
5
An Open Source Framework for IoT

Analytics as a Service

John Soldatos1, Nikos Kefalakis1 and Martin Serrano2

1Athens Information Technology, Greece
2Insight Center for Data Analytics, National University of Ireland,
Galway, Ireland

5.1 Introduction

Earlier chapters have illustrated the importance of IoT and cloud computing
convergence, as a means of achieving scalability and meeting QoS (Quality
of Service) constraints. IoT deployments in the cloud are motivated by two
main business drivers:

• Business Agility: Cloud computing alleviates tedious IT procurement
processes, since it facilitates flexible, timely and on-demand access to
computing resources (i.e. compute cycles, storage) as needed to meet
business targets. In the case of IoT analytics applications, IoT developers
and deployments can flexibly gain access to the storage and processing
resources that they need in order to support their applications.

• Reduced Capital Expenses: Cloud computing leads to reduced capital
expenses (CAPEX) (i.e. IT capital investments), through converting
CAPEX to operational expenses (OPEX) (i.e. paying per month, per user
for each service). This is due to the fact that cloud computing enables
flexible planning and elastic provisioning of resources instead of upfront
overprovisioning. Among the benefits of such flexibility is that it enables
small and medium size enterprises (SMEs) to adopt a pay-as-you-go and
pay-as-you-grow model to infrastructure acquisition and use, through
paying for the computing resources and capacity that they need. This can
be particularly important for the proliferating number of SMEs (including

99



100 An Open Source Framework for IoT Analytics as a Service

high-tech startups), which exploit IoT analytics as part of their products
or services.

Similarly to cloud computing infrastructures [1], integrated IoT/cloud infras-
tructures and related services can be classified to the following models:

• Infrastructure-as-a-Service (IaaS) IoT/Clouds: These services pro-
vide the means for accessing sensors and actuator in the cloud. The
associated business model involves the IoT/Cloud provide to act either
as data or sensor provider. IaaS services for IoT provide access control
to resources as a prerequisite for the offering of related pay-as-you-go
services.

• Platform-as-a-Service (PaaS) IoT/Clouds: This is the most widespread
model for IoT/cloud services, given that it is the model provided by
all public IoT/cloud infrastructures outlined above. As already illus-
trate most public IoT clouds come with a range of tools and related
environments for applications development and deployment in a cloud
environment. A main characteristic of PaaS IoT services is that they
provide access to data, not to hardware. This is a clear differentiator
comparing to IaaS IoT clouds.

• Software-as-a-Service (SaaS) IoT/Clouds: SaaS IoT services are the
ones enabling their uses to access complete IoT-based software applica-
tions through the cloud, on-demand and in a pay-as-you-go fashion. As
soon as sensors and IoT devices are not visible, SaaS IoT applications
resemble very much conventional cloud-based SaaS applications. There
are however cases where the IoT dimension is strong and evident, such
as applications involving selection of sensors and combination of data
from the selected sensors in an integrated applications. Several of these
applications are commonly called Sensing-as-a-Service, given that they
provide on-demand access to the services of multiple sensors. Note that
SaaS IoT applications are typically built over a PaaS infrastructure and
enable utility based business models involving IoT software and services.

Although the Sensing-as-a-Service paradigm is a special case of an SaaS
deployment, it is in practice applicable to IoT applications only. Indeed,
Sensing-as-a-Service applications involve on-demand collection, processing
and analysis of information from sensors (i.e. IoT devices) [2]. The on-demand
and dynamic nature of Sensing-as-a-Service applications in reinforced by the
location dependent and time dependent nature of such IoT applications, which
permit the dynamic selection of the IoT resources (sensors) that will provide
the data streams to be processed. As such Sensing-as-Service can be seen as
a case of an “IoT Analytics as a service” paradigm, where the IoT application



5.2 Architecture for IoT Analytics-as-a-Service 101

users is allowed to dynamically specified data processing and analytics
functionalities, along with the IoT devices on which they will be executed.

In this chapter we present a framework for implementing Sensing-as-
a-Service applications based on the open source OpenIoT project [3]. The
OpenIoT framework enables the dynamic selection of sensors and resources,
as well as the subsequent specification of processing functionalities over the
data of the selected sensors. In essence it enables the specification of dynamic
sensor queries, which can be considered the first step towards IoT analytics as
a service [4]. In addition to facilitating the dynamic definition and deployment
of such Sensing-as-Service (or IoT analytics as a service) services, OpenIoT
provides:

• Semantic interoperability and unification of data from diverse IoT sensors
and other data sources, through ensuring their conversion and com-
pliance to a common ontology, namely the OpenIoT ontology, which
is an extended version of the W3C SSN (Semantic Sensor Networks)
ontology [5].

• A range of easy-to-use tools for the visual specification of the Sensing-
as-a-Service services. The tools enable the definition and deployment
of SPARQL based sensor queries, through exploiting sensors registered
within the OpenIoT framework.

Note that OpenIoT does not provide sophisticated data analytics functionali-
ties, but it can well be extended on the basis of frameworks for data mining and
machine learning, in order to support more advanced analytics functionalities.
Such extensions are worked out in the scope of the H2020 FIESTA-IoT
project, which provide functionalities for semantically interoperable IoT
experimentation i.e. the execution of data-centric IoT experiments based on
data streams from multiple IoT experimental facilities. Following sections of
the chapter focus on the description of the OpenIoT framework and capabilities
for Sensing-as-a-Service, along with a practical example of constructing and
deploying a relevant sensor query based on the OpenIoT tools. Moreover, the
enhancement of the Sensing-as-a-Service paradigm with more sophisticated
analytics functionalities, towards an IoT Analytics as a Service paradigm is
also discussed.

5.2 Architecture for IoT Analytics-as-a-Service

5.2.1 Properties of Sensing-as-a-Service Infrastructure

Service formulation and delivery in the scope of OpenIoT is characterized by
the following properties:



102 An Open Source Framework for IoT Analytics as a Service

• On-demand: Service formulation and delivery in OpenIoT should be
performed on-demand. This implies the need for on-demand express-
ing requests for IoT services formulation, which shall be fulfilled by
the OpenIoT middleware infrastructure. Therefore, service formulation
should provide the means to dynamically selecting sensors and ICOs
needed in order to satisfy the demanded service requests.

• Cloud-based: OpenIoT services are provided in a cloud environment. At
the heart of this environment lies a scalable sensor cloud infrastructure,
which shall provide sensor data access services. Thus, the OpenIoT
service formulation strategies must take into account the need to access,
use and combine services residing within the sensor/ICO cloud.

• Utility-based: Service delivery in OpenIoT is utility-based, which is
in-line with the on-demand and cloud-based properties. As a result,
OpenIoT should provide the means for calculating utility, through making
provisions for storing a range of utility parameters (e.g., usage parameters
for the employed ICOs) during the process of service formulation.

• Service-Oriented: OpenIoT requests will result in the deployment of
services. The latter may be the composition of other services, such as
services for accessing data streams in the cloud. Overall, OpenIoT has a
service-oriented nature.

• Optimized: OpenIoT incorporates a wide range of self-management
and self-optimization algorithms. The service formulation process
ensures that information about resources reservation and usage is
recorded in order to enable the implementation of utility-based optimiza-
tion algorithms.

5.2.2 Service Delivery Architecture

The architecture of the OpenIoT platform is illustrated in Figure 5.1, while
a more detailed overview of the interactions between the various modules is
depicted in Figure 5.2. As already outlined, OpenIoT enables the cloud-based
delivery of IoT data processing services, through enabling the creation of
dynamic on-demand services. These services select and process data from a
multitude of different data sources.

Overall, the architecture makes provisions for the creation and fulfillment
of requests for services to the OpenIoT system. It is empowered by the
following components:

• Service Request Definition Component (“Request Definition”):
Service Request Definition is the component where requests for IoT



5.2 Architecture for IoT Analytics-as-a-Service 103

Figure 5.1 OpenIoT architecture.

services are formulated (by end-users) and accordingly submitted to
the OpenIoT system. This component comes with an appropriate
graphical user interface (GUI), which facilitates the service request
customization.

• (Global) Scheduler: The Global Scheduler is in charge of accepting and
prioritizing the various service requests (by one or more end-users) and
accordingly generates the list of sensors (and other Internet Connected
Objects (ICO)) that participate in the delivery of the service. Furthermore,
the global Scheduler performs the required reservations of resources,
which facilitate utility calculation and resource optimizations.

• Service Discovery: Service discovery refers to the OpenIoT directory
services. It maintains the semantically annotated descriptions of the
sensors that are known to the OpenIoT system. Service discovery



104 An Open Source Framework for IoT Analytics as a Service

Figure 5.2 Functional blocks of openIoT’s project analytics as a service architecture.

relies on the registration of sensors in the directory service repository.
The structure of the service directory is based on the OpenIoT ontology
(an enhanced version of the W3C SSN ontology).

• Cloud Infrastructure: This refers to the cloud computing environment
(functional and operational), which ensures sensor cloud integration
and streaming of sensors and ICO data to cloud storage, the operations
performed in the cloud infrastructure are independent of the infrastructure
management and the infrastructure modifications.

• Global Sensor Networks (GSN) Nodes: GSN nodes refer to deployment
instances of the GSN middleware [6]. They play a significant role in
the data provisioning for the IoT service delivery, since they enable the
interfacing of physical-world devices to the OpenIoT system (via the
cloud infrastructure). At the same time, GSN nodes perform a range of



5.2 Architecture for IoT Analytics-as-a-Service 105

local-level optimizations, on the basis of the ICOs that they comprise
of and on how these participate and contribute to the various services,
prioritizing and transforming the data acquired form the physical sensors
into normalized data.

• Service Delivery and Utility Manager (SD&UM): The service delivery
manager ensures the proper assembly and delivery of the services subject
to the various constraints imposed either for physical infrastructure
restrictions or service customization definitions. To this end, it uses
the selected sensors and ICOs and combines them as specified in the
service request sent to the system. The combination depends also on the
optimizations performed by the OpenIoT infrastructure, given that these
optimizations may, for example, regulate the frequency of accesses to
the various underlying data services.

• Service Presentation (“Request Presentation”): This component facil-
itates the implementation of the presentation layer of the service, on the
basis of mashups and other visualization libraries. It can be considered as
an optional component aiming at easing the presentation of the services
according to the preferences and needs of the end-user.

5.2.3 Service Delivery Concept

In-line with the main components of the OpenIoT architecture outlined above,
service delivery is based on the selection and orchestration of multiple
services (including cloud services) that provide data and/or instigate tasking or
actuation functionalities. The orchestration and combination of those services
is based on the following factors:

• Type of (requested) service: The service request specifies different
possible operations on ICOs, such as selection, retrieval and processing
of their data, or execution of actuation commands. The OpenIoT sensor
cloud infrastructure can be seen as a large-scale distributed sensors
and ICO database. Service requests can be thought of as queries and
operations over this database (i.e. SQL (Structured Query Language)
can be thought as a representative metaphor). Depending on the query
and operation, the OpenIoT infrastructure will instigate alternative paths
within the service delivery strategies. For example, query operations
(i.e. «SELECT» in SQL terms) will lead to the combination of sensor
data access services, while actuating operations (i.e. «UPDATE» or
«EXECUTE» operations) will lead to the invocation of the actuating



106 An Open Source Framework for IoT Analytics as a Service

services. Furthermore, requests combining both actuation and selection
functions should trigger alternative paths within the OpenIoT service
formulation strategies.

• Optimizations: The OpenIoT sensor cloud is a self-managing infrastruc-
ture, which provides opportunities for optimal delivery of the services.
Therefore, the resource management and optimization capabilities of the
OpenIoT infrastructure affect service formulation and delivery. Alterna-
tive service delivery and execution paths are likely to be considered in
the scope of the optimization of the OpenIoT services.

• Sensor and ICO selection: The selected sensors and ICOs influence
the formulation and delivery of services. Different ICOs may provide
different capabilities in terms of data selection and actuating services
execution. Therefore, the OpenIoT service delivery environment deals
with the heterogeneity of data being collected from the various ICOs. In
particular, the OpenIoT cloud and the underlying GSN nodes provide a
virtualized interface for accessing the low-level capabilities of the ICOs
acting as data collectors for the OpenIoT system.

Finally, the service formulation and delivery mechanisms consider the need
to support both service deployment and service un-deployment. Service un-
deployment should be implementing as an integral element of the service
management and governance functions in OpenIoT. The un-deployment
process is therefore addressed in later paragraphs as well.

5.3 Sensing-as-a-Service Infrastructure Anatomy

5.3.1 Lifecycle of a Sensing-as-a-Service Instance

As part of the OpenIoT system, the management and requests operations
for dynamically creating and deploying IoT services (i.e. Sensing-as-a-
Service and IoT-Analytics-as-a-Service services) perform the following
main tasks:

• Formulation of the request: As part of this task the request is formed
on the basis of the specification criteria for particular sensor selection, as
well as of the processing of the resulting collected data.

• Parsing and validation of the request: This task processes the request
and ensures its validity. The validation of the requests ensures that they
refer to existing sensors and ICOs or that the criteria set lead to the
selection of a group of sensors and ICOs.



5.3 Sensing-as-a-Service Infrastructure Anatomy 107

• Discovery of resources: In the scope of this task the criteria for
selecting sensors are applied against the OpenIoT directory services
i.e. the sensor directory is used to select a set of sensors that fulfill the
relevant criteria and when need it update the OpenIoT directory sensor
services.

• Instantiation of a new OpenIoTservice: With the selected sensors/ICOs
at hand, a new OpenIoT service instance is created as a cloud service.
This results in the establishment of the service that is associated with the
Sensing-as-a-Service request.

• Population of information and structures associated with utility
metering and resource management: Along with the creation of the
OpenIoT service, the appropriate resources are reserved. This is denoted
in the various structures that comprise information about the resources
of the OpenIoT system. Furthermore, structures/records for the utility
metrics are used.

• Deployment/Delivery of the service: As part of this task, the OpenIoT
service is deployed and becomes available on the OpenIoT system.
Consequently, it becomes ready to be invoked by end-users.

Figure 5.3 illustrates the main system actions entailed in the course/process
of deploying an OpenIoT service (i.e. service request, sensor(s) selection,
scheduling and resources reservation and ultimately service deployment).
Following the successful deployment of an OpenIoT service, end-users can
invoke and use it. As part of the service lifecycle, it is also likely that the
service will be uninstalled and deactivated from the system, in which case all
resources associated with the service will be released.

Figure 5.3 IoT data analysis services request lifecycle.



108 An Open Source Framework for IoT Analytics as a Service

5.3.2 Interactions between OpenIoT Modules

OpenIoT is a sensor cloud environment. Along with the data of the various
sensors and ICO streams, this cloud stores a wide range of meta-data enabling
the deployment, delivery and optimization of IoT services within the sensor
cloud. This meta-data is updated during the operation of the sensor cloud
system, as new services are requested and deployed, while others go out of
scope. The sensor cloud system will be responsible to frequently check if data
are required from the system’s deployed services from the provided mecha-
nisms. Furthermore, this meta-data will regulate the interactions between the
various components of the OpenIoT architecture. Figure 5.4 [10] illustrates
the various modules of the OpenIoT architecture, along with their interactions
(indicated based on uni-directional and bi-direction arrows). Furthermore, the
figure illustrates the various entities/classes, whose values/data are used in
the scope of the interactions of the modules. In particular, given the entities
illustrated in Figure 5.4, each of the OpenIoT modules interacts with the others
as follows:

• Request Definition: The request definition module is the user interface
that enables the user to formulate the requests in the OpenIoT system. This
module interacts directly with the Scheduler’s API which is described in
detail in following sections.

• (Global) Scheduler: The Scheduler formulates the request based on the
user inputs (request definition). It interacts with the rest of the OpenIoT
platform through the Cloud Database (DB). In particular, the Scheduler
performs the following functions:

◦ Retrieving the available sensors from the GSN nodes through the
“availableSensors” entity,

◦ Informing the GSN nodes abut which of their virtual sensors are used
by the service being scheduled. Relevant information is includes in
the “sensorServiceRelation” entity,

◦ Informing the Service Delivery & Utility Manager (SD&UM) about
what services to deliver based on the “serviceDeliveryDescription”
entity,

◦ Notifying the user, via itself and the SD&UM module, about the
status of a defined service through the “serviceStatus” entity, and

◦ Implementing access control mechanisms with the help of the “user”
entity.



5.3 Sensing-as-a-Service Infrastructure Anatomy 109

F
ig

ur
e

5.
4

M
ai

n
en

tit
ie

s
an

d
m

od
ul

es
.



110 An Open Source Framework for IoT Analytics as a Service

• Service Delivery & Utility Manager: The SD&UM module provides
results to the request presentation module by retrieving SPARQL
scripts [7], that the Scheduler has provided to the “serviceDescription”
entity. Furthermore, this module retrieves data from the GSN nodes
by executing the retrieved scripts to the “virtualSensorsDataStorage”.
Moreover it is able to store resource-usage history for accounting,
metering and billing purposes.

• Request Presentation: the Request Presentation module is the User
Interface that enables the user to retrieve data from the Cloud Database
(DB). The Request Definition has described the request and the data is
delivered using the SD&UM API described below.

• Configuration Console: The Configuration/Monitoring console is the
system administrators’ tool, which enables administrators to deploy, con-
figure and manage the OpenIoT platform. It interacts directly with several
other modules (Scheduler, SD&UM and GSN nodes) for monitoring
purposes. Finally, it is also capable to set up RDF schemata for new
virtual sensors. The schemata are stored within the “virtualSensorsRdf-
Schemata” entity and enable GSN nodes to access this information during
their configuration.

• GSN Nodes: The GSN nodes (or virtual sensors) are:

◦ Providing the available sensors to the Scheduler module through the
“availableSensors” entity,

◦ Informed about the sensors in use from the Scheduler based on the
“sensorServiceRelation” entity,

◦ Retrieving new virtual Sensors RDF schemata from the Config/
Monitor Console through the “virtualSensorsRdfSchemata” entity,
and

◦ Providing sensor data to the SD&UM through the “virtualSensors-
DataStorage” entity.

As part of these interactions the above modules create and consume data
associated with the entities listed in the following table [10]. Note that the table
differentiates between semantic and non-semantic data entities. Semantic data
entities are implemented on the basis of ontologies (i.e. RDF), while non-
semantic data structures are represented on the basis of relational database
tables. Note that all the structures that hold sensor information follow semantic
descriptions, given that all sensor descriptions in OpenIoT will be semantically
annotated and represented.



5.3 Sensing-as-a-Service Infrastructure Anatomy 111

D
at

a
E

nt
ity

Ty
pe

D
es

cr
ip

tio
n

se
rv

ic
eD

es
cr

ip
tio

n
R

el
at

io
na

l(
SQ

L
)

or
R

D
F

H
ol

ds
th

e
de

sc
ri

pt
io

n
an

d
pr

op
er

tie
s

of
al

lt
he

se
rv

ic
es

th
at

ar
e

ex
ec

ut
ed

th
ro

ug
h

th
e

O
pe

nI
oT

sy
st

em
av

ai
la

bl
eS

en
so

rs
Se

m
an

tic
(R

D
F)

C
on

st
itu

te
s

th
e

di
re

ct
or

y
da

ta
ba

se
of

th
e

O
pe

nI
oT

se
ns

or
cl

ou
d

sy
st

em
.

se
rv

ic
eS

ta
tu

s
R

el
at

io
na

l(
SQ

L
)

M
ai

nt
ai

ns
a

lis
tw

ith
th

e
st

at
us

of
th

e
se

rv
ic

es
,i

n
or

de
r

to
pr

ov
id

e
re

le
va

nt
fe

ed
ba

ck
to

en
d-

us
er

s
se

ns
or

Se
rv

ic
eR

el
at

io
n

R
el

at
io

na
l(

SQ
L

)
M

ai
nt

ai
ns

th
e

(m
an

y-
to

-m
an

y)
as

so
ci

at
io

ns
of

th
e

se
rv

ic
es

to
th

e
va

ri
ou

s
se

ns
or

s
an

d
IC

O
s

av
ai

la
bl

e
in

th
e

sy
st

em
(i

.e
.i

nf
or

m
at

io
n

ab
ou

tw
hi

ch
se

ns
or

s
ar

e
us

ed
in

th
e

sc
op

e
of

a
gi

ve
n

se
rv

ic
es

).
vi

rt
ua

lS
en

so
rs

D
at

aS
to

ra
ge

Se
m

an
tic

(R
D

F)
M

ai
nt

ai
ns

th
e

da
ta

of
th

e
va

ri
ou

s
da

ta
st

re
am

s
i.e

.d
at

a
co

rr
es

po
nd

in
g

to
th

e
da

ta
st

re
am

s
of

th
e

se
ns

or
s

an
d

IC
O

s
th

at
pr

ov
id

e
se

rv
ic

es
to

O
pe

nI
oT

us
er

s
vi

rt
ua

lS
en

so
rs

R
df

Sc
he

m
at

a
Se

m
an

tic
(R

D
F)

H
ol

ds
th

e
st

ru
ct

ur
e

of
sp

ec
ifi

c
se

ns
or

s/
IC

O
ty

pe
s

to
al

lo
w

fo
r

th
e

m
an

ag
em

en
ta

nd
in

st
an

tia
tio

n
of

th
e

se
ns

or
s.

ut
ili

ty
U

sa
ge

H
is

to
ry

Se
m

an
tic

(R
D

F)
U

se
d

to
re

co
rd

s
ut

ili
ty

/u
sa

ge
re

la
te

d
pa

ra
m

et
er

s,
in

or
de

r
to

bo
os

ta
cc

ou
nt

in
g,

bi
lli

ng
an

d
(u

til
ity

ba
se

d)
re

so
ur

ce
op

tim
iz

at
io

n
us

er
R

el
at

io
na

l(
SQ

L
)

or
R

D
F

U
se

d
to

st
or

e
th

e
av

ai
la

bl
e

us
er

s
an

d
th

ei
r

ac
ce

ss
ri

gh
ts

to
im

pl
em

en
ta

cc
es

s
co

nt
ro

lm
ec

ha
ni

sm
s.



112 An Open Source Framework for IoT Analytics as a Service

Figure 5.5 Relationships between the main OpenIoT data entities.

The relationship between the main OpenIoT data entities is depicted in
Figure 5.5 [10].

5.4 Scheduling, Metering and Service Delivery

The modules that are responsible for the services formulation within the
OpenIoT platform are the “Scheduler” and the “Service Delivery & Utility
Manager”. Following paragraphs provide a detailed description of these
modules, including the functionalities that they offer to end-users. Note that
the term end-user can either denote the final user of the IoT services or the
solution provider exploiting the OpenIoT capabilities in order to integrate and
deploy a Sensing-as-a-Service solution.

5.4.1 Scheduler

The Scheduler is the main and first entry point for service requests submitted to
the OpenIoT cloud environment. This component receives the service requests
from the service definition components as part of the process of creating a
new cloud service based on the Sensing-as-a-Service paradigm. It parses each
service request and accordingly performs two main functions towards the



5.4 Scheduling, Metering and Service Delivery 113

delivery of the service, the sensor/ICO selection and the scheduling/resource
reservations.

The API of the scheduler supports the lifecycle of the OpenIoT service,
which has been presented in earlier paragraph. In particular, it provides the
means for:

• Constructing an OpenIoT service on the basis of existing sensors and
ICOs.

• Registering an OpenIoT service within the OpenIoT sensor cloud. In this
case the OpenIoT system assigns a service identifier (serviceID) to the
service, which uniquely identifies the service within the OpenIoT service
delivery system.

• Unregistering a (previous registered) OpenIoT service. This is a coun-
terpart function to the one registering the service. The unregistration/
deregistration function moves the service out of the scope of the OpenIoT
system.

• Enabling an already registered service, thereby commencing its operation
within the OpenIoT sensor cloud.

• Disabling an OpenIoT service, thereby leading to its deactivation within
the sensor cloud. Disabling a service does not however imply that the
service goes out of the scope of the sensor cloud i.e. it still remains
available for activation.

• Querying the status of a given service, as a means of accessing the state
of the service within the sensor cloud.

The above functions change the state of the OpenIoT services according to
rules and dependencies specified within the various states. For example, only
registered services can be enabled, and only enabled services can be disabled.
At the same time, only registered services can be unregistered.

Figure 5.6 [8] illustrates the lifecycle of the IoT services within the
OpenIoT system. The transitions between the different states occur on the
basis of invocations to the Scheduler API.

On the basis of the Scheduler API, the following functionalities are
supported:

• Resource Discovery: This service will discover virtual sensor availabil-
ity based on the “availableSensors” entity. It will provide the resources
that match the requirements for a given service request.

• Service User Management: This Scheduler service will enable the
management of the lifecycle of an OpenIoT service. This lifecycle
management is performed based on the following Scheduler comments:



114 An Open Source Framework for IoT Analytics as a Service

F
ig

ur
e

5.
6

St
at

e
di

ag
ra

m
of

th
e

O
pe

nI
oT

se
rv

ic
es

lif
ec

yc
le

w
ith

in
th

e
sc

he
du

le
r

m
od

ul
e.



5.4 Scheduling, Metering and Service Delivery 115

◦ Register: The “Register” service is responsible to identify all the
required resources from the request and update the “sensorService-
Relation” entity at the cloud database. The “Register” service shall
formulate a SPARQL script, based on the user request, and shall
store it to the “ServiceDescription” entity along with a Service ID
and user’s specific execution properties (the execution properties
could include execution intervals, life of the service, etch). A new
service instance shall get recorded at the “serviceStatus” entity in
the cloud. Note that: (a) In case the request is satisfied the unsatisfied
Boolean of the “serviceStatus” entity is set to false, whereas (b) If the
request is unsatisfied the unsatisfied Boolean of the “serviceStatus”
entity is set to true. Optionally more detailed information regarding
the problem could be stored.

◦ Unregister: In the scope of the unregister functionality the user
will have the ability to unregister a registered service. When a
service gets unregistered the allocated resources shall get released.
Therefore, the service-virtual sensor relation at the “SensorService-
Relation” entity in the cloud shall get deleted. Furthermore, the
service gets deactivated (set enabled as false) at the “serviceStatus”
entity in the cloud.

◦ Suspend : As part of suspend functionality, the service shall get
updated (set suspended as true) at the “serviceStatus” entity in the
cloud.

◦ Enable from Suspension: As part of the suspension functionality the
service is defined as enabled (enabled is true) at the “serviceStatus”
entity.

◦ Enable: The enable functionality gives to the user will be given
the ability to enable an unregistered service. When a service gets
enabled the user request gets initialized and the related virtual
sensors are identified and stored to the “SensorServiceRelation”
entity. The service is set as enabled at the “serviceStatus” entity.

◦ Update: The update services permits changes to service. When a reg-
istered service gets updated the “Update” identifies all the required
resources from the updated request and updates the “Sensor-
ServiceRelation” entity at the cloud database. The “Update” ser-
vice shall formulate a SPARQL script, based on the updated
user request, and shall update it to the existing one along with
the updated user’s specific execution properties (the execution



116 An Open Source Framework for IoT Analytics as a Service

properties could include execution intervals, life of the service,
etch) at the “ServiceDescription” entity. The service status shall
get updated as enabled at the “serviceStatus” entity in the cloud.
Note that: (a) In case the request is satisfied the unsatisfied Boolean
of the “serviceStatus” entity is set to false, (b) In case the request
is unsatisfied the unsatisfied Boolean of the “serviceStatus” entity
is set to true. Optionally more detailed information regarding the
problem could be stored.

• Registered Service Status: This functionality enables the user to retrieve
the status of a specific service by providing the ServiceID. The Registered
Service Status service shall check the “serviceStatus” entity and send all
the available information back to the user.

• Service Update Resources: Based on a service provider (i.e. adminis-
trator controlled) specified time interval this service/functionality shall
check the enabled services from the “serviceDescription” entity and as
a first step identify the ones that are using mobile sensors. As a second
step it shall check if the mobile sensors fulfil the User’s request (e.g. in
respect of a specific location). Note that: (a) in case the sensor fulfills the
user’s request no further action is taken and (b) in case the sensor does
not fulfil the user’s request this sensor is unrelated/removed from the
specific service at the “sensorServiceRelation” entity and (c) as a third
step a new sensor is searched that fulfils the user’s request (e.g. in respect
of a specific location), (d) in case a new sensor is found it gets recorded at
the “ServiceDescription” entity and the “serviceDescription” entity gets
updated, (e) in case is no sensor available that fulfils the specific request
the unsatisfied field shall get updated with “true” at the “serviceStatus”
entity in the cloud.

• Get Service: This service is used to get the description of a regis-
tered service. Accessing the “serviceDescription” entity retrieves this
information.

• Get the Available Services: This service provides the ability to a user
to collect a list of registered services related with a specific user. These
service IDs are available from the “serviceDescription” entity.

• Get User: This service is used by the OpenIoT platform’s access controls
mechanisms so as to retrieve user’s information, access rights and
restrictions to implement data filtering and access rights.

Note that for the user to be able to invoke the “Resource Discovery”,
“Service User Management”, “Registered Service Status”, “Service Update



5.4 Scheduling, Metering and Service Delivery 117

Resources”, “Get Service”, “Get User” and “Get the available Services”
services, the user must first get logged-in to the system by authenticating
with his/her ID. Moreover, the results provided to the user are prior filtered
based on his/her account restrictions and the resources that are accessible
based on his/her profile. The “user” and the “accessControl” entities provide
the account restrictions data.

In line with the Scheduler functionalities presented above, Figure 5.7
[8] illustrates the main workflow associated with the service registration
process. In the scope of this process the Scheduler attempts to discover the
resources (sensors, ICO) that will be used for the service delivery. In case no
sensors/ICOs can fulfill the request, the service is suspended. In case a set of
proper sensors/IOCs is defined the relevant data entities are updated (e.g.,
relationship of sensors to services) and a SPARQL script associated with
the service is formulated and stored for later use. Following the successful

Figure 5.7 “Register Service” process flowchart.



118 An Open Source Framework for IoT Analytics as a Service

conclusion of this process, the servicer enters the «Registered» state and is
available for invocation.

Likewise Figure 5.8 [8] illustrates the process of updating the resources
associated with a given service. As already outlined, such an update process
is particularly important when it comes to dealing with IoT services that
entail mobile sensors and ICOs i.e. sensors and ICOs whose location is likely
to change within very short timescales (such as mobile phones and UAV
(UnmannedAerial Vehicles)). In such cases the update resources process could
regularly check the availability of mobile sensors and their suitability for the
registered service whose resources are updated. The workflow in Figure 5.7
assumes that the list of mobile sensors is known to the service (i.e. the sensors’
semantic annotations indicate whether a sensor is mobile or not).

Even though the process/functionality of updating resources is associated
with the need to identify the availability and suitability of mobile sensors, in
principle the update process could be used to update the whole list of resources
that contribute to the given service. Such functionality could help OpenIoT
in dealing with the volatility of IoT environments, where sensors and ICOs
may dynamically join or leave. In the scope of an IoT application, one cannot
rule out the possibility of the emergence of new sensors that can be associated
with an already established service.

Finally, Figure 5.9 [8] illustrates the process of unregistering a service,
in which case the resource associated with the service is released. The
data structures of the OpenIoT service infrastructures are also modified to
reflect the fact that the specified service no longer using its resources. As
already explained, this update is important for the later implementation of the
OpenIoT self-management and optimization functionalities.

5.4.2 Service Delivery & Utility Manager

The Service Delivery & Utility Manager has (as its name indicates) a dual
functionality. On the one hand (as a service manager) it is the module enabling
data retrieval from the selected sensors comprising the OpenIoT service. On
the other hand, the utility manager maintains and retrieves information struc-
tures regarding service usage and supports metering, charging and resource
management processes. The following paragraphs elaborate on the main
functionalities/services of the Service Delivery & Utility Manager.

The API of the Service Delivery & Utility Manager (SD&UM) serves as
the point where the OpenIoT platform provides its outcome. In particular, the
module provides the means for:



5.4 Scheduling, Metering and Service Delivery 119

Figure 5.8 “Update Resources” service flowchart.



120 An Open Source Framework for IoT Analytics as a Service

Figure 5.9 “Unregister” service flowchart.

• Executing and delivering the requested services.
• Accessing and processing data streams from the cloud.
• Taking into account processing instructions specified during the request

formulation.
• Keeping track of utility parameters associated with the service, for

example: the time the service is used, the volume of data transmitted,
as well as the number and type of sensors used.

• Managing and maintaining utility data records.

On the basis of the Service Delivery & Utility Manager API, the following
functionalities are supported:



5.4 Scheduling, Metering and Service Delivery 121

• Subscribe for a report: This service enables the user to invoke an
already defined service from the “ServiceDescription” entity. By pro-
viding an application’s destination address (URI) this service will collect
the results from the predefined query (sparqlScript), which is stored at
the “ServiceDescription” entity, and deliver it to the application via the
Callback Service.

• Callback Service: this service is instantiated by the “Subscribe for a
report” service and invoked based on the schedule defined by the user
at the service registration time. If the query is executed normally, the
callback service invokes the callback results service.

• Callback results: By invoking the callback results the SD&UM will
attempt to deliver results to the subscriber application.

• Unsubscribe for a report: This service is invoked by the user and
deactivates the “Subscribe for a report” one. The previously registered
subscription removal is identified by the user by providing a unique
subscription ID.

• Poll for a report: This service enables the user to invoke an already
defined service from the “serviceDescription” entity. The difference with
the “subscribe for a report” service is that it enables the user to execute
the predefined query with modified parameters (i.e. give me the results
of the last 30 min) and that this call will produce a single Result Set (it
will be executed only once and then it will be dropped). In case the query
executes normally, the “Poll for a report” service invokes the callback
results service.

• Get the utility usage of a user: This service enables the user to retrieve
the utility usage involved for a specific user. By providing the user’s ID the
“Get the utility usage of a user” service retrieves the related services with
the specific user from the “serviceDescription” entity. It then collects the
usage history from the “utilityUsageHistory” entity and by using special
utility usage algorithms and in relation with the policies applied for the
provided services, it returns the overall usage/cost of the platform for the
selected user.

• Get the utility usage of a registered service: This service enables
the user to retrieve the utility usage related with a specific registered
service. By providing the “serviceID” it collects the usage history
from the “utilityUsageHistory” entity and by employing special utility
usage algorithms combined with the charging policies specified for the
provided services it returns the usage/cost of the platform for the selected
service.



122 An Open Source Framework for IoT Analytics as a Service

• Record utility usage of a service: This service is invoked from the “Poll
for a report” and the “Callback service” services. On its invocation the
volume of the requested data and the type of resources used, are stored
to the “utilityUsageHistory” entity for later use from the “Get the utility
usage of a registered service” and the “Get the utility usage of a user”
services.

• Get service status: This service enables the user to retrieve the status
of a specific service by providing the service ID. The registered service
status service shall check the “serviceStatus” entity and send to the user
all the available information.

• Get service: This service is used to get the description of a registered ser-
vice. This information is retrieved by accessing the “serviceDescription”
entity.

• Get the available services: This service provides the ability to a user
to collect a list of registered services related with a specific user. These
service IDs are available from the “serviceDescription” entity.

• Get User: This service is used by the OpenIoT platform’s access controls
mechanisms so as to retrieve a user’s information, access rights and
restrictions in order to implement data filtering and access rights.

Note that to be able to invoke the “Subscribe for a report”, “Unsubscribe
for a report”, “Poll for a report”, “Get the Utility Usage of a User”, “Get
Service”, “Get User” and “Get the available Services” services the user must
first get logged-in to the system by authenticating with his/her ID. Moreover
the results provided to the user are prior filtered based on his/her account
restrictions and the resources which are accessible based on his/her profile. The
account restrictions data are provided by the “user” and the “accessControl”
entities.

5.5 Sensing-as-a-Service Example

Following paragraphs illustrate the process of establishing a fully deployable
service (from data Capturing to Visualization) using the OpenIoT reference
framework and its Sensing-as-a-Service capabilities.

5.5.1 Data Capturing and Flow Description

In this example, weather sensors are deployed in the central area of Brussels
producing data (wind chill temperature, atmospheric pressure, air temperature,
atmosphere humidity and wind speed).



5.5 Sensing-as-a-Service Example 123

The data are captured using the GSN middleware1 through a special
wrapper (i.e. residing at the physical plane of the architecture depicted in
Figure 5.1) which collects the Weather Station’s data every 4 hours. This
is where the first level of data filtering occurs, whereas the weather station
produces data in a higher rate, in this scenario we are interested in a four
hour sampling rate. The captured data are following a sensor type created for
this occasion (named after “Weather”). The “Weather” sensor type is used to
semantically annotate the captured data at the GSN level. One GSN instance
is running for every weather station so after X-GSN announces the existence
of each sensor (bound with a specific sensor id) it starts to push the captured
data to Linked Sensor Middleware (LSM) components, which comprises an
RDF Store and is deployed in a private cloud environment (the virtualized
plane of the architecture Figure 5.1).

Then it is time to set up the service by using the Request Definition (the
utility/application plane of Figure 5.1) tool with the help of which we will
discover these sensors (by using the Scheduler), describe the request and
send it to the Scheduler (the virtualized plane of Figure 5.1) to handle it. The
Scheduler decomposes the request and registers it to LSM. The information
that should be accessed and processes in this scenario is the wind chill
temperature versus the actual air temperature in the area of Brussels for the
dates between 01/07/2014 and 01/28/2014.

The SD&UM (the virtualized plane in Figure 5.1) retrieves on demand
the formulated request executes the involved queries and feeds the Request
Presentation (i.e. the utility/application plane of the OpenIoT architecture)
with presentation data. The last step would be for the Request Presentation to
presents the received data in the predefined widgets.

The presented high level description of the data flow at the virtualized and
utility/application planes is in following paragraphs built and presented as an
OpenIoT Sensing-as-a-Service application.

5.5.2 Semantic Annotation of Sensor Data

The association of metadata with a virtual sensor is performed through an
appropriate metadata file. For example, a virtual sensor named Brussels
weather.xml will have an associated metadata file named Brussels weather.

1Also called X-GSN (extended GSN) in the context of OpenIoT, where an enhanced version
of the original GSN middleware that supports semantic annotation of virtual sensors has been
deployed.



124 An Open Source Framework for IoT Analytics as a Service

metadata. The metadata file contains information such as the location (in coor-
dinates), as well as the fields exposed by the virtual sensor. This also includes
the mapping between a sensor field (e.g. airtemperature) and the correspond-
ing high-level concept of the ontology (e.g., http://openiot.eu/ontology/ns/
AirTemperature).

5.5.3 Registering Sensors to LSM

Sensors can be registered to the LSM middleware (and its cloud datastore) by
executing an appropriate script (i.e. lsm-register.sh (on Linux/Mac) or lsm-
register.bat (on Windows)). This script takes as argument the metadata file
name. After this, the corresponding metadata in RDF will have been stored in
LSM. An example is illustrated in the following table:



5.5 Sensing-as-a-Service Example 125

5.5.4 Pushing Data to LSM

In order to push data to LSM, the LSMExporter processing class is
internally used by GSN/X-GSN. This is specified in the virtual sensor
configuration file:

Then, when X-GSN starts, it begins to acquire the data through the wrapper
and automatically generating the RDF data for each observation, storing
it in LSM.

Each observation will be assigned a unique URI, e.g.
<http://lsm.deri.ie/resource/29925179667811>
Then, you can query the Virtuoso server, to see the updated data, with the

SPARQL query shown in the following table:

and get the results shown in the following table:



126 An Open Source Framework for IoT Analytics as a Service

Once the data is in LSM, it can be accessed by the other OpenIoT components.

5.5.5 Service Definition and Deployment Using OpenIoT Tools

The first step, towards building a request for Sensing-as-a-Service, would be
to log in to the Request Definition by using our credentials (Figure 5.10).

By logging in our profile is loaded and all our previously defined services
are available to view or edit (Figure 5.11). A new Application can be created
through the “File” menu (Figure 5.12).

As a first step, the available sensors should be discovered, using the
magnifying glass at the data sources toolbox. In the map that appears we
look up for the Brussels area and we add a pinpoint to the map. Then we set
the radius of interest and we hit the “Find sensors” button (Figure 5.13 [9]).

Figure 5.10 Request definition log in.



5.5 Sensing-as-a-Service Example 127

Figure 5.11 Request definition loaded profile.

Figure 5.12 New application creation.

This request is send to the Scheduler that in its turn queries LSM for
available sensors in this area. The reported, from LSM, sensor types are sent
to the Scheduler that in its turn sends to the Request Definition so as to fill
the available “Data sources” toolbox (Figure 5.14). As we can see two sensor



128 An Open Source Framework for IoT Analytics as a Service

Figure 5.13 Sensor discovery in Brussels area.

types are deployed in that area (weather sensors and Integra Traceability Kiosk
sensors).2 By dragging and dropping the blocks from our toolbox we start to
build our request. We drag and drop the “weather” sensor type and as we can
see all the sensor type observations (outputs) are available to interact with
(wind chill temperature, atmospheric pressure, air temperature, atmosphere
humidity and wind speed).

A “Selection filter” from the “Filters & Groupers” toolbox is required.
The one side of it is connected with the node and the other one with a
“Between” comparator that has already been dropped to the workspace from
the “Comparators” toolbox. We set up the “Between” comparator between
“01/07/2014” and “01/28/2014” (three weeks) which are the dates of interest

2ITK is a multi-sensor device for track & trace applications in manufacturing and used in
the scope of other OpenIoT applications.



5.5 Sensing-as-a-Service Example 129

Figure 5.14 Comparator (between) properties.

to us to collect our data (Figure 5.14). The next step is to add a “Group” node
from the “Filters & Groupers” toolbox which we are going to use so as to
group the Wind Chill and Air Temperature by Year/Month/Day (see Figure
5.15 [9]) which is selected through the node’s options. The Wind chill and
Air temperature outputs of the “weather” node are connected to the “Group”
node attributes and automatically. As shown in Figure 5.16, these outputs are
generated also to the “Group” node.

Since we need the average values for every day, we drag and drop two
“Average” nodes from the “Aggregators” toolbox to the workspace and we
connect the Wind Chill and Air Temperature outputs to them respectively (see
Figure 5.16). The next step required in order to visualise the output (i.e. two
average values for every day) to a line chart, is to drag and drop a “Line
Chart” from the “Sinks” toolbox. The X axis presents the time and the Y axis
presents/compares the temperature values. At the line chart properties, two
series count are presented (in order to visualize two inputs) and for the X axis
we select date observation as type. Hence, all the day/month/year outputs of
the “Group” node are connected to “x1” and “x2” inputs of the “Line Chart”
node respectively and the Wind Chill and Air Temperature outputs to “y1”
and “y2” inputs respectively (Figure 5.16 [9]).



130 An Open Source Framework for IoT Analytics as a Service

Figure 5.15 Grouping options.

Figure 5.16 Line chart properties.

Following the visual definition of the service, the overall design can be
validated using the “Validate design” option of the “Current application”
menu (see Figure 5.17). This generates automatically the SPARQL scripts



5.5 Sensing-as-a-Service Example 131

Figure 5.17 Validation of the service design.

that describe the graphical representation in our workspace. For every group
of data that provides its output to a widget a different script is generated. In this
specific example there is a need to visualize two different outputs (Wind Chill
and Air Temperature) in one line chart and hence two scripts are generated
(Figure 5.18 [9]).

For testing purposes these scripts could be taken and executed directly
against the SPARQL interface of LSM (e.g., Figure 5.19).

The Request Definition UI can also be used to save (register) the newly
described Sensing-as-a-Service application to the Scheduler (Figure 5.20).

5.5.6 Visualizing the Request

In order to visualize the captured data, one has to log-in to the Request
Presentation UI. Following this log-in the user profile is loaded and the user
is able to view all the services registered under his account. The registered
services are fetched from the SD&UM, which also builds the appropriate
scripts to query this information from LSM (Figure 5.21).

Then we choose the application of interest to us (i.e. “WeatherInBrussels”)
(Figure 5.22).

Accordingly, an empty widget associated with the selected application
is presented. By using the “force dashboard refresh” option from the



132 An Open Source Framework for IoT Analytics as a Service

Figure 5.18 SPARQL script generation.

Figure 5.19 LSM SPARQL endpoint (2 weeks wind chill in Brussels).



5.5 Sensing-as-a-Service Example 133

Figure 5.20 Save application button.

Figure 5.21 Request presentation loaded profile.



134 An Open Source Framework for IoT Analytics as a Service

Figure 5.22 Load “WeatherInBrussels” scenario.

“Current application” menu, the Request Presentation exploits the “poll-
ForReport (serviceID: String): SdumServiceResultSet” rest service of the
SD&UM. This SD&UM service retrieves the previously registered application
from the LSM module, retrieves the involved SPARQL scripts, executes them
against the LSM SPARQL interface, analyses the results, builds a list of the
results and how to present them to the widget and finally sends these data to
the Request Presentation module where the result is visualized (Figure 5.23
[9]). The result is a filtered result set from the initially raw data stored to the
database every 4 hours of the average Wind Chill temperature versus average
Air temperature in Brussels for the specified time interval.

5.6 From Sensing-as-a-Service to IoT-Analytics-
as-a-Service

Earlier paragraphs have illustrated the Sensing-as-a-Service paradigm, along
with its practical implementation based on the OpenIoT open source project



5.6 From Sensing-as-a-Service to IoT-Analytics-as-a-Service 135

Figure 5.23 Wind chill vs. air temperature in Brussels line chart.

and the tools that it provides. The Sensing-as-a-Service paradigm as imple-
mented by OpenIoT involves:

• Dynamic selection of (virtual) sensors from the set of sensors that are
registered with the (RDF-based) directory services. This selection of
sensors is empowered by the semantic unification of diverse data streams,
which is supported by OpenIoT on the basis of the semantic annotation
of virtual sensors and their observations.

• Definition of IoT data processing functions over the selected IoT data
sources based on functionalities that can be expressed as SPARQL
queries. Note that SPARQL does not enable the definition and execution
of sophisticated data analytics functions. Rather, it is limited to supporting
simple statistical processing functionalities such as the calculation of
sums, averages and variances over observations provided by the selected
virtual sensors and/or groups of virtual sensors.

Hence, the introduced Sensing-as-a-Service functionalities do not provide
the means for non-trivial data analytics based on data mining and machine



136 An Open Source Framework for IoT Analytics as a Service

learning schemes. Nevertheless, the extension of infrastructures like OpenIoT
with analytics functionalities is straightforward. In particular, such an exten-
sion entails the following steps:

• Integrating an analytics framework (such as the R project) in order to
support the execution of machine learning functionalities.

• Implementing a data pre-processing (i.e. data preparation) layer, aiming
at transforming the IoT data streams from the OpenIoT cloud to a format
compatible with the analytics framework (e.g., R).

• Enhancing the concepts of the ontology in order to support additional
devices, data streams and data analytics properties in a way that ensures
the semantic unification of the various data streams to be produced prior
to their integration to the analytics framework.

These steps provide a sound basis for advancing a Sensing-as-a-Service
infrastructure to the IoT Analytics as a Service one. However, additional
enhancements can be also implemented in order to ensure more scalable and
high performance processing, through for example considering data storage,
network latency and processing performance factors.

5.7 Conclusions

This chapter has focused on a special case of IoT/cloud integration, which
entails the dynamic selection of sensors and the processing of their data
towards a Sensing-as-a-Service paradigm. In addition to introducing the main
principles of Sensing-as-a-Service, the chapter has also presented the practical
aspects of this paradigm, based on a award-winning OpenIoT open source
project. The latter provides technology and ease-to-use (visual) tools that
enable the dynamic selection of virtual sensors from a cloud infrastructure
and the subsequent processing of their data on the basis of functionalities that
are provided by the SPARQL query language. The use of SPARQL as a data
processing utility is enabled due to the semantic unification of the various IoT
data streams, regardless of the (virtual) sensor that provides them. To this end,
all IoT data streams are semantically annotated in order to comply with the
same ontology. Overall, the OpenIoT project can be seen as a blueprint for
implementing similar Sensing-as-a-Service systems.

The Sensing-as-a-Service paradigm can be also seen as a foundation for
the implementation of IoT-Analytics-as-a-Service, through integrating more
sophisticated data analytics capabilities over baseline Sensing-as-a-Service



References 137

infrastructures. The latter provide a sound basis for IoT-Analytics-as-a-
Service, since they offer the ever important data collection and semantic
unification parts. We can expect a rise of IoT-Analytics-as-a-Service infras-
tructures in the near future, as enterprises are likely to seek opportunities for
outsourcing complex the IoT analytics tasks to a cloud provider.

Acknowledgements

Part of this work has been carried out in the scope of the OpenIoT project
(openiot.eu), which has been co-funded by the European Commission in the
scope of the FP7 framework programme (contract No. 287305).

References

[1] Christian Vecchiola, Rajkumar Buyya, S. Thamarai Selvi. Master-
ing Cloud Computing. 1st Edition, Foundations and Applications
Programming, Elsevier Print ISBN 9780124114548 Electronic ISBN
9780124095397.

[2] John Soldatos, M. Serrano and M. Hauswirth. Convergence of Util-
ity Computing with the Internet-of-Things, International Workshop on
Extending Seamlessly to the Internet of Things (esIoT), collocated at the
IMIS-2012 International Conference, 4th–6th July, 2012, Palermo, Italy.

[3] John Soldatos, Nikos Kefalakis, et. al. OpenIoT: Open Source Internet-of-
Things in the Cloud. Lecture Notes in Computer Science, invited paper,
vol. 9001, (2015).

[4] Martin Serrano, John Soldatos. IoT is More Than Just Connecting
Devices: The OpenIoT Stack Explained, IEEE Internet of Things
Newsletter, September 8th, 2015.

[5] Martin Serrano, Hoan Nguyen Mau Quoc, Danh Le Phuoc, Manfred
Hauswirth, John Soldatos, Nikos Kefalakis, Prem Prakash Jayaraman,
Arkady B. Zaslavsky. Defining the Stack for Service Delivery Models and
Interoperability in the Internet of Things:APractical Case With OpenIoT-
VDK. IEEE Journal on Selected Areas in Communications 33(4):
676–689 (2015).

[6] Karl Aberer, Manfred Hauswirth, Ali Salehi. Infrastructure for Data
Processing in Large-Scale Interconnected Sensor Networks. MDM 2007:
198–205.



138 An Open Source Framework for IoT Analytics as a Service

[7] Martin Serrano. Applied Ontology Engineering in Cloud Services, Net-
works and Management Systems. Springer publishers, March 2012. Hard-
cover, pp. 222 pages, ISBN-10: 1461422353, ISBN-13:978-1461422358.

[8] N. Kefalakis, S. Petris, C. Georgoulis, J. Soldatos. Open Source semantic
web infrastructure for managing IoT resources in the Cloud. Book Chap-
ter “Internet of Things: Principles and Paradigms”, Elsevier Science,
2016, ISBN 978-0-12-809347-4.

[9] N. Kefalakis, J. Soldatos, A. Anagnostopoulos, and P. Dimitropoulos.
A Visual Paradigm for IoT Solutions Development in Interoperability
and Open-Source Solutions for the Internet of Things, Springer, 2015,
pp. 26–45.

[10] J. Soldatos, N. Kefalakis, M. Serrano, and M. Hauswirth. Design princi-
ples for utility-driven services and cloud-based computing modelling for
the Internet of Things. Int. J. Web Grid Serv., vol. 10, no. 2, pp. 139–167,
2014.


