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8.1 Introduction

The Internet-of-Things (IoT) is becoming mature. It is moving from the
research labs into production environments. In the initial phase, there are
mainly small installations focused on a specific application, but, on the hori-
zon, real and wide-scale deployments become visible, especially for realizing
the concept of smart cities. From a few sensors providing us, for example,
with weather information, we will get to large scale installations monitoring
and influencing a wide range of aspects including traffic, energy, water,
building infrastructures and public safety, all of which are highly relevant
for the smart cities of the future. The true value of such IoT deployments
can only be reached if the raw data gathered is processed and higher level
information is derived that provides true insights into the real-world situation
enabling humans or machines to take actions. The basis for deriving such
information is provided by IoT analytics. Individual measurements, e.g., if
individual cars or persons are passing a certain spot, may only provide limited
benefits, but if the overall traffic situation can be derived or the behaviour
of crowds can be determined, suitable actions can be taken. This requires a
scalable IoT infrastructure, which can scale with the number of information
sources, in particular sensors, the number of different applications and the
number of users. To achieve scalability we need to look at all elements of
the IoT infrastructure, from sensor nodes with limited resources, to local
communication networks, gateways, networks and backend systems. Current
IoT architectures typically integrate devices – using a range of different
technologies–through gateways. Gateways connect the often resource con-
straint devices to the backend infrastructure. Information from the devices
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like sensor measurements are pushed into a logically centralized backend
infrastructure. Cloud technologies are used for achieving scalability with
respect to storage and processing power. Analytics in the backend can be
provided with all the storage and processing power needed. Nevertheless,
such infrastructures have their limitations:

• If the sheer amount of data overloads the network infrastructure connect-
ing the gateways to the backend infrastructure, e.g. in the case of video
cameras providing a stream of high-resolution images.

• If very fast response times are required for local actuations and the
network introduces significant delays.

• If the raw data is not supposed to be stored, e.g. due to privacy
information, and only processed results may be provided.

• If the frontend is provided by a different stakeholder who does not want
to/is not allowed to provide the raw data.

In all these cases, IoT architectures that only support analytics in the backend
are not suitable. The processing should take place in the frontend – at
the edge of the network. This requires devices, gateways or specialized
servers that are capable of doing the required analytics. In the case of
a smart city, the IoT infrastructure needs to be able to support dynami-
cally changing IoT devices as well as changing application requirements.
In order to do so, analytic functions need to be dynamically deployed
and adapted. In the following, we look at the state of the art, first with
respect to the currently dominating cloud-based IoT architectures for ana-
lytics (Section 8.2) and show how analytics for crowd estimation can be
supported in such a setting. Then we discuss in-depth key challenges for
such architectures (Section 8.3). This is followed by a discussion of the
state of the art for edge computing and a proposal for an edge-based smart
city platform supporting analytics (Section 8.4). Crowd mobility is used
as an example to showcase how use cases can benefit from edge-based
IoT analytics. Finally, Section 8.5 provides a conclusion and an outlook on
future work.

8.2 Cloud-based IoT Analytics

As first, in this section, we will investigate the cloud-based approach for IoT
analytics which is the most commonly used by concrete smart cities and
adopted by many projects, either funded by the European Commission or
by nations, with the scope of creating smart city systems. We will describe a
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first example of cloud-based city platform for BigData analytics called City
Data and Analytics Platform (CiDAP) and a real use-case of cloud-based data
analytics such as a crowd estimation system.

8.2.1 State of the Art

Lots of efforts from both industry and academia have been made towards
smart cities, but most of them focus on infrastructure construction, data
collection, testbed deployment, or specific services/applications development.
To support IoT analytics for smart cities, one of the key enablers is to build
up a flexible and efficient big data analytics platform between connected data
sources and applications. There are only a few studies already exploring big
data platforms for smart cities, mainly in the Cloud environment. Examples
include SCOPE [4] which is a Smart-city Cloud-based Open Platform and
Ecosystem from Boston University, and FIWARE [2] which provides some
building blocks for the development of a smart city platform based on the
NGSI (Next Generation Service Interfaces) standard. Meanwhile, there are
some ongoing projects trying to explore the opportunities and challenges of
BigData for smart cities at the platform level, such as CityPulse [5], an ongoing
European project exploring real-time stream processing and large scale data
analytics for smart city applications. In addition, Singapore is building a
new smart city platform called SmartNation [6] to enable greater pervasive
connectivity, better situational awareness through data collection, and efficient
sharing of collected sensor data. Several concrete smart-city architectures
involving data analytics have been proposed. For example, in [19] describes
the achievements of building an event driven architecture of a smart city for
monitoring public area and infrastructure. All the data is seen as an event. An
event can be a new measurement or a discovery of a complex event. The data
coming from the Wireless Sensors Network or other subsystems (i.e. CCTV)
may be filtered out or aggregated and passed to a cloud-based control center
where the raw event (or almost-raw in case of aggregated data) are merged
and correlated. The outcome of this processing is the creation of more and
more abstracted data from less abstracted data. In case of event above certain
threshold the control center would send commands back to the WSN. The
analytics involved in this approach is a progressive refining of the available
events till a decision. Therefore, the analysis is limited to real-time data and
to very specific purposes (like event merging, event correlation or threshold
checks). A similar example is described in [15], where a central reasoner is in
charge of evaluating incoming aggregated data from SensorActuator Network
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(SAN). Also, in this solution the analysis is conducted only over real-time data
aggregated on the edge with the target of discovery potential critical situations.
Aside from the mentioned projects above, there are industrial companies
which are advertising their smart city data platforms, like IBM [25], AGT
[29], Microsoft [3]. Some companies are also offering ready-to-use generic
purpose IoT Platforms with embedded IoT analytics features. For example, the
AmazonAWS IoT [14] is a platform capable to automatically scale in the cloud
according to the load. The IoT data can be forwarded to other Amazon cloud-
based services (e.g. for stream processing, for machine learning applications
or for storage purposes).Another solution, more in the industrial plant context,
is offered by General Electric [20]. Predix cloud offers capability to connect
the gathered data from multiple Predix machines to data analytics service
(time series and data analytics orchestration) and several storages options.
Also, IBM offers a cloud based platform for IoT: [21]. The idea is to connect
the devices or the gateways via MQTT directly to the platform. Once the data
is managed in the cloud, the platform is offering integration to many services
like analytics (e.g. data streaming processing, predictive analytics, geospatial
analytics) and storage (e.g. SQL, NoSQL, time-series etc.).

8.3 Cloud-based City Platform

Typically, for a cloud-based smart city platform the following design issues
must be taken into account: First, how to design an efficient storage system to
manage a large amount of heterogeneous IoT data? Second, how to deal with
both historical data and real-time data in the same platform infrastructure?
Third, how to design flexible and generic application interfaces for both
internal platform applications and external smart city applications? In this
section we explain how these issues can be addressed in a live smart city
BigData platform called CiDAP. Currently, CiDAP has been in production
for several smart cities globally, such as Santander in Spain, Wellington in
New Zealand, and Tokyo in Japan. The CiDAP platform is architecturally
scalable, flexible, and extendable in order to be integrated with different
scales of smart city infrastructures. The CiDAP platform has been deployed
and integrated with a running IoT experimental testbed SmartSantander, one
of the largest smart city testbeds in the world. Within the SmartSantander
testbed, more than 15,000 sensors (attached with around 1,200 sensor nodes)
have been installed around an area of approximately 35 square kilometer in
the city. A large proportion of the sensor nodes are hidden inside white boxes
and attached to street infrastructure such as street lamps, buildings and utility
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poles, while others are buried into the pavement, e.g., parking sensors. Not all
of the sensors are static; some are placed on the city’s public transport network,
including buses, taxis and police cars. The deployed sensors provide real-time
information regarding different environmental parameters (light, temperature,
noise, CO2), as well as other parameters like occupancy of parking slots in
some downtown areas.

Here is how the CiDAP platform works at the high level (see Figure 8.1).
First, data with different formats are collected via the IoT-broker [1] from
multiple data sources, then forwarded to the BigData repository CouchDB,
which is a document based NoSQL database. The collected data are then
processed and aggregated by a set of pre-defined or newly launched processing
tasks. The simple processing tasks can be performed by the BigData repository
internally, such as transforming data into new formats or creating new
structured views/tables to index data. Any complex or intensive processing
tasks, such as aggregating or mining data via advanced data analytics, must be
separated from the BigData repository so they can be efficiently and externally
executed over the BigData processing module, which provides more flexible
and scalable computation resource based on a Spark [12] cluster with a large
number of compute nodes. Since the BigData repository can already handle
lightweight processing tasks in a scalable and incremental manner, the BigData
processing module can be optional if we do not need intensive data processing
or analytics. By fetching generated results from the BigData repository or
forwarding messages directly from data sources in the smart city testbed, a
CityModel server is designed to serve queries and subscriptions from external
applications based on pre-defined CityModel APIs. Meanwhile, a web-based
platform management portal is provided to the platform operator to monitor
the status of the entire BigData platform.

All external applications communicate with the CiDAP platform via
the CityModel server based on a REST based API, called CityModel API.
The CityModel API allows application to do simple query, complex query,
and subscription. A simple query requests aggregated results over the latest
status of all sensors, which represent the latest and real-time snapshot of the
entire city testbed, while a complex query can request aggregated results
over the historical data collected within a specified time range. Subscrip-
tion is the mechanism to keep applications always notified with the latest
results so that the application does not have to query the data all the time.
There are two types of subscriptions, CacheDataSub and DeviceDataSub,
as illustrated by Figure 8.2. The difference is CacheDataSub goes to the
data repository CouchDB while DeviceDataSub goes directly to physical



8.3 Cloud-based City Platform 213

Figure 8.2 Subscription mechanisms to get real-time notifications.

devices in the IoT testbed through IoT-broker and IoT-agents. Both of them
are designed to notify applications with real-time changes, but with different
expected latency. The notification latency for CacheDataSub is relatively
longer than the one for DeviceDataSub, because devices will fire notifi-
cations immediately after the requested changes happen, without waiting
for the next report period. Unfortunately, the DeviceDataSub is not fully
working in the integrated system with the SmartSantander testbed because
the sensor nodes in this testbed can only report updates in a passive and
periodic way.

CiDAP is just a concrete example to illustrate how a smart city platform
could be designed to support flexible IoT analytics in a cloud environment. On
the other hand, based on our experiments and experience with CiDAP, we have
also identified certain limitations of the cloud-based solution. For example,
with the cloud-based solution it is difficult to support time-critical use cases
such as autonomous driving and real-time emergency detection, because the
responsive time to react on real-time situation could be more than 10 seconds.
However, this limitation can be overcome by edge-based solutions, which will
be introduced in Section 8.3.

8.3.1 Use Case of Cloud-based Data Analytics

The crowd estimation system is to map a set of sensing readings into a
certain level of crowd density. Figure 8.3 shows the system overview of
cloud-based crowd estimation proposed in [23]. The system is deployed in
a shopping mall, where 23 sensors are installed. The size of the shopping
mall is roughly 90 square meters. The sensors continuously report ambient
information (such as CO2, noise level, temperature, and humidity) to the
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Figure 8.3 System overview of the cloud-based analytics.

BigData repository. In this system, all tasks of data analytics are handled by
Cloud. The task of feature selection chooses the most important information
behind the sensing data which will be the input of the task 2. For each
sensor, the task extracts the mean, standard deviation, variance, minimum
and maximum from sensing readings. In addition, the slope of temperature,
humidity, noise and CO2 readings are considered. The second task trains
a classification model based on the features selected by task 1, where this
task considers four different supervised learning algorithms including Naïve
Bayes Classifier [31], C4.5 [26], Random Forests [17], and Support Vector
Machines [18]. The ground truth is established through human observations,
where the system pre-defines 4 crowd levels from 0 to 3 which are mapped
to “occasional passer-by”, “sparse traffic”, “crowded” and “overcrowded”
respectively.

Based on the observations by the building management office, the crowd
level 0 is mapped to 0–15 people, the crowd level 1 is mapped to 16–30 people,
the crowd level is mapped to 31–45 people, and the crowd level 4 is mapped
to more than 45 people. Finally, the third task performs decision-making to
estimate levels of crowd density when real-time sensing data arrives. Given
a location and features from multiple types of sensing readings, this task can
map those information to a level of crowd density. However, IoT data contains
much useless and redundant information such as zero readings. Meanwhile,
an IoT platform may serve many IoT applications simultaneously and some
of real-time IoT applications may have critical QoS requirements. To support



8.4 New Challenges towards Edge-based Solutions 215

real-time applications, flexible and dynamic data analytical models across
the system will be preferred, where some processing tasks can be offloaded
onto edge.

8.4 New Challenges towards Edge-based Solutions

Different from traditional data analytics like Web analytics and log analytics,
IoT analytics must deal with the following IoT system characteristics:

1. IoT data are usually unstructured stream data and constantly generated
from geo-distributed sensors over time, ranging from time series event
streams to high data rate video streams; sending all raw data to the central-
ized Cloud for further processing will be very costly and also introduce
too much traffic to the underlying network;

2. Mobility and co-location of sensors and actuators, meaning that both
sensors and actuators are possible to move and actuators usually require
data from nearby sensors;

3. Actuators often expect low latency results to make fast actions;
4. Raw data and derived results are also expected to be shared and consumed

across different parties from anywhere, either globally from the Cloud or
locally from a nearby region, because the cost to deploy the infrastructure
of a large-scale IoT system could be very high and the platform and the
sensor data are worth to be shared for maximizing their benefits. All of
these requirements bring new technical challenges to IoT analytics since
problems like data distribution, data reliability, real-time data processing,
processing flexibility, and platform openness need to be considered and
addressed differently.

Regarding the requirements of IoT analytics, there is currently a new trend
to move processing to the edge, where IoT data are generated and analytics
results are consumed. Traditional computing models collect IoT data and then
transmit them to a data center for doing scalable data analytics, but this is no
longer a sustainable and suitable model for large-scale IoT systems.

Our previous experimental results from CiDAP also indicate that some
processing should be shifted from the Cloud down to the edge or IoT devices,
especially when applications expect to have real-time analytics results within
a few seconds or even a sub-second. Since IoT data are not only big, but also
naturally geo-distributed and increasing over time, processing all data only in
the Cloud will introduce high bandwidth cost between the network edges and
the Cloud. In many cases, it would make more sense to process or compress
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data before transmitting the data to the Cloud, or transmit only selected data
or derived results (e.g., anomalies, exceptions, averages). Therefore, for large
IoT systems there is a strong need to do analytics at the network edges.
For edge-based IoT analytics, the following challenges must be taken into
account.

1. Scalability: Edge-based IoT analytics needs to be able to scale up to
thousands of geo-distributed nodes over the wide area network. For
example, if we consider IoT gateways and even users’ mobile phones
as edge nodes, the total number of edge nodes in a large scale IoT
system can be easily over 1000. According to the recent report by Yahoo
[7], supporting over 1000 nodes with Storm within a cluster is already
problematic due to the bottleneck of its zookeeper service component.

2. Task Optimization: A sophisticated task scheduling algorithm is required
to optimize the resource usage and minimize the latency to deliver
analytics results. The underlying network topology of all IoT agents needs
to be considered by the task scheduling algorithm as well, since it can
affect the latency and the bandwidth consumption to produce analytics
results. Also, the task scheduling algorithm needs to be aware of the
geo-locations of sensors and actuators.

3. Flexible Application Interfaces: application developers should have
enough freedom to implement their own processing tasks for any type of
streams, such as event streams, text streams, and video streams. Further,
they should be able to define their application requirements and to access
real-time analytics results from their applications. Although this can be
built on top of existing solutions, none of the latter includes inherent
platform interfaces for supporting this.

4. Multi-tenancy Support: The designed edge analytics platform should
allow multiple users to share the same edge analytics infrastructure by
ensuring efficiency, fairness, and quality of service.This must be achieved
by designing sophisticated task scheduling and resource orchestration
mechanisms. Resource sharing across applications and users is highly
important, since the deployment and maintenance cost for a large-scale
IoT system is still big and its value should be maximized by enabling
more sharing across various applications and users.

5. Openness and Security: Edge-based IoT analytics platform is provided
as a PaaS for a set of IoT applications to do stream-based edge analytics.
Therefore, it will be important to consider the openness and security
issues at the design phase.
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8.5 Edge-based IoT Analytics

In this section we examine the edge-based approach for data analytics, which
is still at a very early stage in the Smart City context and in general in the
Internet-of-Things world. We will introduce our edge-based solution for IoT
analytics, describing the architecture in every components and the system
workflow. Also for this solution we provide a real-use case of IoT analytics
applied to our edge-based solution.

8.5.1 State of the Art

Fog computing is a term first advertised by Cisco, also known as Edge
Computing [30]. Basically it refers to extending cloud computing to the edge
by allowing data processing to happen at the network edges. As reported
by the survey of [16], fog computing has been introduced mainly because
of the strong needs of IoT systems for low latency results and fast decision
makings. Cisco has created a platform called IOx to support fog computing
by hosting applications in a Guest OS running in a hypervisor directly on
the network routers. Like a virtual machine, IOx enables running scripts or
even compiled code at the network edge. Although fog computing providers
like Cisco establish an environment to do distributed computation at edges, to
benefit from such environment enterprises still need a system that determines
which data needs to be processed immediately at the edge and which data
should be moved to the Cloud for further deep analysis. Currently, as compared
with cloud computing, fog computing is still in the very early stage and lacks
sophisticated data analytics platforms that allow us to efficiently utilize the
power of the edges and the Cloud together.

As a new trend, edge-based IoTanalytics aims to leverage the power of both
fog computing and cloud computing to support real time stream processing.
Only a few early stage studies have been done in this area, for example,
a recent work from Carnegie Mellon University [27] proposes a VM-based
edge computing platform for performing video analytics at the network edges,
but it only focuses on video streams and does not consider how to define
topologies to do customized stream processing on top of the edges and the
Cloud. In addition, some industrial systems have been done to explore edge
analytics, such as AGT IoT analytics platform [8], Geo-distributed analytics
from ParStream [11], and Quarks from IBM [13]. However, the details of their
system designs are not open. From what they advertise about their systems,
none of them seems to support multi-tenancy and dynamic topology execution.
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The usage of edge computing in concrete smart cities deployment is usually
meant only for data aggregation [19] or for semantic reasoning on local data
[15]. The computation procedures are statically installed on the edge node and
only pre-defined commands (like threshold settings) can be sent by the central
application.

8.5.2 Edge-based City Platform

To address the above challenges, we introduce our new edge-based city
platform called Geelytics in this section. As an edge-based platform solution
for IoT analytics, Geelytic is not supposed to be a replacement of the cloud
based solution like CiDAP, but rather an enhancement or a complementary
solution to relax the pure cloud-based solution with the capability of edge
analytics.

Geelytics is mainly designed for large scale IoT systems that consist
of a large number of geo-distributed data producers, result consumers, and
compute nodes that are located both at the network edge and in the cloud.
Data producers are typically sensors, connected cars, glasses, video cameras,
and mobile phones, being connected to the system via different types of edge
networks (e.g., Wi-Fi, ZigBee, or 4G, but maybe also fixed networks). They
are constantly reporting heterogeneous, multi-dimensional, and unstructured
data over time. On the other hand, result consumers are actuators or external
applications that expect to receive real-time analytics results from sensor
data and then take fast actions accordingly. Both data producers and result
consumers could be either stationary or mobile. In between them there are lots
of compute nodes geographically distributed at different locations. In general
compute nodes are heterogeneous in terms of resource and data processing
capability and they can be located at different layers of the network. For
example, they could be small data centers at base stations in a cellular network
or IoT gateways in factories or shops.

The Geelytics system is designed as an IoT edge analytics platform
that allows consumers to dynamically trigger certain stream data processing
either at network edges or in the Cloud to derive real-time IoT analytics
results from a set of data providers. At very high level, it works like a
distributed pub/subsystem to interact with geo-located sensors and actuators,
meanwhile having a built-in stream processing engine that can perform on-
demand IoT stream data analytics based on the underlying Cloud-Edge system
infrastructure. As shown in Figure 8.4, the Geelytics platform includes the
following components.
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Figure 8.4 Subscription mechanisms to get real-time notifications.

IoT Agent: each IoT agent represents one worker that is capable of
performing stream processing tasks. In Geelytics IoT agents are deployed on
geo-distributed physical or virtual machines, either in a cluster in the Cloud
or at the network edges. Each agent communicates with the Controller to
report its capability and available resources, accepts incoming tasks from
the topology masters, and instantiates them locally. It can also receive data
streams from nearby sensors and fetch data streams from other remote IoT
agents according to the requirements from its accepted running tasks. All IoT
agents have the same role, but they might be heterogeneous depending on the
processing capabilities and network connections of their host.

Task Container: every schedulable task is wrapped up as an application
container by developers. Based on Docker [9], it can be fast deployed and
executed anywhere by an IoT agent. By design, each running task within
an application container will communicate with its IoT agent via a pub/sub
mechanism, including subscribing input streams and publishing generated
output streams. Using Docker as the environment to run IoT analytics tasks,
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we are able to better support multi-tenancy, because Docker allows us to do
fine-grained resource allocation for each task.

Topology Master: In Geelytics, an IoT analytics application consists of
a set of correlated data stream processing tasks. Each application has a
dedicated topology master to manage all involved stream processing task
instances running in the Cloud or at the network edges. Each topology master
is responsible for monitoring and allocating tasks to different IoT agents. It
requests the current state of all available resources, including all active IoT
agents and their remaining capabilities, network latency and traffic across
IoT agents, and then make decisions on at which IoT agent each task must
be instantiated, regarding the task topology specification and optimization
objectives given by the application developer and the current workload. By
separating Topology Master from the Controller, Geelytics is able to achieve
better scalability as compared with existing stream processing platforms like
Storm. In addition, several task assignment algorithms have been applied by
Topology Master to optimize task allocation between Cloud and edges during
the runtime, with regards to the objectives of reducing bandwidth consumption
and latency.

Controller: all system resources and core components are managed by
the Controller, which is a single central control point of Geelytics running in
the Cloud. It indexes all streams, agents, topologies, and users. For security
reasons, it authenticates all the other components, especially IoT agents, when
they join the system.

Front-end Server: application interfaces are supported by the front-end
server via HTTPREST, enabling that: 1) application developers can submit the
task definition, topology structure, and optimization objectives; 2) actuators
can query or subscribe the analytics results generated by the submitted
application; 3) sensors can register them to a nearby IoT agent; 4) a dashboard
service is provided to check the status of the entire Geelytics system and also
to manage users and applications.

Broker: the Broker is a distributed message exchange system to enable the
communication between different components. To be scalable and flexible, the
Broker must have high throughput and support topic-based message handling.

Global State Storage System: Geelytics is designed to support complex
stream processing tasks, such as machine learning tasks, image or video
processing tasks. For those tasks, it is important to save some of the inter-
mediate states to tolerate unexpected failures. The same concern goes for
the other components as well, such as the Controller, IoT agents, and the
topology master. Therefore a global state storage system is introduced to keep
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all intermediate states and results, using existing NoSQL database systems
such as key-value based Redis or document-based CouchBase.

8.5.3 Workflow

The system platform is initialized in the following sequence. First, the broker
and the global state storage system must be set up independently as two
external sub-systems. Then the Controller is started in the Cloud and it will
launch the front-end server. IoT agents can be started before or after the
controller, but each of them must be authenticated by the controller when
they join the system. As stream data sources, sensors can be attached to an IoT
agent manually or be forwarded to the nearby IoT agent by the controller when
they join the system. After the system is ready, developers need to register a
user account and then start to submit their customized tasks and application
topologies. Once a new application is submitted, the Controller will allocate
proper resources for the application according to its requirements and then
return a URL address to the actuators of this application for accessing the
analytics results.

8.5.4 Task and Topology

As the example in Figure 8.5 shows, in Geelytics a data analytics application
is defined by a task topology, which specifies the relationship between
different stream processing tasks within the application. Based on the task
topology, a processing topology will be created on the fly to handle the
current workload. The processing topology consists of a set of running task
instances, allocated by the topology master to the network edges or the Cloud,
up to where the involved data sources are located and where the results are
demanded by the actuators. In Storm a processing topology is constructed
when the task topology is submitted, according to the parallelism of each
task defined by the developer. In contrast, in Geelytics all data streams
generated by each task in the task topology are accessible to actuators and
the processing topology is constructed and changed as actuators join and
leave.

In Geelytics the way to implement a task is flexible. A task just needs
to follow a pub/sub communication interface to fetch the input streams and
publish the output streams and a set of parameters are configured with the
task to decide which input streams to bring in. However, how to handle the
input streams within the task is a black box for Geelytics. Developers can use
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Figure 8.5 Task topology and processing topology.

any image/video processing or machine learning library to implement their
tasks in any programming language, because they can wrap up all dependent
libraries into a single Docker container image. In addition, all tasks can
use the interface of the global state storage system to save or retrieve their
state data.

8.5.5 IoT-friendly Interfaces

Geelytics also provides friendly interfaces for both data producers and result
consumers to interact with the system. In Geelytics all data producers report
their availability, profiles, and data streams to the system, managed by a
repository based on ElasticSearch [10]. The way to fetch the data streams
generated by data producers can be push-based or pull-based. In the push-
based approach, data producers publish their stream data to the MQTT broker
on the nearby compute node; while in the pull-based approach, data producers
just announce the URLs of their streams, and later on it is up to task instances
to fetch the data directly. A data producer first has to ask the controller to
find a nearby worker and then registers its data stream via the nearby worker
with the following details: its device ID and location, the generated stream
type, and the manner to provide the stream data (push-based or pull-based).
A unique ID will be returned to the producer as the global identity of its data
stream. If the stream is pull-based (for example, a web camera), a URL must
be provided for accessing data as well; if the stream is push-based, using the
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unique ID as the topic, the producer publishes the generated data to the broker
provided by the nearby worker via MQTT.

A result consumer also needs to ask the controller to find a nearby worker
first. After that, it sends a scoped subscription to the nearby worker for
triggering some real-time data processing over the specified data sources.
A subscription ID is returned to the consumer to make a further subscription
to the broker. The consumer can receive the subscribed results as soon as they
are produced by the triggered task instances in Geelytics. Those running tasks
will be terminated once the consumer decides to unsubscribe to the result or
its leaving without notice has been detected.

8.6 Use Case of Edge-based Data Analytics

A real use-case for edge-based data analytics is the study of crowd mobility
pattern analysis and prediction. In the next subsections we are going to
examine how we can design such application and how it is fitting in the
Geelytics platform.

8.6.1 Overview of Crowd Mobility Analytics

Crowd mobility analytics investigate how many people in a certain area and
how they move from one area to the others which can provide insights for
various IoT applications. For example, stadium operators may need to know
the number of people in a big event in case of emergencies, and airport or
public transport operators may need to know passenger flows for predictable
service enhancement and maintenance scheduling.

Figure 8.6 shows the overview of the crowd mobility analytics system,
where the IoT platform consists of data sources, edge nodes, and cloud nodes.
The data sources include Wi-Fi sensing stations and ambient sensors. Each
Wi-Fi sensing station captures Wi-Fi probe requests broadcast by mobile
devices from time to time, while ambient sensors include CO2, noise,
temperature, humidity, and motion sensors which capture the influence of
human mobility on the environment. Each edge node serves as a local data
aggregator to connect to cloud nodes. Cloud nodes cooperate with edge nodes
though shared backed database. Since the architecture of edge-based data
analytics provides a more flexible task processing topology, it opens up more
opportunities for processing data streams in a pipeline way which can speed
up data analytics. Thus, the crowd mobility analytics decompose the mobility
data analytics into six processing tasks based on the dependency among tasks:
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(1) Wi-Fi sensing, (2) data filtering, (3) privacy preservation, (4) real-time
crowd statistics, (5) mobility model learning, and (6) mobility prediction.
The first three ones are lightweight sensing and data pre-processing tasks
which will be assigned to edge nodes, while the latter three tasks are
computation-intensive which will be assigned to cloud nodes.

8.6.2 Processing Tasks and Topology of Crowd
Mobility Analytics

Since edge nodes have enough capabilities to run simple routine, the pro-
cessing topology of crowd mobility analytics is designed to decouple the
computation complexity between cloud and edge nodes.

First, we introduce the three lightweight tasks allocated to edge nodes as
follows.

• Task 1: sensing. We build passive sensing stations to capture Wi-Fi
packets broadcast by mobile devices and sensing readings, where each
sensing station was build using a Raspberry Pi 2 with Arch Linux, a
Wireless LAN USB Adapter, and ambient sensors.

• Task 2: data filtering. Since the previous sensing task captures all of
Wi-Fi packets including dense beacons, this task picks up only Wi-Fi
probe requests and represents sensors readings as a common format.
Meanwhile, this task transforms the raw sensing data into a structured
format for further mobility analysis in cloud nodes. For each Wi-Fi
probe request packet, the system extracts the BSSID, the Wi-Fi channel
on which the packet has been sent, the source and destination MAC
addresses, the time when the packet has been detected, and the Wi-Fi
device vendor inferred from the first 3 bytes of the MAC address.

• Task 3: privacy preservation. To avoid exposing identities of mobile
users, edge nodes perform MAC address anonymization for the privacy
preservation purpose. Thus, each edge node sends hashed MAC addresses
to the backend database using a SHA-1 algorithm [22].

Afterwards, cloud nodes perform the following three key tasks: real-time
crowd statistics, mobility model learning, and mobility prediction.

• Task 4: real-time crowd statistics. This task performs feature extraction
and statistical analysis based on the results from many instances of Task
3 in a real-time way. The extracted features include the mean, maximum,
minimum, and standard deviation of sensing readings from ambient
sensors. The statistical analysis results include the number of mobile
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devices, distribution of device brands, and the number of mobile devices
moving from one sensing area to the others based on the Wi-Fi.

• Task 5: mobility model learning. Based on these features extracted in
Task 4, this task trains a classification model to estimate the number of
mobile users in a certain area.

• Task 6: mobility prediction. Based on captured Wi-Fi probes, the task
models human mobility as a finite Markov Chain [28] which represents
mobility behaviour of public crowds instead of focusing on each indi-
vidual’s mobility trajectories. The behavioural characteristics of crowd
mobility can be mapped to a level of crowd which explains how many
people staying in a certain area. Furthermore, we can use this model to
predict crowd levels based on the statistical analysis of mobility flows
among multiple areas.

8.7 Conclusion and Future Work

In this article we discuss the technical challenges to support flexible IoT
analytics for smart cities from a platform perspective. As the scale of IoT
devices in a smart city is fast growing and fast response time is highly
demanded by more and more smart city use cases, for IoT analytics there is a
new technology trend to move data processing from the cloud to the network
edges. With two concrete platform examples, namely CiDAP and Geelytics,
we illustrate this new technology trend and show use cases can benefit
from them.

For the time being, CiDAP focuses more on the cloud side while Geelytics
focuses more on the edge side. However, Geelytics is not supposed to replace
CiDAP as an alternative solution, but rather enhance it as a complementary
solution. For example, Geelytics is good at processing stream data both in
the cloud and at edges, but it is not a good choice for dealing with large scale
historical data in the cloud, which is the strength of CiDAP. Therefore, it makes
sense to integrate CiDAP and Geelytics to have a more advanced and unified
platform for IoT analytics, which can utilize both edge computing and cloud
computing. This is one of the future steps in the short term. In addition, we
are further working on the task assignment algorithms in Geelytics to support
mobility aware IoT analytics for moving objects, such as connected cars and
flying drones.

In the long term, we are working on the issue of semantic interoperability
to support advanced IoT analytics that can utilize the data from various data
sources across different application domains. In a smart city, relevant data
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could come from various data sources, either in the same IoT system, from
other IoT systems or even from more traditional IT systems whose content
may be entered by humans. Semantic interoperability will allow us to interact
with various data sources with ensured consistency of the data across systems
regardless of individual data format. The semantics can be explicitly defined
using a shared vocabulary as specified in an ontology.

For IoT to be successful, standardized solutions are needed – be it formal
standards or de-facto standards developed as part of industry alliances or
open source communities. In CiDAP we are making use of the OMA NGSI
Context interfaces that are at the core of FIWARE [2] Platform. We are
also actively participating in the oneM2M [24] standardization. Ultimately,
important functionalities developed and explored in our research prototypes
need to become part of standardization. Different standards have to be aligned
and gaps in standardization have to be identified and closed.

Regarding semantic interoperability, we have integrated basic semantic
functionality into oneM2M. Based on this we have done an experiment to show
how semantic information can be used for converting IoT data in oneM2M into
the NGSI data format used in FIWARE. We are now planning to generalize
the approach using the concept of mediation gateways.

For the future work, we would also like to consider the security and privacy
issues in IoT analytics for smart cities. We have done some work to ensure
the secure communication between different components in both CiDAP and
Geelytics, but this is still the basic step to ensure security. With the support
of edge analytics, the IoT analytics platform is now geographically deployed
with the extension further down to the edges, like mobile base stations, IoT
gateway, and even some endpoint devices as well. In this case, it is becoming
more challenging to secure the platform and IoT data.

For example, some intrusion detection might be needed to detect attacks
and potential threats in real time. The research on privacy in IoT is still at an
early stage, but will be an essential point for the adoption of IoT on a large
scale.
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