 Yield in % 99,0000

106 | Cpk -0,851965164

107 Kurtosis -0,123452811

108 | skew 0,130741339

109 18 0,348390781

Figure 4.10 Spreadsheet example for the calculation of the Jarque—Bera normality test.

test for the whole data set, we can obtain a value for JB beyond 200, which
clearly indicates non-normal data, but for n =25 JB is only 2.2 (indicating only
very mild non-normality). A large JB value indicates that we should not apply
a Gaussian fit, but better apply the new generalized Cpy Thispredicts a true
Cpk of 1.30—instead of 2.04! And of course also the CI for the generalized
Cpx would be even lower, being at 1.20. Overall, the designer’s conclusion
should be that the design definitely needs significant improvements. And
it is unfortunately not enough just to measure more samples to tighten the
confidence interval!

Note: In this example, the sample yield is still 100%, because there is no
fail even in 3999 points! The sample yield confidence limit is approximately
99.88% and is equivalent to a true Cpgk of 1.02, which is worse than the CI
of the generalized Cpgk (which is at 1.20). The Clopper—Pearson yield limit
(also used in most EDA tools for yield confidence intervals) for 1 fail in 3999
samples would be 98.6% only (equivalent to a true Cpgk of 0.73!). Also look
up: Jarque—Bera is one of many normality tests, neither the best, nor the worst.
It is actually quite powerful which means that it needs usually not that many
points to make a decision. On the other hand, there is simply no best normality
test, because deviations to normal data can be of many kinds.
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4.5 Yield Estimation for Non-Normal MC Data via Cgpk

In the previous example, we inspected measured production data, and let
us now inspect MC data from an operational amplifier. Such amplifier is
basically a linear circuit, where most designers would expect to find quite
normal histograms. However, we will see that also such classical analog circuit
can easily create non-normal data (Figure 4.11).

A complete CMOS op-amp with tricky feed-forward frequency compen-
sation has been designed (but not fully optimized) and verified for almost all
common specifications in a big MC run for mismatch only (n = 1500). The
PDK does not offer global variations, but these would of course lead to wider
variations and potentially even more non-normal data.

Many histograms are indeed near-normal (like the one for current con-
sumption and offset voltage), but here are also some interesting non-normal
histograms, where we really need the Cgpxk. In the Figures 4.12 to 4.14 you
will find some examples taken from [Weber2016], e.g., Figure 4.12 shows
HD3 data, where the Cpx is too pessimistic.

Figure 4.13 shows a second example, looking to the peaking of the closed
loop gain; here, the Cpy is too optimistic.

Acthird example is shown in Figure 4.14, the 3-dB-BW (the graph of ampli-
fication versus frequency has two peaks due to the feedforward scheme—and
the circuit is really functional, no bug).
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Figure 4.11 Inspected op-amp circuit.
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Figure 4.12 Third-order distortion in dB (Cpk too pessimistic due to spec at short tail)
[Weber2016].
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Figure 4.13  Gain peaking in dB (Cpk too optimistic, spec on long tail) [Weber2016].
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Figure 4.14 3 dB bandwidth (Cpk too pessimistic) [Weber2016].
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4.6 Questions and Answers

1.

. Is the generalized Cpgk having a systematic error?

How can I check my MC data if it is following a normal Gauss1an
distribution? ]
Inspect the normal quantile plot or apply a numerical test like
the one according to Jarque—Bera. JB = n/6(s? +(k — 3)%4).

. What is the distribution for the output voltage of a two-resistor voltage

divider made of discrete resistors?

For discrete elements, it is not realistic to assume a Gaussian distribu-
tion, and a uniform distribution is usually more realistic. The sum of two
uniform variables gives a triangular distribution! Actually, the output
voltage is a nonlinear function of the two resistors, but the nonlinearity
is not that large, so indeed we can expect a near-triangular dzsmbutlon

The Cgpx includes a much wider class of distributions without \ ¢ App
such bias error, but if the data are not part of the model pdf, we get some
bias. Usually, it is only 10% of the normal Cpx bias, like for a lognormal
distribution. In such cases, and also on a uniform distribution, the Cgpk
bias makes the yield estimation a bit too pessimistic—so you are on the
safe side, but overdesign a bit.

. Is the Cgpk method an interpolation or extrapolation method?

It is both, depending on the yield level! In opposite to many other extrap-
olation schemes, the C cpx makes a very meaningful extrapolation. Also
the Cgpk method might be combined with WCD methods to get rid of
the extrapolation risk.

. £30 around mean is equivalent to capturing approximately 99.73% of

the distribution if the data are normal, but how much is it for a Student-5
(which looks very similar to a Gaussian distribution, look at subsection
4.8.1)?

Although the kurtosis k is still moderate for the Stundent5 distribution,
and the normal quantile plot indicates no strong non-normality, the
vield is pretty much less, approximately 98.8%—so only approximately
+2.50. So the error in terms of sigma is approximately 20%, thus often
much larger than the confidence interval reports! Remember, confidence
intervals do not quantify such systematic errors.

. Can we extend the Cpg and Cgpk concept also to multiple perfor-

mance?

Yes, this is possible and for multivariate pure normal distributions,
several solutions exist. These are usually good enough for process
monitoring, but in circuit design you have very often to deal with
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non-normal distributions. In Chapter 5, we present a good approxi-
mated solution.

7. Can it happen that running one more point in MC, which gives a pass,

leads still to a decrease Cpxk for a spec like CMRR >40dB?
Yes, it is possible, and assume we have a short 50-point MC run with
sample standard deviation of 2 dB and mean 60 dB, so Cpk was 10.
Imagine the next MC point is at 100 dB—it would shift the mean down,
but the standard deviation would increase even more, so overall the
Cpx could become worse! In pure Gaussian outputs, such event would
be extremely rare, but non-normal data can give such surprises.

8. Imagine you have a Gaussian output y for a certain performance in a
MC run. Now you take this in dB, which kind of distribution will you
get?

It will be a new distribution, and it is not the lognormal distribution!

9. If we add many samples from independent uniform distributions, we

end up by central limit theorem with a normal distribution. Would this
also be the case for other distributions?
For instance, even when adding exponential distributions, we would
lose the asymmetry; and the left side short would become longer,
whereas the longer right tail would become shorter ( e~ instead of
e *)! However, e.g. the Pareto distribution is asymmetric too, but has
infinite variance, so here the CLT would not work.

10. Discuss which kind of problems can be solved with pure random MC
and sample yield?

Check runtimes, accuracy, design improvements, inclusion of corners,
which additional analysis should be done, etc.

11. Imagine you have a Gaussian distribution with mean = 0V, so we get
in a nominal simulation usually also O V. Now we apply the exponen-
tial function to this output, leading to exp(0) = 1 at the new output.
However, what happens in MC? Will the mean be also at 1?

No! The median will be there; and it is now different from the mean
(average) value! If our nonlinear function is non-monotomic even the
median will usually not preserved.

4.7 Rules You Have to Know for Monte Carlo

When setting up a MC analysis, one big general question is how to decide on
required number of points for certain target accuracy? Actually this problem
is not only related to MC but to taking statistical samples in general, like
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Table 4.2 Overview on basic normal and non-normal MC techniques

Analysis #points Comment
MC for checking mean and e.g., 100 Some mild non-normality allowed.
standard deviation of For extreme distributions, bad or no
performances convergence
MC for checking sample yield  app. 2K for See Table 3.2

30
MC for yield via Cpk app. 200 Data should be highly normal,

especially for high-yield targets

MC for yield via generalized app. 500 The number of points depends slightly
Crk on yield level and distribution type
MC for checking distribution ~ >50 Depend on how accurate you want to
type model modes and tails; to differentiate

between similar distributions, you
may need >1K points

MC for correlation analysis 100 - >1000  Dependent on number of variables
involved

for production data inspections. It essentially depends also on what kind of
estimate you are interested, e.g., 1% yield accuracy is good if the design has a
yield of 50%, but it is not good enough if the target is 99.7%! Many measures
also depend on distribution shape, and this can never be fully known upfront
(Table 4.2).

So best know some basic rules and their prerequisites and make a
MC test run, check histograms, and look to confidence intervals. If the CI
is 2 too wide, then increase the number of points by approximately 4 x.

Rules for any kind of data:

1. You can trust the sample yield Y = n,s/n (because it is a distribution-
free estimate).

2. But Cl of Y is large. If there are no fails, then CI limit is approx. given
as 3/n.

3. Inrandom MC, there is no dependency on number of statistical variables
for estimates like Y, w, or o, but of course it might be the case for
correlations (Chapter 5).

Basic rules for near-normal case:

1. Most frequently used: 95% confidence interval
(so 5% risk of false decision)
+ assuming a normal Gaussian distribution
+ assuming n > 1 (like 50)
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2. Then, e.g., the 95%-CI of the mean . becomes roughly +20/,/n. This
is two times the standard error SE = o/4/n.

. So to know variance on mean p, you need to know o.

4. Also o has a variance: ~1/,/2n, e.g.,
n=>50gives 10%, so if 6 Vgt = 10 mV, it is typically within 8. .. 12 mV
with 95% confidence => not so bad
n =200 gives 5% => often good enough

5. Other measures (such as correlations or the mode) may need more points
(like 1000).

Rules for significant non-normality:

98]

1. Apply tests, e.g., via Jarque—Bera and normal quantile plot.

2. o might not converge for long-tail distributions!

3. o variance is usually (roughly) proportional to \/kurtosis (4" moment).

4. Do not trust the Cpk! Use Caopk, sample yield or the methods from
Chapter 7.

5. If data is not very non-normal, then CI width and sigma follow still
often follow the 1/y/n law. But bias errors can follow any law, and
even for infinite n they might be an error (e.g., using the CPK for yield
estimation on non-normal data).

4.8 Design with Pictures Part Two

The non-normal distribution examples in this Chapter 4 were quite obvious;
that is, by careful visual inspection, it was quite clear that the data are not
normal and that a data analysis based on normality would lead to bad results.
However, sometimes it is not so easy to decide whether data are normal or not.
And in high-yield cases, even small deviations can lead to significant errors,
because a Gaussian fit and the Cpk based on that are kinds of extrapolation
method. An interesting question is how large is the risk that a deviation to the
normal distribution can be seen “late”?

In our USB fab data example, the Jarque—Bera JB value was huge for
n = 3,999, but for the same skew s and kurtosis k with lower MC count, JB
will drop and there is a “gray” area (like JB = 1..4) where it is quite likely that
the data is indeed normal, but the confidence is still quite low, or vice versa
the data is non-normal, but too close to normal, so that most people would
apply methods based on the normal assumptions, mistakenly.

One further problem with JB and many other normality tests is that they
do not take the yield level into account! So the risk of “seeing” non-normality
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late and the error in yield prediction depend on how big the non-normality is
but also on how much you “extrapolate”. For instance, to “see” the difference
between a Student-100 and a normal distribution, you may need 100,000
samples, but between Gaussian and uniform maybe only 50-100 samples.
There is even no such thing like a confidence level for such investigation,
but at least we can provide guidelines and train ourselves with examples. In
statistics and yield verification just multiplying the sigma is risky, actually
even when using normality tests.

Note: With the RealTime MC program that complements the book, you can
do such investigations in a very short time, because a much faster simulator
is built-in, than just plain SPICE.

4.8.1 Normal versus Student-t versus IH Distribution

The normal distribution has a kurtosis of 3 (note Excel gives 0, because the 3
is subtracted internally), whereas the other two distributions which we have
chosen as example, the Student-t and the Irwin—Hall IH distribution, feature
a parameter to adjust the kurtosis. In our RealTime app, we can tweak this
parameter to obtain a kurtosis of 3.3 for the Student-t and 2.7 for the Irwin—Hall
distribution.

Actually, the Student-t is a very important distribution, e.g., for confidence
interval calculations, but also the IH has a relationship to the normal distribu-
tion. Itis composed of the sum of uniform distributions, and if we would add up
an infinite number, we would end up in the normal distribution (Figure 4.15).
Note that many distributions (even discontinuous ones) can be connected to
the Gaussian distribution this way, just due to central limit theorem (CLT)!
You can also extend the normal distribution, by adding parameters to adjust the
shape and to introduce an asymmetry. Actually, there is no single “best” way
to do this, and many such generalized Gaussian distributions exist. There are
also distribution families with no tight connection to the normal distribution,
but in spite of that, they can be still very similar (e.g., the logistic distribution).

Looking to the (smoothed) histograms of all our three examples, you can
hardly see any difference (Figure 4.16), just because even for n = 1024 the tails
are very hard to inspect visually. Even in the normal quantile plots (Figure 4.17)
you really need a huge number of points to identify the distributions.

The JB value for checking normality is approx. 4.5 (pretty close to the gray
zone), and if we set the spec for a Cpk at 1.0, we get the standard deviation
of only 2.5%, i.e., n is large enough to really get a stable Cpx.
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Histogram of MC Analysis
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Figure 4.16 Histograms for the three inspected distributions (averaged).
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The question is now how large is the systematical Cpxk error, especially at
higher yields. This can e.g., be checked by running a very long MC analysis
using 64 K points and using the generalized Cpy, which has a highly reduced
bias error. We set the spec limit to obtain a Cpk of 1.5, and for the Student-t
distribution (Figure 4.18), the Cpxk yield loss prediction is too optimistic by
2.5 orders of magnitude (whereas the Cqpxk has no bias error in this case)! For
the IH distribution, it is vice versa and the Cpgk estimation is too pessimistic
by approx. 30x (Figure 4.19).

Notes: At some point, the red curve (showing the sample yield) drops to
infinity, because itis still 100% even for N =64 K. The green curve is the result
of yield estimation by the generalized Cpk, which makes a very meaningful
extrapolation.

In conclusion, an MC run with 1024 giving normal data according to
standard tests and applying the Cpk can give still give big yield errors for
Cpk > 1.5. Having no fails, the Clopper—Pearson lower confidence bound
LCB would be only at 99.64% (equivalent to Cpk = 0.896). The Cqpx LCB
for the Gaussian case is approximately 1.2—and this is (without stronger
assumptions) what you can “guarantee” at best. The Cpx LCB is 1.43 for
normal data, but even this (and not only the point estimate of 1.5) is still too
optimistic compared to the true yield and true Cpk being at 1.235.

T gEE=— Capk fit

—— Gauss-fit (Cpk)

-2 -1 0 1 2 3 B - 6 7 8

x

Figure 4.18 Plot of log(1 — Y) =f (spec) for Student-t distribution.
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Figure 4.19 Plot of log(1 — Y) =f (spec) for Irwin—Hall distribution.

4.8.2 Calculations with Random Numbers

Can we calculate with random numbers, like we do with real or complex
numbers? Yes, you can, but indeed some rules will change, and only few
will remain the same. For instance, taking a random variable X with normal
distribution and multiplying it by 2 gives a normal distribution with doubled o.
However, adding two independent normal random variables (of same o) gives
only 1/2-0, so X+X is not always equal to 2X. Also taking the difference is
special, because X—X gives us the same distribution as X+X for independent
standard normal variables! Also note that also the rule X+X = /2X would
only work for Gaussian variables, not for uniform or lognormal ones (here we
would get a change in the distribution type); (only) for Cauchy variable we
would indeed observe X+X = 2X.

Taking exp(X) gives us the lognormal distribution, but adding two inde-
pendent lognormal variables gives no lognormal distribution again! However,
interestingly adding two Cauchy distributions gives us a Cauchy distribution,
so to some degree the normal and the Cauchy distribution are special. Taking
the absolute value of a standard normal distribution gives us a half-normal
distribution, but taking the difference from these would give us again a normal
distribution.
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What about more difficult operations such as multiplication and division?
For instance, dividing two normal independent normal variables gives another
distribution, which is the Cauchy distribution! Actually the division spreads
the distribution a lot, so the result (the Cauchy distribution) has much stronger
tails than the normal distribution. The Cauchy tails are so strong that even
mean and sigma does not exists; it looks a bit like a normal distribution with
many outliers.

Adding two independent uniform variables gives us a triangle distribution;
and adding really many independent uniform variables gives us a very good
approximation to the normal distribution; and this is true for even any infinite
sum of random variables; just finite variances are required. So even addinge.g.,
lognormal variables (being quite asymmetric) would end up more and more

Table 4.3 Overview on calculations with independent random variables

X1 Xa Operation Result Comment
Std-Normal - -X Std-Normal nw=0,0=1
Normal - exp(X) Lognormal Log(X) is not
lognormal
Std-Normal - IX] Half-normal p=0,0=1
Normal - IX| Folded-normal ~ Appear for
performances like
‘ Voﬁset |
Std-Normal - X2 x12 Chi-square,

important for
confidence intervals

Normal Normal X —Xo Normal Mean substracts,
variance adds up
still

Uniform Uniform X1+ X2 Triangle Mean and variance
added

Triangle Uniform X1 + Xo Quadratic Mean and variance
added

Cauchy Cauchy X1+ X2 Cauchy Location and scale
add up

Std-Normal Std-Normal X1/X2 Std-Cauchy Very wide tails

Half-normal Half-normal X1 —Xso Normal

Lognormal Lognormal X1+ X2 Not lognormal ~ New distribution,

looking slightly

more normal
Std-Normal Chi X1/X2 Student-T important for

confidence intervals
Std-Uniform Std-Normal X1/Xso Slash Similar to Cauchy
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in a normal distribution (which is symmetric). Again the Cauchy distribution
is special, because it has no finite variance. The central limit theorem CLT
will tell us even more, because if we know the mean values and variance of
the original distributions, we can calculate the over-all mean and variance just
as the sum of the “input” distributions. And the normal distribution with that
parameters will often give an excellent fit to the sum distribution. However,
this fit is usually only good near the distribution center, not in the tail regions.

Actually on all these things there is quite nice material available in the
internet! By creating little testbenches and running MC analysis can find
such relationships directly from circuit simulations. For instance, simulating
a multiplexer with two inputs driven by normal distributions, you can obtain
a Gaussian mix. Such mixes are often multimodal, so not normal Gaussian at
all. With Verilog-A you can perform almost anything you want, because it also
supports random number generation, even for “very” special distributions, and
of course it also supports many math functions. Although Verilog-A does not
support so many distributions (e.g., no Cauchy distribution), you can often
easily create whatever you want with moderate effort by calculations with
random variables (see Table 4.3).




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages true
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth 8
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2500 2500]
  /PageSize [612.000 792.000]
>> setpagedevice


