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3.1 Introduction

Despite the huge success of Web search engines, searching the Web is far
from being a solved problem (e.g. see [64] by Yahoo! Search). However,
the information needs of the searchers are increasingly ‘time-sensitive’ –
about events happening now – and/or ‘local’ – where the user’s location has
some geographical bearing on the content that is relevant to their information
need(s). For instance, events that are happening now or recently may have
an impact upon the searching behaviour of users. Indeed, a search engine
can detect a power cut in New York within seconds, based on the querying
behaviour of mobile and nearby users [30]. However, while a Web search
engine can retrieve many forms of online information, it can only sense real-
world events through their impact on the online world (e.g. news stories,
tweets, increased query volume).

In this chapter, we describe how real-world information needs can be
better addressed by search engines through harnessing sensing infrastructures,
including those from the Internet of Things (IoT). Indeed, the introduction
of IoT sensors within the search engine provides more responsive/timely
information than existing evidence sources, such as Web or social streams,
as illustrated in Figure 3.1. For instance, by considering IoT sensor outputs
such as real-time rain levels, a search engine can produce a more customised
answer to queries such as “what is the current weather at JFK airport?”.
Furthermore, information needs such as “what is happenning near me?” (local
event retrieval) can be better answered by fusing social media trend data (also
known as social sensing) with physical sensor observations. For example, a
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Figure 3.1 Data sources available to an IoT-connected search engine.

party in the town square might be detected through a combination of people
posting about it on Twitter, with crowd density analysis over CCTV camera
feeds from the square. It is also possible to provide recommendations (e.g.
for tourists) about points-of-interest to visit, that are appropriate to particular
personalised interests of the users and their current contextual situation (time,
location, travelling with friends, etc.). In doing so, search engines can help
users satisfy new forms of information needs needs centred on real-world
events.

In the following sections, we first provide details of search infrastructure
technologies suitable for obtaining and indexing observations from a plethora
of diverse IoT-connected sensors (Section 3.2); Later, we show how physical
sensor information and socially-sensed information – combined with such
technologies – can be adapted for tasks such as local event retrieval
(Section 3.3), event topic identification (Section 3.4) and venue recommen-
dations (Section 3.5). We conclude this chapter by discussing the outlook
for the field and some interesting future directions and applications for IoT
technologies in the search domain (Section 3.6).

3.2 A Search Architecture for Social and Physical Sensors

To achieve effective and efficient search over sensor data streams, it is
important to have a suitable search architecture. Early exploration into the
sensor space focused on the development of tools and techniques for searching
sensor data using classical information retrieval techniques and architectures
[17, 28]. These approaches exploit sensor ontologies [46] in order to decouple
user queries from the low-level details of the underlying sensors. For instance,
they might map a rain gauging data stream to particular weather-related
queries, such that current rain data can be displayed when a user enters one
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of those queries. However, these ontologies are quite brittle in the face of
changes in the user’s query semantics and need to be hand-crafted for each
domain/sensor stream. Hence, they cannot provide effective search over the
arbitrary large and diverse sources of multimedia data derived from both
physical and social sensors. Furthermore, sensor integration is only one of
the components that are needed when building an IoT-enabled search engine.
It is also critical to have effective and efficient indexing and retrieval processes
over the sensor data, as well as have the ability to leverage the new search
capabilities to build applications beyond the classic ‘search bar’.

More recently, the SMART (Search engine for MultimediA enviRonment
generated contenT) project1 developed a framework [4] that aims to solve
these issues, by providing an infrastructure where multimedia sensing devices
in the social and physical world can be easily integrated into a central
search system. By doing so, each sensor can provide information about their
environment (physical or social) and make it available in real-time for search.
As one of the most modern IoT search platforms in use today, we summarise
the components that comprise SMART in Section 3.2.1. We then discuss some
of the key challenges when building and deploying an effective IoT search
engine like SMART in Section 3.2.2

3.2.1 Search engine for MultimediA enviRonment generated
contenT (SMART)

SMART [4] is a framework designed to enable multimedia IoT sensing
devices, both social and physical, to be integrated into a real-time search
system. The architecture of the SMART framework is comprised of three
distinct layers, as illustrated in Figure 3.2. At the lowest level we have the
sensing devices that provide the physical world data. The edge node represents
the software layer that processes the raw sensor data to produce metadata about
the environment, which is streamed in real-time to the search engine using an
appropriate representation. Examples of processing algorithms can include
crowd data analysis for video streams or speech recognition in audio streams.
The search layer collects the metadata streams from the various edge nodes
and indexes them in real-time using an efficient distributed index structure. It
also employs an event detection and ranking retrieval model that uses features
extracted over the metadata streams to satisfy the user’s information need. For
instance, as will be described later in our discussion on search applications in

1http://www.smartfp7.eu/
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Figure 3.2 Architecture of the SMART framework.

Sections 3.3, and 3.4, the search service can be used to rank real-world events
detected from the sensor streams that a user might be interested in attending.
Queries can be either directly specified, or anticipated by the search layer using
contextual information about the user, e.g. the user’s location or their social
profile. Finally the application/visualisation layer at the top offers reusable
APIs to develop applications that can issue queries to the SMART engine and
process or visualise the results. We further describe these three layers in more
detail below.

Edge Node Layer
The edge node is the interface of SMART with the physical world. Each edge
node can cover sensors from a single geographic area, e.g. a building block
or a public square in the city centre. At each edge node, signal streams are
processed to extract events/patterns that might be of value for answering one
or more information needs. The signal streams can either be derived from
physical sensors (e.g. audio/visual streams or environmental measurements),
or from real-time Web crawling/social network streams. To achieve this, the
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Figure 3.3 Edge node components.

design of the edge node is influenced by state-of-the-art IoT platforms and
Linked Data techniques. The edge node architecture is shown in Figure 3.3.
As we can see from Figure 3.3, at the lowest level of the edge node lies
the sensors themselves. These sensors are interfaced with via sensor drivers,
that allow for the connection to the sensor and the streaming ingestion of the
raw sensor data into the edge node. The raw sensor data is then subject to
processing by one or more perceptual components, which convert that data
into a form that is more actionable. For instance, a perceptual component for
an air quality sensor might take a CO2 reading and convert it to a label such
as ‘Normal’ or ‘High’ based on external knowledge about what CO2 levels
are acceptable. Next, the processed sensor outputs are sent to the Intelligent
Fusion Manager of the edge node. This manager enables the reasoning over the
outputs of different sensors within that edge node concurrently. For instance,
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for an edge node responsible for tracking a shopping street, with physical
CCTV camera streams spaced along that street and a social sensor looking for
posts geo-located within that street, the manager might merge crowd signals
from the CCTV cameras with the volume of social media activity to predict the
number of people currently shopping there. Finally, the output of the intelligent
fusion manager and the perceptual components feed an edge node knowledge
base, which stores the observations made over the sensors across time. For
instance, continuing the shopping street example above, the knowledge base
would store the population estimates for the street at different times of the
day. The edge node knowledge base content is stored as series of collection
files that can be indexed by the search layer.

Search Engine Layer
The SMART search layer indexes in real-time streams of collection files from
edge nodes, along with other conventional streams (such as social network
posts or Web documents). It is built using the Terrier2 open source search
engine [48] with enhanced real-time indexing and a scalable distributed
architecture to handle the large amount of streams. The SMART search layer
is comprised of 7 core components as illustrated in Figure 3.4. The Indexing
Component is responsible for the representation, storage and organisation
of the information streams provided, such that they are available for later
retrieval. It ingests the streams of collection files from edge nodes and
social/Web documents (via data feed connectors), and performs a real-time
indexing of those streams into appropriate data structures that allow for
efficient retrieval. Real-time indexing ensures that as soon as an item (such
as a social media post or street density summary) arrives on one of the input
streams, that item will be searchable immediately. The index is distributed
across multiple index shards (machines) so as to cope with a potentially high
number and volume of social sensor streams, ensuring the scalability of the
overall system architecture. This is achieved through the use of the distributed
stream processing platform Storm.3 Storm is one of the new generation of
distributed real-time computation platforms, which provides an easy means
to distribute complex software topologies across multiple machines, while
maintaining fault tolerance and low management overheads. In this case, the
content indexing pipeline is represented as a series of processing nodes (known
as ‘bolts’), where each node/bolt can be replicated and distributed across a local

2http://terrier.org
3http://storm.apache.org/
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Figure 3.4 Components overview of the SMART search layer.

or cloud service machine cluster to achieve scalability. Next, the query process-
ing component identifies the user information needs as specified explicitly by
the user. Queries can be anticipated or expanded by observing past occurring
patterns. The Matching, Retrieval and Ranking Component is responsible
for matching explicit or implicit user queries against the index to identify,
rank and recommend events/locations according to how they satisfy the users’
information needs. This component relies on newly developed retrieval and
recommendation models that can identify interesting “unusual” events across
sensor (inc. social) metadata streams. The Filtering Component identifies
in real-time events (or social network posts) as they happen that match a
user’s running query. This permits a user to be notified of new events that
they will find interesting. This component handles queries after they have
been submitted to the SMART search layer (as running queries) so that
updates are streamed back to the higher level applications in real-time. The
Search Logs Component maintains a recording of the search behaviour of
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the user population. The search behaviour includes the user interactions with
the application such as the queries that have been issued in a user search
session, which search results have been displayed and any documents clicked
by the user. This implicit feedback obtained by monitoring the users’ search
behaviour can be fed back into the SMART search layer, for example, to
improve the effectiveness of the search results or the recommendations. The
Search Engine API Component provides an interface to the SMART search
layer where the main functionalities (search and running queries) are defined
and are made available to higher level applications or services. Finally, the
Configuration Component offers a series of administrative functionalities,
such as the setup of the data streams to use as input and the choice of the
matching algorithms to deploy.

Application Layer
The top layer of the SMART platform contains the software applications that
can deliver the real benefits of the framework to the end-user. The application
layer mainly supports developers who want to create Web 2.0 services or
smart phone applications that exploit the framework capabilities. For example,
the application layer includes open source end-user web applications that
offer user interfaces to issue queries explicitly, or implicitly using the user
context, to the search engine API and receive in real-time up-to-date results
(events). In addition, it includes open source mashups that use the search layer
visualisation APIs to display newly-breaking events, such as real-time balloon
pop-ups on a map.

3.2.2 Challenges in Building an IoT Search Engine

Importantly, there are a variety of challenges when implementing an IoT
search architecture like SMART. First, data stream collection and processing
algorithms are needed to provide a uniform means to interface with a wide
array of sensor types and to perform processing on those sensors’ output to
make that output interpretable/useful to the search engine. For instance, a
raw video feed cannot be directly used to answer a user’s information need.
However, processing that feed through crowd analysis software to get crowd
density for a street might be useful to predict the number of people visiting
the area. Furthermore, some types of sensor streams require pre-filtering to
make them useful. For example, it might be advantageous to define a social
sensor, by filtering down a wider stream of posts to only those from a particular
geographical region [2]. Within SMART, functionality like this is performed
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by the perceptual components within each edge node. However, to incorporate
the ever-growing range of IoT devices, new processing algorithms tailored to
these devices will be needed.

Second, a common metadata model is needed to enable the processed
sensor outputs to be mapped into a standardised metadata stream [12]. This is
important, since often individual sensors only act as weak indicators of some
higher level activity that the user might want to search for. For instance, if we
want to detect live music in a city square, we might want to combine evidence
from social sensors like discussions on Twitter, with physical evidence such
as a locally captured audio or crowd density analysis from the square (c.f.
Section 3.4). The use of a common metadata model can facilitate concurrent
reasoning across multiple sensor streams by mapping lots of weak metadata
signals from different sensors into the same format. For instance, SMART uses
a model based on the OGC’s Sensor Web Enablement standards [13] within
the Intelligent Fusion Manager to achieve this.

Next, within the search engine itself, the efficient real-time indexing of the
underlying metadata streams is critical. In particular, in an IoT environment,
thousands of sensors can be feeding the search engine concurrently, and users
expect the most up-to-date results. Hence, the search engine needs to be
able to ingest high volume sensor streams in real-time while concurrently
serving search requests over the most recent data. To achieve this, distributed
stream processing platforms such as Storm4 or Apache Spark5 are used, as
they allow for the low-latency processing of content in a distributed scale-out
manner.

Finally, the types of queries and underlying information needs within the
IoT search space are markedly different to those observed within a classical
Web search domain.As a consequence, new retrieval models designed for these
novel information needs are required. For instance, for an event search engine,
a model that can effectively rank current (and possibly predict future) events
based on criteria such as relevance, interestingness to the user or timeliness,
are needed. Furthermore, in some applications, such as venue suggestions
(that we will cover in detail later in Section 3.5), additional criteria needs to be
considered, such as the user location (and hence distance to the event) and other
contextual features such as the time of the day or the current weather. Current
systems rely on state-of-the-art learning-to-rank techniques [39] to learn an
effective combination of these diverse types of evidence when ranking.

4https://github.com/nathanmarz/storm/
5http://spark.apache.org/
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In the remainder of this chapter we discuss three recent applications of
the SMART framework that examined how to satisfy new user information
needs using social and IoT sensing. In particular, we discuss social sensing with
SMART for event retrieval in Section 3.3. Section 3.4 describes an application
where IoT sensor streams were fused with social evidence for event topic
identification. Finally, we discuss context sensitive venues-recommendation
based on social sensing in Section 3.5.

3.3 Local Event Retrieval

It has been suggested that a large proportion of queries submitted to web search
engines has a “local intent” and that these queries compose the majority of
searches submitted from mobile phones [58]. Examples of information needs
expressed by such queries include “what is happening near me?” or “finding
restaurants in the Covent Garden district”. The prevalence of such queries
highlights the importance of building effective local search tools that serve
this type of information need. In this section, we present an approach for local
event retrieval, where we rely solely on social media as a social sensor to
detect events in real-time.

3.3.1 Social Sensors for Local Event Retrieval

Our motivation stems from the fact that the communities of users in Twitter
often share messages about local events as they progress [66]. To give the
reader a concrete example of how local events are reflected in social media,
we plot in Figure 3.5 the volume of tweets that are posted within London and
contain the phrase “beach boys” over a period of 12 days, where “beach boys”

Figure 3.5 A plot of the volume of tweets in London that contain the phrase “beach boys”
over time.
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is the name of a rock band who held a concert in London’s Royal Albert Hall
during the considered time period. We observe that just before and during the
concert, tweets mentioning the “beach boys” within London have spiked. This
is an indication that the concert as a real-world event has been reflected in the
tweeting activities within the city.

Recently, there have been some attempts to harness social media for
event-based information retrieval (IR). This includes (i) identifying social
media content relevant to known events [10, 54] and (ii) detecting unknown
events using user-generated content in social media [11, 45, 55]. In the
first case, social media content is identified to provide users with more
information about a planned event (e.g. a festival or a football match).
Users would be able, for example, to access tweets about ticket prices
before the event, or Flickr photos posted by attendees after the event. The
second case is more challenging as there is no prior knowledge about the
events. While some approaches have focused on detecting news-related
events [55], or simply clustering social media content based on a database of
targeted events [11], a recent work has devised methods for retrieving global
events from Twitter archives that correspond to an arbitrary query (event
type); a problem which the authors called “structured event retrieval” over
Twitter [45].

Unlike [45], which focused on non-local events, we make use of the
opportunities that social media can bring to local search services. In particular,
we define a new localised IR task that extends the aforementioned structured
event retrieval task introduced in [45]. The task we propose aims at identifying
and ranking local events based on social media activities in the area where the
events occur. In other words, we use social media as a social sensor to detect
local events in real-time.6

The work presented here advances the state-of-the-art in detecting and
locating unknown events in social media and proposes a new IR task of local
event retrieval, which is described next.

3.3.2 Problem Formulation

Our overall goal is to identify and rank local events happening in the real-world
as a response to a user query. For a formal definition of a local event, we adopt
a definition that has been previously used in the new event detection broadcast
news task of the TDT (Topic Detection and Tracking) evaluation forum.

6Treating social media as a social sensor has also been suggested in previous work, for
example [54] and the EU FP7 social sensors project http://www.socialsensor.eu
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This definition states that an event is something that occurs in a certain place
at a certain time. Formally, we consider a set of locations L = {l1, l2, . . .}
that are of interest to the user. The granularity of locations can vary from
buildings and streets to entire cities. For example, we might consider each
location to represent an area in a city in which the user is located. The city
in this case is considered to be divided into equally sized areas specified by
polygons of geographical coordinates, or we can use the divisions defined by
the local authority such as postcodes or boroughs. Each location li at a certain
time tj is denoted by the tuple 〈li, tj〉. We define the problem of local event
retrieval as follows. For a user interested in local events within locations L
(explicitly defined or implicitly inferred from the current user’s location), the
event retrieval framework aims to score tuples 〈li, tj〉 according to how likely
tj represents a starting time of an event within the location li that matches the
user query.An event is considered relevant if it matches the explicit query of the
user and/or the implicit context of the user (the time of the query, the location
of the user and or her profile). In other words, the event retrieval framework
defines a ranking function that gives a score R(q, 〈li, tj〉) for each tuple 〈li, tj〉
with regards to the user’s query q. Examples of events to retrieve include
festivals, football matches or security incidents. When expressed explicitly
by a user, a query is assumed to be in the form of a bag of words (e.g. “live
music”, “conference”).

When using Twitter as a social sensor, a location li at a certain time tj
is characterised by the tweeting activities observed at that location within a
given timeframe (tj − tj−1). The tweeting activities are represented with a
set of tweets originating from that location shared publicly within the given
timeframe (tj − tj−1). This set of tweets is denoted by Ti,j . Note that the fixed
timeframe is defined using an arbitrary sampling rate θ; ∀j : tj − tj−1 = θ. An
event happening in the real-world is represented by a tuple 〈l, ts, tf 〉; where l
is the location where the event is taking place, ts is the starting time and tf is
the finishing time. Our aim is to use the tweeting activities as the main source
of evidence to define the ranking function R(q, 〈li, tj〉). More specifically and
to define the ranking function, we use the set of tweets Ti,j , and a time series
of tweets Ti,j = 〈. ., Ti,j−2, Ti,j−1, Ti,j〉 in the location li before the current
time tj . This allows us to identify sudden changes in the tweeting activities,
which may have been triggered by an occurrence of an event. Moreover,
the event retrieval framework can identify a subset of the tweet set Ti,j that
matches the query, which may help the user in the event information seeking
process.



3.3 Local Event Retrieval 51

3.3.3 A Framework for Event Retrieval

The framework aims to define an effective ranking function that scores tuples
of time and location according to how likely they represent the starting time
and the location of a relevant event for a given query. Note that with regards
to the previous definition of the local event retrieval problem in Section 3.3.2,
as a first step, we are not aiming to determine the finishing time of an event.
As discussed in Section 3.3.2, here we aim to use tweets as the main source
of evidence to score the tuples. In particular, we define two components built
on this evidence:

1. The first component is based on the intuition that social media may reflect
real-world events, hence when an event occurs somewhere we expect to
find topically related social posts about it originating from the location
where it occurs. To instantiate this component, for each location at a
given time, i.e. for each tuple 〈li, tj〉, we measure how much the tweets
Ti,j corresponding to the tuple are topically related to the query q.

2. The second component is based on the intuition that events trigger
an increasing tweeting activity [66] causing peaks of tweeting rates
during the event (bursts). For this component, we aim to quantify the
change in the tweeting rate, the volume of tweets over time, observed
at 〈li, tj〉 when compared to previous observations over time at the
same location. In other words, we aim to measure the unusual tweeting
behaviour that may indicate an occurrence of an event. To compute the
tweeting rate, we can either consider all the tweets posted within the
given timeframe at the given location or only a subset of those which
are relevant to the user query, e.g. tweets which contain terms of the
query.

Following this, the ranking function can be defined as a linear combination of
the previous two components as follows:

R(q, 〈li, tj〉) ∝ (1 − λ) · S(q, Ti,j) + λ · E(q, 〈li, tj〉) (3.1)

where S(q, Ti,j) is the score of the tweet set Ti,j that quantifies how much
they are topically related to the query q; E(q, 〈li, tj〉) is a score proportionate
to the change in the tweeting rate with regards to the query q at the given
time tj within the location li, and 0 ≤ λ ≤ 1 is a parameter to control
the contribution for each component in the linear combination in
Equation (3.1). Next, we show how we approach the problem of quantifying
each component.
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Aggregating Tweets
To estimate S(q, Ti,j) in Equation (3.1), we propose to borrow ideas and
techniques originally designed for the IR problem of expert search. In expert
search, a profile of an expert candidate is typically represented by the
documents associated to the candidate [8, 41]. Similarly, the tuple 〈li, tj〉
is associated with a set of tweets. Inspired by [41], the score of each tuple
(candidate) can be estimated by aggregating the retrieval scores (votes) for
each tweet (document) associated to it. In [41], several voting techniques were
used to aggregate the scores. We use the intuitive, yet effective, CombSUM
voting technique, which estimates the final score of the tweet set representing
a tuple (candidate) as follows:

S(q, Ti,j) =
∑

t∈Rel(q)∩Ti,j

(Score(q, t)) (3.2)

where Rel(q) is the subset of tweets that match the query q and Score(q, t)
is the individual retrieval score obtained by a traditional bag-of-words ranking
function, e.g. BM25 [53]. Higher scores represent more topically related
tweets for the considered tuple.

Change Point Analysis
The problem of quantifying the score E(q, 〈li, tj〉) in Equation (3.1) maps
well to change point analysis, a previously studied problem in the statistics
literature, e.g. [34, 35]. Change point analysis aims at identifying points in
time series data where the statistical properties change. It has been previously
applied to detect events in continuous streams of data. For example, Guralnik
et al. developed change point detection techniques that can accurately detect
events in traffic sensor data [29]. In our case, the change point analysis can be
applied on the tweeting rate in a location li to quantify the probability that the
tweeting rate at a certain time tj represents a change point when compared
retrospectively to previous points in time tj−1, tj−2, . ., tj−k. We apply the
Grubb’s test [27] as a change point detection technique as it is computationally
inexpensive and it has been successfully applied in a similar context, namely
first story detection from Twitter and Wikipedia [47]. Given a location li and
at each point of time, e.g. on minute intervals, we maintain a moving window
of size k points, e.g. k minutes, over the previous observations. We apply the
Grubb’s test to each moving window to determine if the tweeting rate of the last
point is an outlier that stands out with respect to the tweeting rates of previous
observations. With Grubb’s test, rj is an outlier if v = (rj − xj,k)/σ2 > z,
where xj,k is the mean tweeting rate in the window (tj−k, tj), σ is the
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standard deviation of the tweeting rates in the window (tj−k, tj), and z is
a fixed threshold. Note that this test gives a binary decision for each point in
time. We smooth this binary decision into a normalised score and use it for
the second component of Equation (3.1) as follows:

E(q, 〈li, tj〉) = Ec(tj) = 1 − e(−ln 2
z

·v) (3.3)

where 0 ≤ Ec(tj) ≤ 1 represents a score of a change point using the Grubb’s
test. Note that when v = z, the resulting score in Equation (3.3) is equal to
0.5. As previously discussed, the tweeting rate rj can be estimated in two
different ways: (i) By simply using the volume of tweets posted in the given
location within the timeframe corresponding to tj , i.e. rj = |Ti,j |. We call this
a query independent (QI) tweeting rate; and (ii) By using the score of the
voting technique described above, i.e. rj = S(q, Ti,j). We call this a query
dependent (QD) tweeting rate.

It should be noted that this framework can operate in a real-time fashion
on top of the SMART architecture (Section 3.2) where social feeds are
incrementally indexed such that the retrieval components are able to provide
the freshest results.

3.3.4 Summary

We have devised an event retrieval framework that is capable of identifying
and ranking local events in a response to a user query. In [5], we have
conducted an experiment on a large collection of geo-located tweets (over
1 million) collected during a period of 12 days within London. Aligned
with the tweets, we have collected, through the use of crowdsourcing, local
events that took place in London from local news sources. We have evaluated
the effectiveness of our framework in identifying and ranking these events
through its application on the geo-located tweets. Our empirical results suggest
that detecting local events from Twitter using our framework is feasible but
challenging. In particular, the results show that our event retrieval framework
is capable of identifying and ranking “popular” events (those found by crowd-
workers and reported in the web) within a city. However, when applied on
more localised events, the retrieval effectiveness of the framework degrades,
possibly because of their low coverage on Twitter. To deal with this caveat,
in the next section, we fuse the metadata extracted from physical IoT sensors
along with the social media activity to identify topics of events happening in
the real-world.
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3.4 Using Sensor Metadata Streams to Identify Topics
of Local Events in the City

In Section 3.3, we addressed local event retrieval by using social media activity
as a sensor to detect and rank events. However, social media may only cover
very popular events as users may not necessarily comment on all events taking
place in the city. Therefore, physical sensors that record observations about the
status of the environment can provide additional evidence about the events
taking place in the city. These sensors can take the form of visual sensors
such as CCTV cameras, acoustic sensors such as microphones or possibly
environmental sensors.

There is a wealth of research on identifying low-level human activities
from acoustic and visual sensors. Often, this involves sensor signal processing
to extract sensor features for modelling human activities. For example, Atrey
et al. [7] developed a Gaussian Mixture Model using a variety of fea-
tures derived from audio signal processing to classify human activities
into vocal classes, such as talking and shouting, and non-vocal classes,
such as walking and running. Similar approaches also used audio signal
features to identify low-level human activities that are related to secu-
rity incidents, such as breaking glass or explosions [25]. In addition to
using acoustic sensors, several studies have been conducted to identify
low-level human activities from videos. Since its introduction in 2002,
the TRECVID evaluation campaign [49] has tackled a variety of content-
based retrieval tasks from video recordings to support video search and
navigation. This includes the semantic indexing of video segments, whereby
videos are mapped to concepts, which can be certain objects or human
activities [49]. Another related task is multimedia event detection, where
the aim is to identify predefined classes of events in the videos. In this
task, the existing effective approaches employ classifiers trained with motion
features from the videos [50]. Moreover, classifying human interactions
identified in video recordings has been studied to detect surveillance-related
incidents [18].

Although the aforementioned approaches derive useful semantics about
the multimedia content, they only consider low-level human activities. In other
words, they provide sensor metadata describing low-level human activities
in the physical environment. However, to the best of our knowledge, no
previous work has investigated combining these sensor metadata to detect
and retrieve higher level complex events taking place in the city, such as
music concerts or entertainment shows, which may involve several lower
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level human actions. Here, we propose an approach for combining sensor
metadata streams to support local event retrieval. We devise a supervised
machine learning approach that combines sensor metadata to identify the topic
of a potential event happening at a particular time in a certain location of the
city. The topic corresponds to a set of terms representing a type of events, such
as a concert or a protest. Our approach uses features from acoustic, visual and
social sensor metadata. We also incorporate background features from past
observations to model events that exhibit cyclic patterns such as traffic jams
at peak times.

In Section 3.4.1, we define the problem of event topic identification that
we tackle. This work makes use of sensor observations that are described in
Section 3.4.2 – i.e. analysed video and audio recordings from two vibrant
locations in the centre of a major Spanish city over a period of two weeks.
Then to address the event topic identification problem, we discuss a supervised
approach with two steps. In the first step, as described in Section 3.4.3, we
obtain event annotations on the video and audio recordings dataset. In the
second step (Section 3.4.4), we use the obtained annotations to map typical
events taking place in those locations into coherent topics using a topic
modelling technique.

3.4.1 Definition of Event Topic Identification Problem

The aim here is to combine the sensor metadata observations captured at
different locations in a city to identify topics of potential high-level events
taking place within certain locations. Formally, for a location li in a city, we
denote the sensor metadata observations captured at time tj in that location

li by the vector
−→
N 〈li,tj〉. The sensor metadata observations may include the

crowd density identified from captured videos in the location, low-level audio
events identified from the acoustic sensors installed in the location or social
media activities, such as tweets posted by people at the location. The problem
of event topic identification is to use the vector

−→
N 〈li,tj〉 to map the tuple of

time and location 〈li, tj〉 to a certain topic px ∈ P described by a set of terms
Tx; where P is a set of predefined topics.

In the previous section, the textual content of public tweets has been used
as the only source of sensor metadata observation to identify topics of local
events. Although this has worked well on popular events that attract social
media activities, it does not work as well on more localised events that may
not attract coverage on social media [5]. To alleviate this shortcoming, we
introduce physical sensor metadata streams that can provide an additional
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evidence for the topic of an event, namely video and audio metadata obser-
vations. However, this requires understanding the semantics of visual scenes
or audio recordings, which remains an open challenge. Indeed, there is no
known taxonomy that maps sensor metadata to topics of high level events. To
address this challenge, we propose to learn the topic associated with a tuple
〈li, tj〉 from labelled training data using features extracted from the sensor

observations
−→
N 〈li,tj〉.

For this purpose, and to collect labelled training data, we obtain event
annotations on a pool of videos that are identified as potential candidates
to contain events. Furthermore, to extract a predefined set of coherent event
topics, we apply topic modelling on the descriptions of the annotated events.
We detail the event annotation and the topic extraction in Section 3.4.3. Next,
we describe the sensor data collection.

3.4.2 Sensor Data Collection

Our study considers two locations in the city centre of Santander in Spain. The
first location is the geographical and business heart of the city; it is a major
square opposite to the municipality building. The second location is a popular
open market in the city, where hundreds of people go every day for shopping,
located behind the municipality building. Both locations represent vibrant and
busy areas, where we expect to observe high-level events of interest such as
music concerts, entertainment shows or even protests. The data collection
occurred during October 2013 in both locations using an edge node deployed
in Santander (see Section 3.2.1).

Table 3.1 provides a summary of the sensor data collection and the
metadata produced by processing the output from the microphones and the
camera in each location. For producing the audio metadata, a supervised
classifier using feed forward multilayer perceptron network and low-level
audio features, such as those described in [20], was developed for each
of the following 6 audio classes described in Table 3.1: “crowd”, “traffic,
“music”, “applause”, “speaker”, and “siren”. For video metadata, the video
was processed for crowd analysis where we calculate the crowd density,
in desired areas, by estimating the foreground components of the video.
In addition to the acoustic and visual sensors, we collected parallel social
media activity in the city. In particular, using the Twitter Public Streaming
API7, we obtained tweets related to each location (as identified by their
geo-locations).

7https://dev.twitter.com/streaming/public



3.4 Using Sensor Metadata Streams to Identify Topics of Local Events in the City 57

Table 3.1 Summary of sensor data collection
Locations 2 (square & market)
Physical sensors A camera and microphones

(in each location)
Raw output 1600 × 1200 video @ 20 fps

16 Khz audio @ 64 kbits/s
(audio is multiplexed with the video)

Audio metadata classification scores for 6 audio classes
(i) “crowd”: noise from a crowd of people
(ii) “traffic”: car and road noises
(iii) “music”: music played outdoors
(iv) “applause”: applause, yelling or cheering
(v) “speaker”: speech over loud speakers
(vi) “siren”: noise of police cars & ambulances

Video metadata crowd density in the scene
Twitter geo-tagged tweets within each location

3.4.3 Event Pooling and Annotation

In this section, we describe our approach for obtaining event annotations on
the recordings collected from the two used locations. Recall that our ranking
units (the documents) are tuples of time and location. Each tuple represents a
segment of recordings at a location. The length of the segment, the sampling
rate to obtain the tuples, can be predfined and we follow [5] in setting the
sampling rate to 15 minutes. Coarser- or finer-grained sampling rate can be
investigated in future work for different types of events e.g. emergency events
may require a finer-grained sampling.

For annotation, we consider a period of 2 weeks starting from 19 October
2013, around a week after the start of the data collection (11 October 2013) to
allow the estimation of background features. Since it is expensive to examine
all recordings and annotate them with events, we employ a pooling approach
[16], as commonly used in IR (Information Retrieval) evaluation forums,
such as TREC. For pooling, we identify candidate segments of videos where
high-level events may have occurred by applying the change component of the
event retrieval framework described previously (c.f. Section 3.3). In particular,
the change component of this framework identifies segments where sensor
metadata observations change unusually in a location, e.g. unusual change
in crowd density. We use 4 different types of sensor metadata observations
to generate the pool (a subset of those listed in Table 3.1): (i) the median
values of the video crowd density, (ii) the median values of the crowd audio
classification score, (iii) the median values of the music audio classification
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score, and (iv) the total number of tweets posted. As a result, we obtain a total
of 155 candidate segments. The video recording software produced videos
with lengths of either 30 minutes or 1 hour, and the total number of video
recordings that correspond to the 155 segments are 69 videos.

The generated candidate segments of videos were then annotated by two
groups of human annotators, English and Spanish annotators, who were asked
to examine the videos, describe events that they observe by typing in terms, and
rate their intensity on a 3-point scale (Low, Medium, and High) according to
how likely they are to generate public interest. The intensity is akin to graded
relevance used in traditional IR evaluation approaches [59]. We provided
the annotators with a web-based interface, of which we show a snapshot in
Figure 3.6.

Statistics of the obtained annotations are summarised in Table 3.2. From
the last row it can be observed that we obtain a total of 55 annotated videos, of
which 21 were annotated by more than one annotator. The agreement between
annotators is estimated by converting the intensity levels to binary decisions,

Figure 3.6 Components a snapshot from the annotation interface.

Table 3.2 Statistics from annotated videos
Annotators Unique Videos Annot. Ratio Mutliple Annotations Agreement
4 English 29 29/69 = 42% 1 video 100%
5 Spanish 47 47/69 = 68% 13 videos 77%
Both 55 55/69 = 79% 21 videos 71%
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using “Medium” as a threshold. We observe that a reasonable agreement
is achieved in all cases (lowest is 71%), which gives us confidence in the
annotations obtained.

For the set of annotated pooled segments, we obtain terms describing
events that were identified in these segments. For each annotated segment,
we construct a virtual document that consists of all of the terms provided by
the annotators. Since the pooled videos were annotated by both Spanish and
English annotators, these virtual documents are bilingual and contain English
and/or Spanish terms. Figure 3.7 presents word clouds for frequent terms
occurring in the English (a) and Spanish (b) annotations, respectively, where
word size is indicative of frequency in the annotations.

To cluster events into various topics, we propose to use topic modelling
on the document collection of all constructed virtual documents of terms. We
use the Latent Dirichlet Allocation (LDA) topic modelling implemented in
the Mallet toolkit [43]. In Table 3.3, we list the top terms of 7 identified topics
from the English annotations only. From the table, we can observe that the
identified topics are reasonable where we see some interesting associations
of terms that describe typical high-level events taking place in the square
and the market, e.g. ‘demonstration’ and ‘show’ in topic 4, and ‘children’ and
‘entertainment’ in topic 6.

3.4.4 Learning Event Topics

In this section, we discuss our supervised approach for event topic identifica-
tion, where the aim is to identify the topic of a segment 〈li, tj〉 using the sensor

metadata observations
−→
N 〈li,tj〉. To train our supervised approach, we construct

a labelled dataset of event topics from the annotated video pool collected. The
labelled data consists of segments (tuples of time and location) labelled with

Figure 3.7 Word clouds for frequent terms occurring in the English (a) and Spanish (b)
annotations, respectively, where word size is indicative of frequency in the annotations.
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Table 3.3 Topics identifed with topic modelling using the english annotations
Topic Top Terms of the Topic
Topic 1 loudspeaker people fanfare police drums procession
Topic 2 microphone rings speech public claps
Topic 3 gathering plaza people booth theatre music
Topic 4 demonstration sitting event sound speak show
Topic 5 market protest cars ongoing children fair
Topic 6 children people shopping middle entertainment
Topic 7 music singing playing guy bells whistles

either an event topic or with the label ‘no event’ indicating that no event of
interest has occurred in the corresponding time and location. We labelled each
annotated segment in the pool to the most probable topic according to the LDA
topic modelling configured by setting the number of topics to 7.8 Unlabelled
segments or where the annotators did not identify any event are associated to
the ‘no event’ label. To illustrate the volume of the data and the distribution
of labels, we detail in Table 3.4 the number of segments for each label when
using topic modelling on all Spanish and English annotations and setting the
number of topics to 7.

We consider the problem of identifying the topic of a pooled segment as
a classification task. Using the constructed labelled data, we train a binary
classifier for each of the labels with features derived from various sensor
metadata streams. Our intuition is that such labelled data would allow us
to learn the semantics of a combination of sensor metadata. In other words
we aim to match sensor metadata to topics defined using the annotations. For
training the classifier, we investigate two main sets of features for the segment,
observation features and background features. Table 3.5 summarises those
features. The observation features are extracted from the sensor metadata
observed in the location and time corresponding to the segment. The back-
ground features aim to model past observations and cyclic patterns of activities
that take place over time in the same location. The intuition is that some events

Table 3.4 Distribution of labels
Lab. # Lab. # Lab. # Lab. #
top.1 12 top.3 2 top.5 0 top.7 11
top.2 8 top.4 32 top.6 24 no event 66

8We use 7 topics since we have observed that with this setting we obtain the most coherent
topics after experimenting with other alternatives (varying the number of topics between 5
and 10).
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Table 3.5 Features devised for topics identification
8 Observation Features
Audio features 6 median of the classification score for each audio class

(crowd, traffic, music, applause, speaker, siren)
Video features 1 median of the crowd density score
Twitter features 1 number of tweets geotagged within the location in the

past one hour
16 Background Features
Daily aggregates 8 for each of our 8 observation features its daily median

from all available past observations at the same time
from previous days

Weekly aggregates 8 for each of our 8 observation features its median from
all available past observations at the same time on the
same day of previous weeks

Total 24

are periodic and exhibit a long-term pattern, e.g. traffic jams at peak times
resulting in a high traffic audio classification score, or entertainment shows
taking place in the square at the same time on the weekends. Modelling cyclic
patterns, i.e. daily and weekly cycles, from the sensor metadata observations
would enable the supervised classifier to identify recurring background events
or noise which are not of interest such as traffic jams. Similarly, it would help
to identify recurring events of interest such as entertainment shows.

Using the labelled dataset of segments along with the features described
in Table 3.5, we apply supervised machine learning to learn a binary classifier
for each label. In particular, we experiment with Random Forests [15] as a
learning algorithm.9 Next we conduct a number of experiments to evaluate the
accuracy of our classifier and the effectiveness of the various devised features.

3.4.5 Experiments

To evaluate our approach for identifying the topic of a candidate segment, we
use the dataset of labelled segments described in Section 3.4.4. We perform
a 10-fold cross validation and report the average accuracy across all labels (a
label for each topic and the label ‘no event’). In addition to using different
instantiations of our classifier, we also compare our classifier to an alternative
baseline. The “majority” baseline assigns the most common label in the

9We also experimented with other supervised machine learning algorithms, such as naive
Bayes and SVM, however we only report results with Random Forests since they achieve the
best performances and the conclusions with other algorithms are similar.
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training data to the segments in the testing data. Table 3.6 summarises the
results.

We observe from the table that all instantiations of our approach are
markedly better than the majority baseline. In particular, when using only
the observation features our approach achieves an F1 accuracy of 0.686.
We also observe that this performance further increases when using the
background features. Indeed the best performance is achieved when using
all background features along with the observation features (F1 = 0.766). This
illustrates that modelling cyclic patterns by aggregating sensor metadata from
previous observations helps in better identifying whether a candidate segment
represents an event and in identifying the topic of an event.

Furthermore, we conduct an ablation study to identify which features are
more effective for topic identification. We remove one of our 8 observation
features when learning the classifier. We report the results in Table 3.7.
For example, the row headed “– (Audio crowd)” means that we use all
the observation features apart from the audio crowd score. We observe that
removing any of the features results in a degradation of performance for
accuracy and precision. This is an interesting observation and highlights the
importance of having rich metadata describing the environment for identifying
the topics of high-level events. However, we also observe that the performance

Table 3.6 Performance of topic identification
Approach F 1 Accuracy Precision Recall
Majority baseline 0.254 0.181 0.426
Obs. Feat. 0.686 0.705 0.697
Obs. & Daily 0.740 0.759 0.761
Obs. & Weekly 0.715 0.715 0.729
Obs. & All background 0.766 0.781 0.762

Table 3.7 Results of the ablation study
Model F 1 Accuracy Precision Recall
All observation features 0.686 0.705 0.697
– (Audio crowd) 0.635 0.624 0.635
– (Audio traffic) 0.681 0.678 0.691
– (Audio applause) 0.680 0.678 0.697
– (Audio music) 0.685 0.682 0.697
– (Audio speaker) 0.657 0.656 0.665
– (Audio siren) 0.656 0.655 0.665
– (Video crowd) 0.652 0.651 0.665
– Twitter 0.682 0.677 0.697
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degrades most when removing the audio crowd score and the crowd density
features. This suggests that the crowd level, as detected by the acoustic or
visual sensors, is important to identify events and to distinguish their topic.

3.4.6 Summary

In summary, we described an approach for fusing sensor metadata streams to
identify the topics of events, happening within a city, building on the SMART
framework (described previously in Section 3.2). In particular, this approach
trains a classifier to identify event topics from candidate segments of audio and
video recordings. Experimental results demonstrate that the best accuracy for
event topic identification can be achieved by combining features from a variety
of diverse sensors (acoustic, visual and social). This shows the advantages
“that the social and other IoT stream fusion brings to event topic identification.
Moreover, it paves the way towards more effective local event retrieval that
harness both physical and social sensor streams in cities with significant IoT-
connected sensing infrastructures, by combining the visions from Section 3.2
(an infrastructure for searching IoT), Section 3.3 (location event retrieval from
social streams) and event topic identification from physical and social sensor
streams.

3.5 Venue Recommendation

The advances of smartphone devices and wireless communication technolo-
gies have enabled people to search for information in almost every situation,
and no longer simply when at a desk. However, as the information on the
internet has dramatically grown every day, searching for relevant information
seems to be a difficult and time-consuming task for instance, due to the cogni-
tive complexities of expressing information needs by typing on a smartphone
screen. For this reason, recommendation systems have become ubiquitous
tools to obtain information, by predicting what the user wants without the
need for an explicit query.

In recent years, Location-based Social Networks (LBSNs) have emerged,
such as Foursquare10 and Yelp11, which enable users to search for Points-of-
Interest (POI) or venues12, share their physical location (check-ins13) as well

10https://foursquare.com/
11http://www.yelp.co.uk
12We use the term venue or POI interchangably.
13A term used by Foursquare to denote users sharing their current location with the LBSN.
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as rate and comment after visiting a POI. Moreover, other users may consider
those ratings and comments to select the POIs to visit at a later time. The
recommendation of appropriate POIs to users, e.g. a restaurant they are likely
to visit, has become an important feature for LBSNs, which assists people to
explore new places and helps business owners to be discovered by potential
customers.

Venue recommendation is an example of a recommendation task: given
no explicit ‘query’ by the user, but knowledge about the user’s preferences
and about the venues, can a system predict which venues the user may wish to
visit? The types of information that are available for this task are summarised
in Table 3.8. For instance, if the user has checked-in or rated other venues
before, then this provides user preference information, which can be used by
collaborative filtering approaches to suggest venues of interest (discussed in
details in Section 3.5.1 below).

Nevertheless, information about each venue itself can help to predict its
likely suitability. For instance, the Foursquare website lists a city park as
a top nearby venue, regardless of the time of day, when (say) late in the
evening that park may be both closed and unsuitable to visit. Therefore IoT
and social sensing technology have a role to play in predicting the occupancy of
venues. Predicted occupancy and similar measures of popularity are examples
of venue-dependent features (i.e. which are the same for all users) – and are
discussed further in Section 3.5.2.

Finally, the contextual situation of the users when requesting venue
recommendations can also have an impact on the appropriate choice of venues:
clearly, context can encapsulate the location of the user – as nearby venues
are more likely to be useful to the user; however, the people they are with
(alone, with colleagues, family or friends) may also significantly impact upon
the most appropriate choice of venues. In Section 3.5.3 we highlight recent
work in context-aware venue recommendation.

In the remainder of this section, we discuss recent research in venue
recommendation, particularly highlighting our own work, which builds upon

Table 3.8 Sources of data for venue recommendation
Example Sensors

Information Type Physical Social
Venue # cell phones nearby # recent check-ins

# subway exists nearby # comments
User Preference User’s distance to the venue The user likes similar venues

The user has commented positively
about a similar venue
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the SMART architecture (described in Section 3.2). The three different
sources of evidence, and how they are modelled, are described in turn: user
preferences (e.g. through collaborative filtering approaches) (Section 3.5.1),
venue dependent evidence (Section 3.5.2), and contextual preferences
(Section 3.5.3).

3.5.1 Modelling User Preferences

In terms of modelling the preferences of users, collaborative filtering (CF)
is a widely used technique to generate personalised recommendations. CF
typically exploits a matrix of user-venue preferences in order to generate
venue recommendations for individual users. There are two major categories
of traditional CF approaches namely memory-based CF and model-based CF
[1, 26]. The memory-based CF approaches are categorised as user-based or
venue-based. A typical user-based CF approach predicts a user’s rating on a
target venue by aggregating the ratings of K similar users who have previously
rated the target venue. The similarity between two users is usually identified
using the Pearson correlation or the cosine similarity upon their rating vectors
[57]. Intuitively, the user-based CF approaches assume that users who share
similar preferences will like the same venue e.g. I like what my friends like.The
extension of user-based CF approaches has been shown to improve the quality
of recommended venues such as through the introduction of fine-grained
neighbour-weighting factors [32] or by exploiting a recursive neighbour-
seeking scheme [65]. In contrast, venue-based CF approaches suggest venues
on the basis of information about other venues that a user has previously rated
[21]. The suggestion of venues for a given user are ranked by aggregating
the similarities between each candidate venue and the venues that the user
has rated. Although typical memory-based CF approaches have been shown
to be effective in suggesting venues to users, the main drawback of such
approaches is that the computation of similarities between all pairs of users
or venues is expensive due to its quadratic time complexity. Moreover, as
memory-based CF approaches are dependent on the availability of human
ratings, the effectiveness of these approaches significantly decreases when
they are faced with sparse ratings.

On the other hand, model-based CF approaches were introduced to address
the shortcomings of memory-based CF approaches [14, 9]. Such approaches
are based on supervised models which are trained on the user-venue matrix
[1, 26]. The trained prediction models can then be used to generate suggestions
for individual users. Recently, the most well-known technique of model-
based CF approaches is matrix factorization (MF) [36]. The advantages of
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MF techniques are their scalability and accuracy. Generally, MF models learn
latent features of users and venues from the information in the user-venue
matrix, which are further used to predict new ratings between users and venues.

Various recent works on venue recommendation have exploited user-
generated information (e.g. check-in and venue information) from LBSNs.
Such approaches typically apply widely-used CF techniques to suggest per-
sonalised venues to users. For example, friend-based CF approaches can
recommends POIs to visit based on collaborative ratings of venues made by
the user’s friends [40, 62]. Yang et al. [61] proposed a model that estimates
a venue’s quality based on a sentiment score calculated based on the tips
(comments) made by users in the LBSN, and then recommended venues based
on this sentiment score.

Even if there is no information available about which venues a user has
previously visited, other proxy information can still be obtained with which to
personalise the suggestion of venues. For instance, one venue recommendation
approach that we have proposed in [23] used the users’ Facebook profiles to
permit personalisation, even when the venues being suggested were from
the separate Foursquare LBSN. In general, we use a probabilistic model to
describe the preferences of a user determined from Facebook – as well as the
likely interests of users – in terms of a coarse-grained ontology from the Open
Directory Project (DMOZ.org): e.g. Arts, Games, Health, Technology etc.
In particular, we examine the entities liked by users on Facebook to build
up a preference distribution over the DMOZ categories. However, as the
Foursquare entities may only have a single name to describe them, this may be
insufficient information to accurately predict which DMOZ categor(ies) these
entities should belong to. To alleviate this problem, we issue each Facebook
entity’s name as a query to a web search engine, and analyse the contents of
the returned pages to determine which categories they belong to. This allows
a model of the users’ preferences to be determined based on their Facebook’
Likes.

Similarly, when considering a venue, we determine which categories that it
should belong to by also issuing the name of the venue to a web search engine.
Figures 3.8 (a) and (b) pictorially depict the aforementioned processes for
the Facebook’ Likes and the venues, respectively. Then, the personalisation
of venues suggested to a user can be achieved by suggesting venues with
more similar category distributions to that of the users. Through a user study
involving 100 users and three different cities (Amsterdam, London, San
Francisco), we evaluated our complete probabilistic model [23]. Our findings
suggested that while our personalised model was effective, it was residents
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Figure 3.8 Obtaining DMOZ category distributions from Facebook’ likes and venues.

rather than visitors to a city who were found to most prefer personalised venue
suggestions.

Overall, we have shown how personalised venue suggestions can be
achieved, but there are other factors that may cause a venue to be selected
by a user or not – indeed, our own user study in [23] found that tourists were
more attracted by popular venues, particularly during the evening. In the next
section, we describe how measures of the venue’s popularity can be sensed,
both physically or socially.

3.5.2 Venue-dependent Evidence

The act of checking-in on a LBSN such as Foursquare provides a number of
signals about a venue – the short-term popularity of a venue, as well as an
aggregate signal about its popularity at this time, as well as at the current day of
the week and season of the year. IoT-connected sensors that can detect a busy
venue, such as through CCTV analysis and/or audio analysis (see Table 3.8)
can also similarly be used.

To predict the attendance of a venue, we constructed a time series of atten-
dance for each individual venue [23]. Time series are numerical information
that are observed sequentially over time. By obtaining the number of people
currently visiting the venue from Foursquare every hour for each venue, we
are able to build a comprehensive time series of venue attendance. Figure 3.9
shows how a state-of-the-art neural network-based approach can predict the
attendance of the famous Harrods department store in Knightsbridge, London.
Using such predicted occupancy figures for venues improves the effectiveness
of a venue suggestion approach [23] – as illustrated in Table 3.9.
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Figure 3.9 Predicting occupancy from Foursquare check-in time-series.

Table 3.9 Examples of venue recommendations produced by our model for user in a central
location in London at two different times

Friday 03 April 14:00 Sunday 5 April 00:00
Debenhams Novikov Restaurant & Bar
Natural History Museum Boujis (nightclub)
Selfridges & Co
National Gallery
Apple Store
London Victoria Railway Station
Victoria and Albert Museum (V&A)
Millbank Tower
Science Museum
Piccadilly Circus

Of course, there are other sources of evidence in a LBSN that are indicative
of a venue’s popularity and hence a priori its suitability for recommendation
to any user. In a separate work, we examined a number of venue-dependent
features for making effective venue suggestions, such as the number of check-
ins, number of photos, average ratings etc. [22] (summarised in Table 3.10).
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To create an effective venue suggestion model, these features were combined
with user-venue features (which model the user’s venue preferences, in order to
make personalised suggestions) within a learning-to-rank approach. In doing
so, the application of the learning-to-rank approach [22] aims to find a combi-
nation of the features that can best satisfy users, determined by a set of training
observations (users with known venue preferences). The experiment made
use of the state-of-the-art LambdaMART learning-to-rank approach [60],
which is an adaptation of gradient boosted regression trees to make effective
rankings.

Figure 3.10 shows how performance can increase or decrease when venue-
dependent features are removed from the model. This takes the form of an
ablation experiment to explore the individual effectiveness of these venue-
dependent features, in order to determine which single features are the most
effective when suggesting venues to users. In this experiment, we consider the
LambdaMART ranking model – learned using all features – as a baseline, and
we compare its performances to other LambdaMART models that have been
learned after removing each of the venue-dependent features individually – a
decrease in performance implies that the feature is deemed useful.

Figure 3.10 Percentage of improvement obtained when independently removing single
venue-dependent features, with respect to a LambdaMART baseline that uses a total of
64 features. Improvements are expressed in terms of P@5, P@10, and MRR. Statistical
significance is stated according to a paired t-test (*: p < 0.05, **: p < 0.01, ***: p < 0.001).

Source: [22].
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Table 3.10 Venue-dependent Foursquare features used by Deveaud et al. [22]
Feature Name Description
NbCheckins Total number of check-ins in the venue.
NbLikes Total number of “likes” for the venue.
NbTips Total number of “tips” (comments) for the venue.
NbPhotos Total number of photos for the venue.
Rating Average of all the ratings given by the users for the venue.
CheckinRatio NbCheckins

NbCheckinsInCity
LikeRatio NbLikes

NbLikesInCity

TipRatio NbTips
NbTipsInCity

PhotoRatio NbPhotos
NbPhotosInCity

Distance Distance of the venue from the center of the city.

On analysis of Figure 3.10, the first observation we make is that PhotoRatio
appears to be harmful. When Foursquare venues do not have any photo, the
value of this feature is equal to zero, which seems to confuse the learner.

Likes and tips, which are more abundant and hence do not suffer from
this problem, appear to be very strong indicators of relevance. It is important
to note that the raw numbers (i.e. NbLikes and NbTips) are not enough, and
that using the city context greatly improves the importance of these features
(see LikeRatio and TipRatio). The rating of the venue (which is an average
of all the ratings provided by Foursquare users) is also a good indicator of
relevance, but to a lesser extent than LikeRatio and TipRatio. Finally, the
distance between the venue and the center of the city also seem to play an
important role. Since city centres usually are the most vibrant parts, using this
distance as a feature allows the learned model to implicitly separate potentially
relevant and attractive venues from unpopular ones.

Overall, our experiment in [22] – and highlighted above – shows the
importance of venue-dependent features for effective venue suggestions.

3.5.3 Context-Aware Venue Recommendations

In addition to making recommendations based on user preferences and the
popularity of the venue, another area that has emerged recently is context-
aware venue recommendation (CAVR, also known as contextual suggestions).
CAVR acknowledges that the appropriate venues to be recommended to a user
may depend on the contextual environment of the user. Context as a notion
is wide-reaching, but for venue recommendation, it can encompass factors
detectable about the user, such as the location of the user, the time of day, the
weather, as well as human factors, such as who the user is with (colleagues,
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friends, partner family, etc), that they may explicitly provide to the venue
recommendation system.

Various existing works have shown that considering such context and
leveraging the use of user-generated data in LBSNs can significantly enhance
the effectiveness of CAVR applications [37, 38, 63]. Yuan et al. [63] developed
a collaborative time-aware venue recommendation approach that suggests
venues to users at a specific time of the day. In particular, they leveraged the use
of historical check-ins of users in LBSNs to model the temporal behaviour of
the users and extend the user-based CF technique to incorporate both temporal
and geographical effects using linear combination. Recently, Li et al. [37],
proposed factorization methods for making venue recommendations, which
can exploit different types of context information (e.g. the user’s location and
the time of the day). Previous works on CAVR (e.g. [37, 63]) used check-
in data from LBSNs to evaluate the accuracy of their recommendations, by
assuming that users implicitly like the venues they visited.

Since 2012, the US National Institute of Standards and Technology (NIST)
have been developing reliable and reusable test collections and evaluation
methodologies to measure the effectiveness of CAVR systems through the
Contextual Suggestion track [19] of the Text REtrieval Conference (TREC)
evaluation campaign. In particular, the task addressed by the TREC Contextual
Suggestion track is as follows: given the user’s preferences (ratings of
venues) and context (e.g. user’s location, city), produce a ranked list of venue
suggestions for each user-context pair. A description of the contexts addressed
in the 2015 TREC Contextual Suggestions track are presented in Table 3.11.

Table 3.11 The 12 dimensions of the contextual aspects proposed by the TREC 2015
contextual suggestion track

Aspect Dimension Description
Day Time Is a venue suitable to visit between 6:00 AM – 6:00 PM?

Duration Night Time Is a venue suitable to visit between 6:00 PM – 6:00 AM?
Weekend Is a venue suitable to visit on weekend?
Spring Is a venue suitable to visit between March and May?

Season Summer Is a venue suitable to visit between June and August?
Autumn Is a venue suitable to visit between September and November?
Winter Is a venue suitable to visit between December and February?
Alone Is a venue suitable to visit alone?

Group Friends Is a venue suitable to visit with friends?
Family Is a venue suitable to visit with family?

Type Business Is a venue suitable to visit for a business trip?
Holiday Is a venue suitable to visit for a holiday trip?
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The availability and popularity of the TREC Contextual Suggestion track
test collections has accelerated research into this challenging task. A few
research groups participating in the TREC Contextual Suggestion track have
attempted to explicitly model the contextual appropriateness of the venues.
Hashemi et al. [31] applied parsimonious language models [33] to rank
suggestion candidates based on the given contextual information such as trip
duration and type, and information from the user’s profile, such as their age
and gender. Textual language models of each contextual aspect were built
offline, and then the relevance of a given venue to the various contextual
aspects of the user were estimated by calculating the KL-divergence of the
standard language models of suggestion candidates and the language model
of different contexts that was built in advance. The contextual relevance
of different contextual aspects to the given suggestion candidate is trained
using a pairwise SVM rank learning-to-rank model. In [44], we proposed
two approaches for CAVR. First, a Factorization Machines-based approach
proposed by [52] to rank the candidate venue suggestions. The factorisation
machines receive as input instances that enclose the information related to a
user, a venue he/she visited and the context of the visit in the form of numerical
vectors. In particular, we trained the factorisation machines to reduce the error
in the ranking of the user profiles by adapting the list-wise error function of
ListRank [56] for their factorisation machine model. The second approach is a
learning-to-rank based approach where contextual features are extracted from
the user-generated data from LBSN (e.g. timestamp of comments and photo).

Recently, we proposed a supervised approach that predicts the appropriate-
ness of venues to particular contextual aspects, by leveraging user-generated
data in LBSNs such as Foursquare [42]. This approach learns a binary classifier
for each dimension of three considered contextual aspects proposed by the
TREC Contextual Suggestion track (see Table 3.11). A set of discriminative
features are extracted from the comments, photos and website of venues.
For instance, when travelling with children, the website of an appropriate
restaurant may mention a children’s menu; similarly, users may reminisce
about pleasant times they had with their family using the LBSN comment func-
tionality. By analysing these sources of evidence, we showed in Section 4.2
that both the websites of venues and comments left by users on the LBSN could
accurately predict if a venue was suitable for the various contextual aspects.

3.5.4 Summary

Venue recommendation is an important task, for instance exploring a new
city, as evidenced by the popularity of LBSNs and other websites such as



3.6 Conclusions 73

Figure 3.11 Screenshots of the EntertainMe! mobile venue recommendation application.

TripAdvisor. There is a significant body of research on venue recommendation,
with new models making increasing use of social sensing. As highlighted
in Table 3.8, physical sensors may assist in making recommendations, for
instance, by recognising that some venues are not appropriate for poor weather
conditions.

In [24], we developed a mobile application called EntertainMe!, based
on the SMART architecture and employing some of the techniques described
in Sections 3.5.1, 3.5.2 and 3.5.3. A screenshot of the mobile application is
shown in Figure 3.11.

3.6 Conclusions

In this chapter, we described the SMART architecture, allowing to develop
real-time search applications on the so-called Internet of Things (IoT)
infrastructure. We illustrated the use of the SMART architecture through
three applications, addressing local search, event topic identification and
venue recommendation, respectively. In general, these applications show how
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real-time information needs by users can be better served through the inte-
gration and fusion of IoT sensing streams with social content within a unified
platform.

Over the next few years, as small IoT-enabled devices become ever more
ubiquitous, search platforms like SMART will become increasingly more
important as a means to convert the data collected by these sensors into useful
actionable information. Indeed, we expect that the continuing adoption of
IoT sensors will enable a wide variety of new user information needs to be
satisfied, both in the short and long term. For instance, large shopping malls
are installing IoT sensing infrastructures, creating ‘SMART buildings’, with
the aim of enhancing the user’s shopping experience [51]. This allows users’
positions to be tracked as they move around the mall, which could enable
better personalised search results, e.g. if a user enters a query such as ‘sports
shirts’ into their mobile then the shopping results could be augmented with the
location of those products nearby in the mall. Furthermore, in the smart utility
space, devices such as smart fridges can make use of platforms like SMART
to suggest contextual queries/reminders to the user. For example, if the fridge
detects that the user is about to run out of milk, the fridge could push search
results for milk to the user on their smart phone.

The SMART (http://www.smartfp7.eu/) platform is an open source project,
intended to facilitate harnessing the power of the Internet of Things infras-
tructure in search applications. Source code and example applications can be
downloaded from https://github.com/SmartSearch.
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