4

Development Tools for loT Analytics
Applications

John Soldatos and Katerina Roukounaki

Athens Information Technology, Greece

4.1 Introduction

The proliferation of IoT analytics applications has recently created a need for
tools and techniques that could support developers in the task of producing
and deploying IoT analytics services. In principle, IoT analytics development
tasks can be supported by readily available tools for IoT applications and
their combination with tools and techniques for data mining and analytics.
In particular, IoT development tools undertake to collect and appropriately
pre-process data streams stemming from IoT systems (including “live” high-
velocity data streams), while conventional data analytics tools can be used to
analyze the information contained in these data streams towards extracting
knowledge. Hence this combination brings together the IoT and BigData
worlds, thus facilitating developers in the task of implementing and deploying
IoT analytics applications.

This chapter is destined to present this blending of loT development tools
and data analytics tools. In particular, the chapter is devoted to the presentation
of sample tools for the development of IoT analytics applications and more
specifically the development tools of an IoT platform which has been recently
developed as part of the FP7 VITAL project. These tools support 10T devel-
opment functionalities such as discovery of data streams from IoT systems,
filtering of data streams in order to economize on bandwidth and storage
resources, as well as semantic unification of heterogeneous streams in order to
facilitate the unified processing of diverse data sources. The importance of such
functionalities for IoT analytics applications is adequately described in the
scope of other chapters of this book, along with specific technology solutions
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for their implementation. The present chapter considers these functionalities
as part of the presented development tools infrastructure, which leverages
middleware services (e.g., data streams discovery and filtering) of the VITAL
platform. Therefore, the chapter introduces these middleware services as well,
along with their positioning in the overall architecture of the VITAL platform.

The VITAL development tools are based on the popular Node-RED tool
for IoT applications, which has been customized to the needs of the VITAL
platform. The customization of the Node-RED tool included also the enhance-
ment of data mining and data analytics functionalities, which are illustrated
in the scope of this chapter. Along with the VITAL development tools, the
VITAL platform provides also a tool for managing IoT resources (including
IoT data sources and data streams), including configuration, security and SLA
(Service Level Agreement) management functionalities. The latter can greatly
facilitate the monitoring of IoT analytics applications and can be used in
conjunction with the VITAL development tools. Therefore, we also present
the VITAL development tools as an integral element of the wider suite of tools
that support developers in the production of IoT analytics applications. The
development and management tools are bundled in an integrated development
environment, which is accessible over the web and from a single entry
point.

Overall, the chapter is structured as follows: The next paragraph discusses
relevant work on development tools for IoT analytics. Following chapters
illustrate the VITAL architecture and the middleware services that are used
in order to support the functionalities of the tools in the scope of the VITAL
platform. Along with these functionalities, the chapter discusses the VITAL
development tools with particular emphasis on their add-on features which
enhance Node-RED. The discussion includes also insights on the limitations
of the development tools, which could be remedied as part of future work.
Moreover a dedicated section is devoted to the description of the VITAL
management environment. Indicative applications are finally presented in
order to illustrate the added-value of the tools and the productivity boost that
they can offer to large number of developers of IoT analytics applications.

4.2 Related Work

The provision of development environments for IoT analytics has its roots
on tools and techniques for the development for IoT applications and
data analytics. IoT development tools provide the means for interfacing
to IoT systems towards collecting, filtering and fusing IoT data streams.
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At the same time, data analytics environments provide the means for
developing and executing data analytics algorithms.

Early IoT development tools have been introduced as part of WSN
(Wireless Sensor Network) platforms (e.g. [1, 2]) and RFID (Radio-frequency
Identification) platforms (e.g. [3]). Recently we have witnessed the emer-
gence of integrated development environments and tools for wider classes of
IoT applications, including visual modelling tools following Model Driven
Architectures (MDA) (e.g. [4, 5]).

There have also been IoT development environments associated with
mainstream IDE projects, such as Eclipse Kura, which is an Eclipse IoT
project that provides a framework for M2M service gateways (i.e., devices
that act as mediators in the machine-to-machine and the machine-to-Cloud
communication). Kura facilitates the development, deployment and remote
management of M2M applications and its use requires only the installation of
an Eclipse plugin on the developer’s machine. It is based on Java and OSGi,
the dynamic module system for Java, and it can be used to turn a Raspberry
Pi or a BeagleBone Black into an IoT gateway.

Node-RED is another open-source project that is focused on IoT. This
project is reused and extended as part of the prototype implementation
presented in this chapter. It is described in the following paragraph in order to
facilitate the understanding of the approach and the related implementation.

Integrated Cloud Environments (ICEs) have come to change this work-
flow, by turning development environments from products into services.
ICEs are essentially IDEs that are usually web accessible, and that leverage
the Cloud into the software development lifecycle. In order to use an ICE,
developers do not need to install any more tools on their machines; all they
need to do is log into a web site (that acts as the entry point to the ICE), and
start using it. In this case, most of the tasks take place in the Cloud; some ICEs
use the Cloud even to store the developers’ code.

While IoT tools provide the means for interfacing to data sources towards
accessing, processing and combining data streams, they do not typically offer
capabilities for analyzing IoT data. Therefore, their use for IoT analytics
requires their integration with data analytics libraries and tools such as:

e The Technical Analysis library (http://ta-lib.org/), which is an open source
library that enables technical analysis of financial markets data.

e The Java Universal Network Graph (http://jung.sourceforge.net/), which
enables the analysis and visualization of graph or network based data
(e.g., social networks data).
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e The GeoTools (http://www.geotools.org/) toolkit, which enables the
manipulation of GIS data, including the analysis of their spatial and
non-spatial attributes or GIS data.

e The R project (https://www.r-project.org/), a highly extensible environ-
ment, which enables the execution of a wide variety of statistical (e.g.,
linear and nonlinear modelling, classical statistical tests, time-series
analysis, classification, clustering) and graphical techniques.

The scope of the work that is presented in following paragraphs, involves the
integration of the R project within an enhanced version of the Node-RED tool,
as part of an integrated development environment offer by the VITAL smart
cities platform (developed in the scope of the FP7 VITAL project). Note that
the integration of IoT tools with data analytics tools is also evident in the
scope of popular public cloud environment (such as the Amazon EC2 and
the Microsoft Azure cloud services), which provide functionalities for IoT
applications development along with data analytics toolkits.

4.3 The VITAL Architecture for loT Analytics Applications

The VITAL IoT development environment is an integral part of the VITAL
smart cities platform. This platform provide a range of tools and techniques
for developing, deploying, managing and operating loT applications in smart
cities, including applications that leverage data and services from multiple IoT
systems and data sources. The latter applications are based on the semantic
interoperability features of the VITAL platform, which enable the repurposing
and reuse of services and datasets from multiple IoT systems. An overview of
the VITAL platform is provided in Figure 4.1.

The main components of the platform are:

e Platform Provider Interface (PPI): The PPI is an abstract interface to
underlying IoT systems and data sources, including the large number
of legacy IoT systems that are nowadays available in the scope of
digitally mature cities. PPI provides access to both metadata and data
of the underlying systems, In particular, the information that is speci-
fied in the PPI covers system-level information, information about the
internet-connected objects of the system, sensors-based observations’
information (data), as well as metadata for managing SLAs (Service
Level Agreements) between the operator of the VITAL platform (e.g.,
city authorities, telecom services providers) and the operators of the
individual IoT systems.
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Figure 4.1 VITAL platform architecture.

e Data Management Service (DMS): This is a data service (empowered
by scalable operational databases), which persists and manages data from
all of the underlying IoT systems. Data within the DMS are semantically
unified, since they comply with the same data model (schema, ontology).
Note that the DMS provides interoperable cached data from the various
10T systems, thus providing a foundation for the provision of a range of
Data-as-a-Service (DaaS) services.
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IoT Data Adapter (PADA): This component manages the subscriptions
of the VITAL platform to IoT systems and data sources, through the
management of PPIs. It therefore provides functionalities for registering
and deregistering PPIs as data contributors to the DMS, while at the
same time managing data acquisition from the IoT systems to the DMS
(according to a publish-subscribe paradigm).

IoT Service Discovery (SD): This component enables the discovery of
services, sensors, internet-connected devices and other IoT resources.
In the SD context, the term “services” refers to services provided by
the VITAL platform (possibly assembled based on the orchestrator
component) rather than to low-level services provided by the [oT systems.
The latter are typically accessible through PPIs.

Filtering and Complex Event Processing (CEP): These components
offer data filtering and event generation functionalities based on data
streams residing with the DMS. The filtering components support static
data processing, with emphasis on threshold-based filtering and resam-
pling. At the same time, CEP supports both static and dynamic processing
of IoT streams.

Orchestration: This component provides functionalities for composing
workflows, thus enabling the orchestration of (composite) IoT services
based on more elementary ones. As already outlined, composite IoT
services produced by the orchestrator are registered to the SD component.
VUAIs (Virtualized Unified Access Interfaces): These are interfaces
enabling IoT system agnostic access to data and services of the VITAL
platform.

On top of the VITAL platform, three distinct environments are offered, namely:

e A management environment providing FCAPS (Fault Configuration

Accounting Performance and Security) management functionalities for
the VITAL modules, but also for the data and services from the underlying
IoT systems.

e A governance environment enabling the configuration of the VITAL

platform (including configuration of its individual modules) according
to the needs and characteristics of a given urban environment. The
governance environment takes into account information and parameters
such as the geography and the demographics of the city in order to
appropriately customize the operation of the VITAL platform.

e A development environment for producing smart city applications based

on the VITAL platform. It extends the popular Node-RED tool on the
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basis of functionalities for the VITAL modules, thus enabling developers
to combine VITAL functionalities (e.g., orchestration, filtering, semantic
interoperability) with the rich set of Node-RED functionalities. It also
integrates the R project in order to boost the development of IoT Analytics
applications.

Following paragraphs illustrate the VITAL development environment, as a
concrete example of a tool that facilitates the development of IoT Analytics
applications.

4.4 VITAL Development Environment
4.4.1 Overview

The primary goal of the VITAL development environment is to integrate
all functionalities provided by the VITAL platform and make them acces-
sible to smart city application developers through a single tool, the VITAL
development tool. To this end, the various functionalities of the VITAL
platform are integrated into the tool based on VUAIs, which are currently
implemented as RESTful web services. This renders Node-RED ideal as the
basis for the implementation of the VITAL development tool. Furthermore, the
growing number of nodes (i.e. development functionalities) that are available
for Node-RED, as well as its simplicity, user-friendliness, extensibility and
popularity led to the selection of Node-RED as a basis for developing the
VITAL tool. As shown in Figure 4.2, the VITAL development tool is based
on the enhancement of Node-RED with a number of VITAL-related nodes,
as well as with functionalities provided by the R project (and associated
programming language for statistical computing and graphics). The result
of this enhancement process is an easy-to-use tool that also enables its users
to perform a number of VITAL-related (e.g. retrieval of IoT system metadata)
and data analysis (e.g. data value prediction or data clustering) tasks, based
on the exploitation of the VITAL platform.

A short overview of the extra nodes that have been added to the core node
palette of Node-RED for the purpose of supporting and exposing the VITAL
functionalities follows.

4.4.2 VITAL Nodes

In order to expose the functionalities provided by the VITAL platform
through the VITAL development tool, a number of new Node-RED nodes
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Node-RED

VITAL-related
nodes

Figure 4.2 Elements of the VITAL development tool.

were created and added to the tool. More specifically, the node palette was
complemented with the following node categories: (1) ppi that contains nodes
to use in order to communicate directly with PPI-compliant [oT systems and
data sources, (2) data that contains nodes that expose the functionalities
provided by the DMS, (3) discovery that contains nodes that enable the
discovery of different types of IoT resources, and (4) filtering that con-
tains nodes that expose the filtering functionalities provided by the VITAL
platform.

4.4.2.1 PPl nodes
Each node in the ppi category corresponds to a primitive specified as part of
the Platform Provider Interface.

4.4.2.2 System nodes

System nodes are used to retrieve metadata about a PPI-compliant IoT system.
When a system node receives a message, the node accesses the relevant
primitive of the PPI implementation exposed by that system, and puts the
result (i.e., the system metadata) into the message it finally sends out.
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4.4.2.3 Services nodes

Services nodes retrieve metadata about the IoT services that a PPI-compliant
IoT system provides. The message that a services node receives may contain
information, which is used to filter the services to retrieve metadata for (based
on their ID and type), whereas the message that a services node sends contains
the retrieved service metadata.

4.4.2.4 Sensors nodes

Sensors nodes are function nodes that retrieve metadata about sensors that an
IoT system manages. The messages sent to these nodes can be used to filter
the sensors to retrieve metadata for (based on their ID and type), whereas the
messages sent by these nodes contain the retrieved sensor metadata.

4.4.2.5 Observations nodes

Observations nodes are function nodes that pull observations made by
sensors managed by a PPI-compliant [oT system. Input messages may contain
information, which can be used to filter the observations to fetch (based on
the sensor that made them, the observed property and the time when they
were made), whereas output messages contain the retrieved observations.

4.4.2.6 DMS nodes

Nodes that expose functionalities provided by the DMS component of the
VITAL platform fall into the data category.

4.4.2.7 Query systems

Query systems nodes query DMS for systems that meet specific criteria. The
message that a query systems node receives contains a query, whereas the
message that it sends out contains the metadata about all IoT systems that are
registered with the VITAL platform and match the query.

4.4.2.8 Query services

Query services nodes are used to retrieve information about IoT services
based on specific criteria. Input messages contain queries, whereas output
messages contain metadata about IoT services that match those queries.

4.4.2.9 Query sensors

Query sensors nodes query DMS for internet-connected objects that meet
specific criteria. The messages sent to these nodes contain a query, whereas
the messages that these nodes send as a response contain metadata about all
internet-connected objects that match the given query.
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4.4.2.10 Query observations

Query observations nodes query DMS for observations. The message that
a query observations node receives contains a query, whereas the message
that a query observations node sends contains observations based on the given

query.

4.4.2.11 Discovery nodes

The discovery node category groups together all Node-RED nodes that enable
the discovery of different types of IoT resources by leveraging the discovery
functionalities provided by the VITAL platform.

4.4.2.12 Discover systems nodes

Discover systems nodes are used to discover systems based on their type
and/or spatial context. The messages sent to discover systems nodes contain
the criteria, whereas the messages sent by these nodes contain the metadata
about the systems that meet these criteria.

4.4.2.13 Discover services nodes

Discover services nodes enable the discovery of services based on specific
criteria. Input messages may contain a type and a system URI, and output
messages contain the available metadata about all services of that type that
are provided by that system.

4.4.2.14 Discover sensors nodes

Discover sensors nodes are used to discover sensors based on their position
(current or within a specified time window), type, movement pattern,
connection stability, and whether they provide a localizer service. Input
messages contain the criteria that sensors must meet, whereas output messages
contain metadata about the sensors that meet them.

4.4.2.15 Filtering nodes
Filtering nodes are used to access the VITAL filtering functionalities.

4.4.2.16 Threshold nodes

Threshold nodes perform threshold-based filtering to the values collected
from a specific internet-connected object, for a specific property, in a specific
area, and within a specific time interval. Messages sent to threshold nodes
contain criteria, based on which to retrieve observations, a threshold value,
and a relation, and messages sent by these nodes contain all values that
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meet the specified criteria and have the specified relation with the specified
threshold.

4.4.2.17 Resample nodes

Resample nodes are used to resample (down-sample or up-sample) data
streams using a different time interval than the one they were initially sampled
with. Input messages specify the data stream (i.e., the sensor and the observed
property), the new time interval, and the time period, over which to perform
the resampling, whereas output messages contain the resampled observations.

4.5 Development Examples
4.5.1 Example #1: Predict the Footfall!

The purpose is to implement a web page that shows a map of Camden town.
When the user clicks anywhere on that map, a pop-up appears that informs the
user about the people that are expected to be walking around that area during
the next hour. The expected result is shown in Figure 4.3.

In order to provide the required functionality, two flows were created using
the VITAL development tool. The first flow is a web service that responds
with the static HTML page that contains the Camden map. The second flow
is a web service that given a location responds with a prediction for the
number of people in that area within the next hour. Both flows are depicted in
Figure 4.4.

The second flow receives a location, uses a query sensors node to find
the footfall sensor that is closer to that location, uses an observations node
to retrieve observations collected from that sensor in the last ten days, and
finally leverages the rstats package to predict the value of that sensor in the
next hour.

4.5.2 Example #2: Find a Bike!

The purpose is to build a web page that people that move in London can use
in order to find out whether there are any bikes available near them. The user
specifies their location on the map, and as a result a marker appears on the map
for each docking station within a 500 m radius that has at least one available
bike. Figure 4.6 shows the implemented web page.

Figure 4.7 depicts the two flows that were implemented for the purposes
of this example. The first flow implements the web service that returns the
static HTML page. The second flow receives the current location of the
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Figure 4.5 Find a bike — the web page.
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user (that they have specified by clicking on the map), discovers all docking
stations in that area (using a discover sensors node, since docking stations
are essentially sensors), finds out how many available bikes each one of these
stations has (using an observations node, since this implies the retrieval of the
last observation made by each one of the corresponding sensors), and finally
responds with the locations of the stations that have at least one available bike.

4.6 Conclusions

As IoT analytics applications, proliferate developers are starving for tools that
can boost their development productivity. The wide array of emerging tools for
IoT and data analytics applications are not enough to maximize developers’
productivity, when used in isolation. Their combination and integration is
therefore needed in order to achieve multiplicative benefits, i.e. leverage
productivity benefits from both analytics and IoT tools. Moreover, in several
cases the integration of data streaming concepts is also important, given the
high velocity of IoT data streams. Integration of data streaming tools was not
extensively presented in the scope of the Chapter, as VITAL stores [oT data into
a scalable datastore in a semantically unified manner. However, the presented
approach demonstrates also the merits of semantic interoperability for the
development of added-value loT analytics applications in smart cities, notably
applications that leverage and process data from multiple IoT systems and data
sources, which have typically been developed and deployed independently.
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