
1
Introduction

The availability of highly parallel computing platforms based on multi
and manycore processors enables a wide variety of technical solutions for
systems across the embedded and high-performance computing domains.
However, large scale manycore systems are notoriously hard to design and
manage, and choices regarding resource allocation alone can account for
wide variability in timeliness and energy dissipation, up to several orders
of magnitude. For example, the allocation of many computation-centric jobs
to the same processing core, or communication-intensive jobs to cores linked
by a low bandwidth interconnect, can significantly impair system performance
specially in applications with many dependencies between jobs.

Techniques to allocate computation and communication workloads onto
processor platforms have been studied since the early days of computing.
However, this problem has become significantly harder because of scale
and dynamicity: compute platforms now integrate hundreds to thousands
of processing cores, running complex and dynamic applications that make it
difficult foresee the amount of load they can impose to those platforms.

Elementary combinatorics provides us with evidence of the problem of
scale. For a simple formulation of the problem of allocating jobs to processors
(one-to-one allocation), one can see that the number of allocations grows with
the factorial of the number of jobs and processors. For example, a system with
4 jobs and 4 processing cores can have P (4, 4) = 24 possible allocations, but
simply by doubling the number of jobs and cores the number of allocations
becomes P (8, 8) = 40320 (where P (n, k) denotes the k-permutations of n).
The empirical evidence points in the same direction, as it can be seen in [110]
that for realistic manycore embedded systems (40–60 jobs, 15–30 processing
cores) a well-tuned search algorithm had to statically evaluate hundreds of
thousands of distinct allocations before it finds one that meets the systems
performance requirements.

To cope with dynamicity, a dynamic approach to resource management is
the most obvious choice, aiming to dynamically learn and react to changes to
the load characteristics and to the underlying compute platform. The baseline,
which is a static allocation decided before deployment based on the (nearly)

1

2 Introduction

complete knowledge about the load and the platform, is no longer viable. For
example, static resource allocation in high-performance computing (HPC) has
often been referred as a significant cause of low utilization of servers, which
results in cost increases on hardware and energy [17]. Static allocation is
also commonly used by aerospace and automotive industries to provide worst
case performance guarantees that are required by certification authorities.
However, it is well known that such an approach usually leads to under-utilised
computing and communication resources at run-time [113].

The problems of scale and dynamicity are also made harder with the
increasing density of computing and communication resources. The definition
of density used here is not necessarily spatial, but rather on connectivity (i.e.,
dense graph). In densely connected systems, a resource allocation algorithm
may have to make decisions very often due to the system dynamics, and may
have to consider dozens or hundreds of potential allocation possibilities at each
decision point (i.e., which processor should execute each job, which communi-
cation links should be used when those jobs exchange data). Furthermore, such
algorithms have to work in a distributed way due to the difficulty to obtain the
up-to-date state of the whole system.And despite such levels of complexity, the
algorithms themselves are also subject to tight constraints in performance and
energy. It is then evident that optimal resource allocation algorithms cannot
cope with this type of problem, and that lightweight heuristic solutions are
needed.

This book is therefore concerned with the kinds of resource allocation
heuristics that can cover different levels of dynamicity, while coping with the
scale and complexity of high-density manycore platforms.

1.1 Application Domains

The level of dynamicity of a system denotes how often it changes its
characteristics. In this book, we are concerned with resource allocation, so
dynamicity means how much variation can be found on the system workload
(e.g., arrival patterns, computation and communication requirements, value
to the end-user) and on the underlying compute platform (e.g., degradation
or lost of performance due to faults, increase in capacity due to upgrades).
Different application domains can be characterised by their typical levels of
dynamicity.

For example, deeply embedded systems such as those in automotive,
aerospace and medical domains have low dynamicity, and often their entire
functionality and behaviour is known at design time, prior to deployment. The
low dynamicity makes the performance of such systems easier to predict, and
therefore guarantees regarding timeliness can be made (e.g., ECG signal of a

1.1 Application Domains 3

complete cardiac cycle will be processed in less than 10 ms). Such guarantees
are often enforced by means of resource reservation and isolation, which
can lead to very low levels of resource utilisation: a processing core can be
exclusively allocated to a given job for the sake of performance predictability,
but that job only needs the core to its full capacity for a limited period of its
lifetime, leaving it subutilised for the rest of the time.

On the other hand, HPC and cloud computing have high dynamicity due
to the wide variety of workloads they have to handle. That makes it harder
to make performance guarantees, because one never knows what comes next.
And due to the cost of deploying and maintaining such platforms, they are
often only viable if operated at saturation point, with nearly 100% utilisation,
which undermines performance guarantees even further by making nearly
impossible to rely on resource reservation or isolation.

Figure 1.1 below shows both domains, embedded and HPC/cloud over the
dimensions of dynamicity, typical resource utilisation and the ability to sustain
performance guarantees. State-of-the-art resource allocation in the embedded
domain is static, relying on the low dynamicity of those systems and producing
allocations that can be derived at design time and used for the whole lifetime
of the system, while ensuring the performance requirements are met even in
worst case scenario. For HPC and cloud, the resource allocation is completely
dynamic and often based on instantaneous metrics such as order of arrival of
jobs and current utilisation of cores, which can certainly keep the platforms
running at saturation point but cannot offer any performance guarantees.

Recently, the dichotomy described above became less visible. Embedded
systems are becoming increasingly complex, having to cope with dynamic
workloads, and using less predictable platforms (i.e., multi-level caches,
speculative execution), while still having to fulfil strict performance requisites.
HPC and cloud computing, in turn, critically need to address fundamental
problems in energy efficiency and performance predictability, as they become
more widespread and critical to our daily lives. This points to the importance

Figure 1.1 Application domains and their characteristics with regard to dynamicity, resource
utilisation and performance predictability.

4 Introduction

of the areas in the central part of Figure 1.1, which represents increasingly
dynamic embedded systems and predictable HPC and cloud systems.

The goal of this book is to identify and present resource allocation heuris-
tics that can be used to achieve different levels of performance guarantees, and
that can cope with different levels of dynamicity of the application workload.

1.2 Related Work

The problem of allocating tasks to platform elements is a classic problem in
multiprocessor and distributed systems. Most formulations of this problem
cannot be solved in polynomial time, and many of them are equivalent to
well known NP problems such as graph isomorphism [18] and the generalised
assignment problem [58].

This problem was first addressed from the cluster/grid point of view, but
more recently the fine-grained allocation of tasks within manycore processors
has also received significant attention due to its critical impact on performance
and energy dissipation. In the following subsections, we consider allocation
mechanisms at both grid and manycore CPU level, and review the most
significant trends and achievements in terms of guaranteed performance and
energy efficiency.

1.2.1 Allocation Techniques for Guaranteed Performance

There are numerous multiprocessor scheduling and allocation techniques that
are able to meet real-time constraints, each of them under a different set
of assumptions. A very comprehensive survey is given by [41], covering
techniques that can be applied both at the grid or many-core level, but all
of them assume that the platform is homogeneous and tasks are independent
(i.e., do not explicitly consider communication costs). Many of them also
assume that the allocation is done statically, or do not take into account
the overheads of dynamically allocating and migrating tasks (i.e., context
saving and transferring). In [96], heterogeneous platforms are considered but
communication costs and overheads are still not taken into account.

Significant research on resource reservation has been done, aiming to
increase time-predictability of workflow execution over HPC platforms [90].
Many approaches use a priori workflow profiling and use estimation of
task execution times and communication volumes to plan ahead which
resources will be needed when tasks become ready to execute. Just like
in static allocation, resource reservation policies significantly reduce the
utilisation of HPC platforms. A reduction of 20–40% in the utilisation is not
unusual [150].

1.2 Related Work 5

Allocation and scheduling heuristics based on feedback control have been
used in HPC systems [44–83], aiming to improve platform utilisation without
sacrificing performance constraints. Most cases concentrate on controlling
the admission and allocation of tasks over the platform based on a closed-
loop approach that monitors utilisation of the platform as well as performance
metrics such as task response times [54].

Many cloud-based and grid-based HPC systems use allocation and
scheduling heuristics that take into account not only the timing constraints
of the tasks but also their value (economic or otherwise). This problem been
well-studied under the model of Deadline and Budget Constraints (DBC)
[27], where each task or taskflow has a fixed deadline and a fixed budget.
State-of-the-art allocation and scheduling techniques target objectives such
as maximising the number of tasks completed within deadline and/or budget
[139], maximising profit for platform provider [76] or minimising cost to users
[130] while still ensuring deadlines. Several approaches to the DBC problem
use market-inspired techniques to balance the rewards between platform
providers and users [154]. A comprehensive survey given in [157] reviews
several market-based allocation techniques supporting homogeneous or hete-
rogeneous platforms, some of them supporting applications with dependent
tasks modeled as DAGs.

At the many-core level, there are a few allocation techniques that take
into account both the computation and communication performance guar-
antees. Such techniques are tailored for specific platforms e.g., many-cores
based on Network-on-Chip (NoC). To guarantee timeliness, all state-of-
the-art approaches rely on a static allocation of tasks and communica-
tion flows. In [6], a multi-criteria genetic algorithm is used to evolve
task allocation templates over a NoC-based many-core aiming to reduce
their average communication latency. The approach in [110] also used a
genetic algorithm that could find an allocation that can meet hard real-
time guarantees on end-to-end latency of sporadic tasks and communication
flows over many-cores that use priority-preemptive arbitration. Stuijk [136]
proposed a constructive heuristic to do static allocation of synchronous
dataflow (SDF) application models [133], which constraint all tasks to
read and write the same number of data tokens every time they execute.
The allocation guarantees the timeliness of the application if the platform
provides fixed-latency point-to-point connection between processing units.
In [161], the same author relaxes some of the assumptions of SDF appli-
cations (i.e., allows for changes on token production and consumption
rates during runtime) and proposes analytical methods to evaluate worst-
case throughput and to find upper bounds for buffering for a given static
allocation.

6 Introduction

1.2.2 Allocation Techniques for Energy-efficiency

Most allocation techniques addressing energy efficiency operate at the many-
core processor level, mainly because of the difficulties of dealing with energy-
related metrics at larger system granularities.

Hu et al. [60] and Marcon et al. [88] estimate the energy consumption
according to the volume of data exchanged by different application tasks over
the interconnection network. Such approaches lack in accuracy as they do not
take into account runtime effects such as network congestion or time-varying
workloads. Thus, research approaches on energy-aware dynamic allocation
techniques have been proposed.

In [129], an iterative hierarchical dynamic mapping approach aims to
reduce energy consumption of the system while providing the required QoS. In
such strategy, tasks are firstly grouped by assigning them to a system resource
type (e.g., FPGA, DSP, ARM), according to performance constraints. Then,
each task within a group is mapped, minimising the distance among them and
reducing communication cost. Finally, the resulting mapping is checked, and
if it does not meet the application requirements, a new iteration is required.

Chou and Marculescu [37] introduce an incremental dynamic mapping
process approach, where processors connected to the NoC have multiple
voltage levels, while the network has its own voltage and frequency domain.
A global manager (OS-controlled mechanism) is responsible for finding a
contiguous area to map an application, and for defining the position of the
tasks within this area, as well. According to the authors, the strategy avoids
the fragmentation of the system and aims to minimize communication energy
consumption, which is calculated according to Ye et al. [155]. This work
was extended in [36, 38], incorporating the user behaviour information in the
mapping process. The user behaviour corresponds to the application profile
data, including the application periodicity in the system and data volume
transferred among tasks. For real applications considering the user behaviour
information, the approach achieved around 60% energy savings compared to
a random allocation scenario.

Holzenspies et al. [58] investigate a run-time spatial mapping technique
with real-time requirements, considering streaming applications mapped onto
heterogeneous MPSoCs. In the proposed work, the application remapping
is determined according to information that is collected at design time
(i.e., latency/throughput), aiming to satisfy the QoS requirements, as well
as to optimize the resources usage and to minimise the energy consumption.
A similar approach is proposed in Schranzhofer et al. [120], merging pre-
computed template mappings (defined at design time) and online decisions
that define newly arriving tasks to the processors at run-time. Compared to
the static-mapping approaches, obtained results reveal that it is possible to

1.3 Challenges 7

achieve an average reduction on power dissipation of 40–45%, while keeping
the introduced overhead to store the template mappings as low as 1 KB.

Another energy-aware approach is presented in Wilderman et al. [151].
This approach employs a heuristic that includes a Neighborhood metric
inspired by rules from Cellular Automata, which allows decreasing the
communication overhead and, consequently, the energy consumption imposed
by dynamic applications. Lu et al. [85] propose a dynamic mapping algorithm,
called Rotating Mapping Algorithm (RMA), which aims to reduce the overall
traffic congestion (take in account the buffer space) and communication energy
consumption of applications (reduction of transmission hops between tasks).

In turn, Mandelli et al. [87] propose a power-aware task mapping heuristic,
which is validated using a NoC-based MPSoC described at a cycle-accurate
level. The mapping heuristic is performed in a given processor of the system
that executes a preemptive operating system. Due to the use of a low level
description, accurate performance evaluation of several heuristics (execution
time, latency, energy consumption) is supported. However, the scope of the
work is limited to small systems configurations due to the long simulation
time. In the previous works, only one task is assigned to each processing
core. A multi-task dynamic mapping approach was proposed in [128]. Singh
et al. [128] extends the work described in [32], which evaluates the power
dissipation as the product of number of bits to be transferred and distance
between source-destination pair.

Research in energy-efficient allocation for HPC and cloud systems is still
incipient, with existing works addressing only the time and space fragmen-
tation of resource utilisation at a very large granularity (server level), aiming
to minimise energy by rearranging the load and freeing servers that are then
turned off [12, 101].

1.3 Challenges

While the approaches mentioned in the previous section have presented
sophisticated resource allocation approaches that can provide performance
guarantees and/or improve energy efficiency, there are still challenges that
require more advanced resource allocation approaches. The following sub-
sections briefly describe some of those challenges, which are precisely the
ones addressed in this book.

1.3.1 Load Representation

Load models are internal representations used by allocation algorithms to
evaluate different allocation alternatives. Such models may use informa-
tion that is available a priori about the load (such as job dependencies,

8 Introduction

communication volumes, worst case execution times), but can be also
extended with information obtained during runtime (e.g., actual execution and
communication times). In dynamic resource allocation, it is very challenging
to define a load model that includes sufficient information about static and
dynamic characteristics of the load, and that is lightweight enough to be used
by allocation heuristics to quickly evaluate and compare alternative allocation
possibilities during runtime.

Chapter 2 addresses this challenge and presents a load model based on
an interval algebra, aiming to allow quickly compose the load of multiple
computation and communication jobs (represented as series of time intervals),
enabling the evaluation of the impact of resource allocation (and thus resource
sharing) on system performance and timeliness.

1.3.2 Monitoring and Feedback

In large-scale systems, obtaining updated information about the load during
runtime is not trivial. Often, such information only makes sense when coupled
with information about the underlying computation and communication plat-
form. Furthermore, the costs of monitoring and transferring all such data to
the resource allocation mechanism is already prohibitive. The major challenge
in such scenarios is then to define a sufficiently meaningful set of metrics
to monitor, and to design algorithms that can make meaningful resource
allocation decisions based on the changes on those metrics over time.

Feedback control algorithms have been used for decades to make decisions
based on time-series data, so in Chapters 3 and 4 we describe possible uses of
such closed-loop algorithms to support resource allocation. In Chapter 3, we
show that they can be used to increase throughput and energy-efficiency in
HPC and cloud workloads. In Chapter 4, on the other hand, we show that it can
be used to efficiently perform admission control tasks, aiming to maximise
system utilisation without jeopardising predictability in performance-sensitive
HPC applications.

1.3.3 Allocation of Modal Applications

Allocation heuristics may have to guarantee hard real-time constraints to
critical jobs. This is possible for applications that have been profiled a priori so
their execution and communication patterns can be accurately represented by
an accurate load model. Such applications will not be highly dynamic, and will
exhibit modal behaviour, so that distinct modes of operation can be analysed at
design time, so the dynamic allocation can be based on pre-defined alternatives
(thus the number of allocation decisions during runtime is minimal).

To address such scenario, modal allocation heuristics can guarantee hard
real-time constraints by allowing different different allocations for each

1.3 Challenges 9

operation mode while minimising the amount of remappings during mode
transitions. Chapter 5 describes search-based heuristics that identify alloca-
tions that are optimised for specific operation modes, but also for coping
with dynamic mode changes. It uses automotive applications and Network-
on-Chip platforms as case studies, and shows that it is possible to guarantee
hard real-time constraints during each of the system’s modes as well as during
transitions.

1.3.4 Distributed Allocation

In closed-loop systems, a centralised resource manager continuously receive
feedback from the system so that it can have an up-to-date representation of its
state. This usually comes with a significant communication overhead, specially
in large-scale systems. Fully distributed approaches, on the other hand, offer
higher scalability by relying on decision-making done by individual system
components using only locally-available information. However, due to the lack
of global knowledge, it is harder to achieve a reasonable level of performance
predictability.

Chapter 6 presents a bioinspired approach based on the notion of swarm
intelligence, aiming to support a fully distributed approach to load remapping.
It can be used on its own or in conjunction with centralised approaches,
aiming to fine-tune allocation decisions based on up-to-date local data. A
case study based on multi-stream video processing over Network-on-Chip
platforms shows the strengths and weaknesses of such approach.

1.3.5 Value-based Allocation

Many of the quality metrics associated to resource allocation in HPC and
cloud computing are platform-specific. For instance, metrics that are often
used to formulate optimisation objectives (such as job execution times,
communication volumes and throughput) are not comparable across different
computational platforms. There are other metrics, however, that are com-
pletely independent of the computational platform and relate instead to the
requirements of the end-user. One of such metrics is the value of the completion
of a job. This can be seen as a simple value, perhaps associated to a particular
currency. More commonly, such value will be a function of time: the result of
a job is very likely to lose value over time, and can even become worthless if
it takes too long to be obtained.

Chapter 7 addresses resource allocation heuristics that are designed to
optimise such time-varying notion of value. It presents approaches that can
be configured to rely more or less on load models obtained in advance, and
shows how much can be gained in value if these models are available.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

