
3
Feedback-Based Admission Control

Heuristics

Applying feedback mechanisms to monitor the capacity of computing
resources and quality-of-service (QoS) levels can guarantee a bounded time
response, stability, bounded overshoot even if the exact knowledge of a system
workload and service capacity is not available a priori [2]. Thus, in case of
a careful fine-tuning of parameters, they can be successfully applied even
to systems with real-time constraints (see the Related Work section). It was
verified that this approach helps to find a trade-off between multiple objectives
of a workflow management system, e.g., minimal slacks and maximum core
utilisation [53].

The feedback-control dynamic resource allocation heuristics impose some
requirements on the target system, which should guarantee that the appropriate
input data is available and that the generated output can be used to perform the
proper resource allocation. Usually to perform a resource allocation decision
we can rely on various metrics, provided by the monitoring infrastructure
tools and services, such as utilization and the time latency between input
and output timestamps [81]. The system should also guarantee an appropriate
level of responsiveness to the decisions made by the heuristics, as well as
update the values of the metrics used as inputs in the algorithm frequently
enough for the particular application. The platform should support scheduling
on distributed-memory infrastructure resources. It is important to provide the
heuristic algorithm with realistic data about system workload, service capacity,
worst-case execution time and average end-to-end response time [84].

The task mapping process presented in this chapter is comprised of
the resource allocation and task scheduling. The technique proposed in this
chapter assumes the presence of a common task queue, which is used by the
global dispatcher. The resource allocation process is executed on a particular
processing unit. Its role is to send the processes to be executed to other
processing units, putting them into the task queue of a particular core.
The process dispatching, i.e., selecting the actual process to run, is also a
part of the scheduling algorithm and is carried out locally on each core. It is

25

26 Feedback-Based Admission Control Heuristics

assumed that task scheduling is performed in a non-preemptive early deadline
first (EDF) or first-in-first-out (FIFO) based manner.

Later in this chapter we propose an algorithm to map firm real-time tasks
into multi-core systems dynamically, using dynamic voltage and frequency
scaling (DVFS) to decrease energy dissipation in cores. According to simula-
tion results, the proposed method leads to more than 55% of dynamic energy
reduction.

3.1 System Model and Problem Formulation

3.1.1 Platform Model

The controlling process of dynamic behaviour of a target system can be
performed in two ways: feed-forward and feed-back, presented in Figure 3.1.
Although the closed-loop scheme includes larger number of functional blocks
and requires measuring output values, it requires less accurate model of the
target system and is also more resistant to disturbances [7]. A closed-loop
system is characterised with a feedback loop, which carries values of measured
output (y(t), aka controller value). These values are subtracted from their
desired value (r, reference signal, setpoint). The result of this operation forms
error (e(t)) signal, which is used to compute control input (u(t)). This value
is sent back to the target system.

A proportional-integral-derivative (PID) controller is particularly often
used in various industrial control system, recently including computing
systems [57].

The PID controller in the time-domain form is described in the following
way:

u(t) = kpe(t) + ki

∫ t

0
e(τ)dτ + kd

d

dt
e(t). (3.1)

Figure 3.1 Block diagrams of control system architectures: feed-forward (above) and
feedback (below).

3.2 Distributed Feedback Control Real-Time Allocation 27

The determination of proportional (kp), integral (ki) and derivative (kd)
constant components of PID controller is known as PID controller tuning.

The PID controller is often presented in an equivalent form in the frequency
domain, where function (3.1) of time t is presented as a function of complex
frequency s using the Laplace transform, leading to

K(s) = kp +
ki

s
+ kds. (3.2)

A PID controller is often described using other constant parameters: k – so
called proportional gain, Ti – integral time constant and Td – derivative time
constant

K(s) = k

(
1 +

1
sTi

+ sTd

)
. (3.3)

Since increasing the value of parameter kd enhances noise, the derivative
component is often omitted in numerous practical applications [57]. It is also
not used in the work described in this chapter despite its positive influence on
stability or speed.

In Figure 3.8, a general view of the proposed architecture is presented.

3.1.2 Application Model

We consider a workflow of a particular structure. There is no dependencies
between tasks and the deadline of each task computation is set as a sum of its
computation time multiplied by an arbitrary value and arrival time. There is
only one priority of task; tasks cannot be preempted during their execution.
During simulation we measure cluster core utilisation, which is the percentage
of cores in the clusters executing tasks in particular simulation time t.

3.2 Distributed Feedback Control Real-Time Allocation

After releasing task ti, the role of the dispatcher is to decide which of the
clusters Cj , j = 1, . . . , m, is to execute the task. This decision can be made
using various metrics, we decide to apply a choice of the cluster whose cores
are currently the most idle. If more than one core satisfies the chosen condition,
one of them is chosen randomly. For the comparison purpose we also allowed
the dispatcher to choose the target cluster Cj in the round-robin manner. The
task ti is then placed in the j-th queue.

Each j-th cluster includes one admission control block, ACj . Its role is to
decide whether a task ti, read from the j-th input queue, should be executed
by the cluster. The first condition of admittance is that the deadline of ti, Di, is
not lower than the sum of its computation time, Ci and the current simulation

28 Feedback-Based Admission Control Heuristics

F
ig

ur
e

3.
2

D
is

tr
ib

ut
ed

fe
ed

ba
ck

co
nt

ro
lr

ea
l-

tim
e

al
lo

ca
tio

n
ar

ch
ite

ct
ur

e.

3.3 Experimental Results 29

time t. Then the input value from the controller, uj(t), is tested. If this value
is positive, the task is admitted, otherwise it is rejected. Admitted tasks are
placed in the internal cluster queue. This queue is planned to be rather short
to minimise the delay between decision about admittance and the execution
of the task, and to keep the timeliness of the lateness input.

To control the admittance in each cluster, we use discrete-time controllers
in two variants. The first of them is a PI (i.e., a PID controller without the
derivative component) whose controlled value is an average lateness of a
(parameterisable) number of previous tasks computed by the cluster cores,
where lateness is defined as the difference between a task response time and
its deadline. If a lateness is negative, the task has been finished before its
deadline, and positive otherwise. The current value of lateness is compared
with the setpoint, r, and an error ej(t) is computed. It is provided as an input to
a controller, which computes admittance allowance value uj(t). The second
variant includes a P controller (i.e., a PID controller with the proportional
component only) whose output value uj(t) depends on the difference between
the current core utilisation and the setpoint. The output value of uj(t) is sent to
ACj , where it is used to perform a task admittance decision. In both situations,
as long as value of control input uj(t) is positive, the task is allowed to be
submitted to cores, otherwise it is rejected. The admitted tasks are placed in
the queue.

An idle core Corej,k, j = 1, . . . , m, k = 1, . . . , n, fetches a task ti from
the j-th core queue and then executes it in a non-preemptive manner. After
execution, the lateness of the i-th task, Li = Di − t, is computed. Each core
also informs the observer whether it is occupied or idle.

The role of observer Monitorj is to compute two metrics based on the
performance of all cores in the j-th cluster. The first metric is core utilisation
and the second metric is an average lateness of the previous q tasks computed
by the cores in the j-th cluster. These data are provided to the j-th controller
and the dispatcher.

3.3 Experimental Results

3.3.1 Controller Tuning

In order to check the efficiency of the proposed feedback-based admission
control and real-time task allocation, we developed a simulation model using
SystemC language. We firstly configured it to operate in the open-loop manner.

In Figure 3.3 we present the maximum task lateness in the open-loop
system consisted of three clusters, each including three cores. In every
situation, at 5,000 ns a number of tasks, ranging from 5 to 500, each requiring
execution time equal to 50,000 ns, has been generated. Then we looked at the

30 Feedback-Based Admission Control Heuristics

Figure 3.3 Maximum normalised task lateness (with execution time equal to 50,000 ns) in
step responses for a number of tasks (3 clusters, 3 cores in each).

maximal task lateness, where each lateness has been normalized by dividing
it with the deadline.

In order to tune the controller, we analysed the step-input maximum
normalised task lateness response in the open-loop system.As an input we have
used a burst release of 500 tasks (with execution time equal to 50,000 ns) at
5,000 ns. The system was comprised of 3 clusters, each including 3 computing
cores. The obtained result confirms the accumulating (or integrating) nature
of the process, which can be described by the following model [64]:

F (s) =
V

s
e−sτ , (3.4)

where τ is the dead time, i.e., the delay between changing input and the
observable output reaction, and V is the velocity gain, which is the slope of
the asymptote of the process output.

In such kind of processes, to choose proper values of PI controller
components, AMIGO (Approximate M-constrained Integral Gain Optimisa-
tion) tuning formulas can be applied [7]. According to these formulas, the
parameters k and Ti are equal:

k =
0.35
V τ

, (3.5)

Ti = 13.35τ. (3.6)

Both these parameters can be determined using the step output illustrated in
Figure 3.4: k = 0.2741 and Ti = 1108.

3.3 Experimental Results 31

Figure 3.4 Maximum normalised task lateness step response for 500 tasks (with execution
time equal to 50,000 ns) released at 5,000 ns (3 clusters, 3 cores in each).

The usage of the core utilisation in a cluster as a controlled value is a bit
more tricky due to its non-linearity. Because of the obvious saturation at 100
per cent (see Figure 3.5) in the case of step response, to compute parameters
of a controller we limit the considered operating region to the proportional
range before the saturation, which ranges from 1 to 4 ns. Its maximum slope
tangent can be described by linear formula y = 0.33 x − 0.33. According to
classic Ziegler-Nichols method [64], the k parameter of the P controller can
be computed as

k =
1
λ

, (3.7)

Figure 3.5 Cores utilisation step response for 500 tasks (with execution time equal to 50,000
ns) released at 0 ns (1 cluster with 3 cores).

32 Feedback-Based Admission Control Heuristics

where λ is the absolute value of the y-coordinate of the intersection of the
max slope tangent with the OX axis. In our case λ = 0.33 and, consequently,
k = 3.

3.3.2 Stress Tests

The workload used in our introductory experiment consists of 900 independent
tasks, one released every 5,000 ns, whose computation time equal to 50,000
ns and deadline is set to the sum of computation time multiplied by 1.2 and the
task release time. In Table 3.1, the number of rejected tasks, tasks executed
before and after their deadlines in various controlling environment settings is
presented.

The two first rows present the result obtained in the open-loop systems.
The choice of the external queue has only slight influence on the number of
tasks executed before their deadlines. In these situations task can be rejected
by the admission control only if the task slack (computed as Di − Ci − t) is
negative.

Applying a closed-loop approach improves the system performance sig-
nificantly, but the proper choice of the measured output is also essential. In
case of the core utilisation not a single task finishes after its deadline, as the
tasks are submitted to the queue only when there is at least one idle core,
that can start executing the task instantly. The lateness is less correlated with
the real temporal availability of computational power, so as many as 116 tasks

Table 3.1 Number of rejected tasks, tasks executed before and after their deadlines in various
controlling environment configurations for a periodic task workload simulation scenario
(3 clusters, 3 cores in each): configuration parameters (above) and obtained results (below)

Config. No. Architecture Queue Controller Value Controller Allocation
1 Open-loop FIFO – – min core util.
2 Open-loop EDF – – min core util.
3 Closed-loop Both core utilisation P min. CPU util.
4 Closed-loop Both lateness PI min. CPU util.
5 Closed-loop Both core utilisation P RR
6 Closed-loop Both lateness PI RR

Config. No. Tasks before Deadline Tasks after Deadline Tasks Rejected
1 149 661 90
2 154 655 91
3 738 0 162
4 614 116 170
5 675 0 225
6 607 127 166

3.3 Experimental Results 33

have been sent to the queue despite not a single core was capable of computing
the task before its deadline.

To asses the improvement of the core-utilisation-based allocation, we
performed simulations where the tasks are allocated to clusters in a round-
robin manner. In both P- and PI-based architectures we obtained worse results
by 8.5 and 1.14 per cent, respectively. Importantly, the higher improvement
has been observed in the architecture leading to the overall better results.

The clusters’ cores utilisation for this architecture during the first 500 ns
is presented in Figure 3.6. Except for the initialisation (and finalisation, not
shown in the figure) there is no time when any of the clusters has less then 66
per cent of the core utilisation. After computing the average core utilisation
during the whole simulation time we get 90.12%, 90.20%, and 90.16% for
the first, second and the third core, respectively. The tasks have been sent
by the dispatcher to the first cluster 296 times and to the 2nd and the 3rd
core respectively 292 and 313 times, which can be viewed as a quite even
distribution.

The control signal (generated by a controller, sent to the admission control)
for the first 500 ns of the simulation is shown in Figure 3.7. The positive value
of this signal means that at least one core from the given cluster has finished
the previous task computation and is being idle. In this situation the next task
should be submitted to the cluster as soon as possible.

Similar results have been observed in other workloads of a periodic nature
with uniform (or nearly uniform) execution time.

Figure 3.6 Core utilisation measured during the first 500 ns of the simulation.

34 Feedback-Based Admission Control Heuristics

Figure 3.7 Control signal observed during the first 500 ns of the simulation.

3.3.3 Random Workloads

In our next experiment, summarised in Table 3.2, we analysed 30 randomly
bursty workloads, generated according to the method described in [22],
including from 827 to 962 tasks of diverse execution time, ranging from
1 to 2,67,582 ns. Three target system configurations have been checked:
open-loop with EDF and closed-loop with CPU utilisation as the controller
value, where the allocation is performed using the minimal core utilisation
metric and in the round-robin way. Once again, the closed-loop approach
leads to better results but, in comparison with the periodic-task scenario in the

Table 3.2 Total number of rejected tasks, tasks executed before and after their deadlines in
various controlling environment configurations for 30 random bursty task workload simulation
scenarios (3 clusters, 3 cores in each): configuration parameters (above) and obtained results
(below)

Config. No. Architecture Queue Controller Value Controller Allocation
1 Open-loop EDF – – min. core util.
2 Closed-loop Both core utilisation P min. core util.
3 Closed-loop Both core utilisation P RR

Config. No. Tasks before Deadline Tasks after Deadline Tasks Rejected
1 10603 1752 14059
2 12296 753 13365
3 11946 675 13793

3.4 Dynamic Voltage Frequency Scaling 35

experiment described above, the improvement, equal to about 16%, is slightly
less impressing. Similarly, the difference between allocating task under the
minimal core utilisation criteria and round-robin is rather slight and equals 3
per cent. It is worth stressing, however, that the tasks in the analysed workloads
are characterised with very diverse time of computations, but despite this
variance they are not differentiated by our model. Consequently, one task can
occupy a core for longer time, not allowing other (submitted a bit later) tasks
to be executed on this core because of the lack of preemption.

3.4 Dynamic Voltage Frequency Scaling

Dynamic Voltage Frequency Scaling (DVFS) is a power saving technique,
omnipresent in CMOS circuits, benefiting from the fact that their dynamic (or
switching) power P is proportional to the the square of core supply voltage V,
and its clock frequency f , i.e., P ∝ fV 2. Since any reduction of core voltage
requires an adequate decrease of the clock frequency, some trade-off between
energy savings and computation performance is achieved. Some guidance in
real-time systems stems from the fact that there is usually no additional benefits
from faster task execution as long as it is before the deadline. Moreover, for
typical workloads the required peak computational performance is usually
much higher than the average [106]. Thus sustaining a lower voltage/frequency
for most of time and increasing it only when required by a workload growth,
in a way it risks missing some deadlines, seems to be a sensible strategy. To
perform a proper voltage scaling decision, it is possible to rely on various
metrics, provided by the monitoring infrastructure tools and services, such
as utilization and time latency between input and output timestamps [81].
In multiprocessor domain, the cores can operate on different voltage at a
given instant, so allocating a task to the most suitable core starts to be a more
sophisticated task even in case of homogeneous cores, since assigning a task
to a core with lower voltage can lead to missing the deadline that would be
met in case of a different decision. The term voltage scheduling has been
introduced to refer to scheduling policies using DVFS facility to improve
energy efficiency.

In Multiprocessor Systems on Chips (MPSoCs) a task can be mapped
to a core either statically or dynamically, just before its execution, which
is particularly beneficial in case of workloads not known a priori [123]. In
DVFS-based systems, the problem of dynamic task mapping is even more
difficult, since not only resource utilisation and application structure have
to be analysed, but also the present voltage level of each processor needs
to be considered. Modern operating systems, including both Windows and
Linux (2.6 Kernels and above) support dynamic frequency scaling for systems

36 Feedback-Based Admission Control Heuristics

with Intel (SpeedStep technology) and AMD (PowerNow! or Cool‘n’Quiet
technology) processors. Frequency levels in these chips are not continuously
available, but a limited number of discrete voltage/frequency levels is offered.
They follow the Advanced Configuration and Power Interface (ACPI) open
standard, defining such processor states as C0 (operating state), C1 (halt), C2
(stop-clock), and C3 (sleep). In C states with higher numbers less energy is
consumed, but returning to the normal operating state imposes more latency.
In some device families additional C-states have been introduced, such as
C6 in Intel Xeon when an idle core is power gated and its leakage is almost
entirely reduced to zero [52]. While core is in the C0 state, it operates with
one of several power-performance states, known as P-States. In P0, a core
works with the highest frequency and voltage level, and subsequent P-States
offer less performance but also require less energy. The most recent ACPI
specification can be found at Unified Extensible Firmware Interface Forum1.

In operating systems, frequency scaling depends on an applied governor. In
case of Linux, the ondemand governor switches frequency to the highest value
instantly in case of high load, whereas the conservative governor increases
frequency gradually [77]. These policies aim to keep processor utilization
close to 90%, progressively decreasing or increasing frequency using heuris-
tics [102]. This approach may, however, negatively impact applications with
timing constraints. To overcome this limitation, a custom governor can be
developed and applied. These governors can then operate on per-core and
per-chip basis, taking into account utilisation of other machines in a cluster,
etc. A valuable comparison between per-core and per-chip DVFS is presented
in [68], where per-core DVFS is shown to offer even more than 20% energy
savings in comparison with the conventional chip-wide DVFS with off-chip
regulators. However, per-core DVFS is rarely implemented and, for example,
all active cores in contemporary Intel i7 processors must operate with the
same frequency in the steady state, whereas AMD processors allows their
cores work with different frequencies, but one voltage value, appropriate to
the core with the highest frequency, is to be provided to all the cores [52].

In the remainng part of this chapter, we propose a custom governor
algorithm for per-chip DVFS. The algorithm performs dynamic resource
allocation and assumes the presence of a common task queue, which is used by
a global dispatcher. The resource allocation process is executed on a particular
processing unit, whose role is to send the processes to be executed to other
processing units, putting them into the task queue of that core. The task
dispatching, i.e., selecting the actual task to run, is also a part of the mapping
algorithm and is carried out locally on each processor. It is assumed that task

1http://www.uefi.org

3.5 Applying Controllers to Steer DVFS 37

scheduling is performed in a non-preemptive first-in-first-out (FIFO) based
manner for simplicity, but another scheduler can be used instead.

3.5 Applying Controllers to Steer DVFS

In Figure 3.8, a general view of the proposed architecture is presented, where
dashed lines are used for steering P-States. We consider workflows of a
particular structure. All tasks are assumed to be firm real-time, so certain
number of missing deadlines is allowed, but the task executed after its deadline
is invaluable to the user. There are no dependencies between tasks and all
tasks have equal priorities. Further, tasks cannot be preempted during their
execution.

After releasing task Ti, the role of the dispatcher is to decide which of the
processors Processorj , j = 1, . . . , m, is to execute the task. This decision can
be made using various metrics. We measure processor core utilisation, which
is the percentage of busy cores in the processors executing tasks in particular
simulation time t, and choose the processor whose cores are currently the least
utilized. If more than one processor have the same lowest utilisation, one of
them is chosen randomly. The task Ti is then placed in the j-th external queue.

To control the admittance in the j-th processor, we use a discrete-time
PI controller (i.e., a discrete-time PID controller without the derivative
component) whose output value uj(t) depends on the difference between
the current core utilisation and the setpoint. The output value of uj(t) is sent

Figure 3.8 Distributed feedback control real-time allocation with DVFS architecture.

38 Feedback-Based Admission Control Heuristics

to admission control block ACj , where it is used to perform a task admittance
decision.

The role of block ACj is to decide whether a task Ti, fetched from the j-th
external input queue, should be executed by the processor. The first condition
of admittance is that the deadline of Ti, Di, is not lower than the sum of its
worst-case computation time, Ci and the current simulation time t. Then the
output controller value, uj(t), is checked and it influences the decision of the
task rejection or admission as described in the next paragraph. The admitted
tasks are placed in the internal processor queue. This queue shall be rather short
to minimise the delay between decision about admittance and the execution
of the task, and to keep the timeliness of the lateness input.

The additional role of block ACj is to scale the voltage of the cores. The
controller output value, uj(t), is tested against two threshold values +Υ and
−Υ. If uj(t) > +Υ, the processing cores are more utilised than the setpoint r
for relatively long period (depending on the I-Window length and ki value) and
thus increasing the frequency (and voltage) of the set of cores is desirable. On
the other hand, if uj(t) < −Υ, the processing cores are too idle for relatively
long period and it is recommended to decrease the frequency (and voltage) of
the cores to conserve energy. It is important to select the value of Υ wisely,
taking into account that uj(t) depends on the current error value (multiplied by
kp) and on the sum of the previous errors (multiplied by ki) and the length of
I-Window used during this sum calculation. After choosing these three values,
it is possible to assign an appropriate value to this threshold. Identification of
these values and the threshold is performed in Section 3.3.

Since in any core transferring between various voltage levels is penalised
both in terms of switching time and energy [52], some mechanism preventing
too frequent transitions is needed. In our case, we decided to use threshold
Γ, which determines the minimal time between two consecutive voltage level
alterations. Each P-State change request issued earlier than Γ is ignored. This
value should be determined by taking into account the hardware parameters
as a trade-off between the system flexibility (lower parameter value) and
efficiency (higher parameter value), which is presented in Section 3.3.

The proposed admission control algorithm is composed in two parts,
described respectively by lines 1–28 and 29–36 in Figure 3.9, which are
executed concurrently. The first part consists of the following steps.

Step 1. Invocation and initialization (lines 1–3, 27): The block functional-
ity is executed in an infinite loop (line 1), activated every time interval Δt (line
27). The current P-State is set to the lowest value (i.e., the highest performance
– line 2), and the time of the previous P-State change, γ, is set to 0 (line 3).

Step 2. Task fetching and schedulability analysis (lines 4–5): The tasks
input FIFO queue is checked if empty (line 4) and a task Ti is fetched
(line 5).

3.5 Applying Controllers to Steer DVFS 39

Inputs: Task Ti (from Task queue)
Controller output value u
Admission controller invocation periods Δt

Outputs: Task executing or rejection decision
New P-State of Cores

Constants: Pmax - maximal P-State available in processor
Υ - threshold value of cumulated error from controller
Γ - minimal time elapsed between P-State change

Variables: P - current P-State
γ - time of the previous P-State change

1: while (true) do
2: P = 0
3: γ = 0
4: while (task queue is not empty) do
5: Fetch Ti

6: if (P = 0 and u < 0)
or (u < 0 and current time ≤ γ + Γ) then

7: if P > 0 and current time > γ + Γ then
8: P = P − 1
9: γ = current time
10: Clear I-Window in Controller
11: end if
12: Reject task Ti

13: else
14: if u < −Υ and P > 0

and current time > γ + Γ then
15: P = P − 1
16: γ = current time
17: Clear I-Window in Controller
18: else if u > +Υ and P < Pmax

and current time > γ + Γ then
19: P = P + 1
20: γ = current time
21: Clear I-Window in Controller
22: end if
23: Admit task Ti

24: Send Ti to FIFO
25: end if
26: end while
27: Wait Δt
28: end while

29: while (true) do
30: if (task queue is empty for Γ and P < Pmax) then
31: P = P + 1
32: Clear I-Window in Controller
33: γ = current time
34: end if
35: Wait Δt
36: end while

Figure 3.9 Pseudo-code of the proposed admission controller functionality.

Step 3. Task conditional rejection (lines 6–12): If the output value of
controller (u) is negative and the cores operate with the highest performance

40 Feedback-Based Admission Control Heuristics

(P-State set to P0) or the cores operate below the highest performance and the
previous change of P-State (at time γ) was done early enough (determined
by condition current time > γ + Γ), task Ti should be rejected (line 6).
Moreover, if P-State is different from P0 and there was no recent change
of P-State (line 7), P-State is decreased (line 8) and variable keeping the
previous P-State change time, γ, is set accordingly (line 9). The buffer storing
the previous error values of the controller, I-Window, used by the integral
component of the PID controller, is cleared (line 10), since the previous errors
have been obtained in a different P-State and thus should not influence future
admittance decisions.

Step 4. Task conditional admittance (lines 14–25): If the controller output
value is below threshold −Υ, the processor performance is not the highest
possible and the previous change of P-State was done early enough (line 14),
P-State is decreased (line 15) and the current time is substituted to γ (line
16). Similarly, provided the controller output value is above threshold +Υ,
the processor performance is not the lowest possible (P-State is different from
Pmax, the highest P-State available in the processor) and the previous change
of P-State was done early enough (line 18), the processor P-State is increased
(line 19) and the current time is assigned to γ (line 20). Task Ti is sent to the
FIFO queue (line 24).

The second part of the algorithm consists of the following steps.
Step 1. Invocation (lines 29, 35): The block functionality is executed in an

infinite loop (line 29), activated every time interval Δt (line 35).
Step 2. P-State conditional increase (lines 30–33): If no new tasks have

been fetched from the task queue for time Γ and the processor performance is
not the lowest possible (P-State is different from Pmax), the processor P-State
is increased (line 31) and the current time is assigned to γ (line 33).

3.6 Experimental Results

In order to check the efficiency of the proposed feedback-based admission
control and real-time task allocation, we developed a simulation model using
SystemC language.

3.6.1 Controller Tuning

Firstly, the controller constant components kp, ki and kd have to be tuned by
analysing the corresponding open-loop system response to a bursty workload.
Then random workloads of various weight have been tested to observe the
system behaviour under different conditions and to find the most beneficial
operating region.

3.6 Experimental Results 41

To tune the parameters of the controller, the task slack growth after
applying a step-input in the open-loop system (i.e., without any feedback) has
been analysed, as mentioned earlier in this chapter. This is a typical way in
control-theory-based approaches [7]. The workload used for this case consists
of 500 independent tasks. They are split into five groups. Tasks belonging
to one group are released every 5 ms each. After this bursty activity, during
the following 500 ms no task is released. Then the tasks of the next group
are released at the same pace. This process is repeated until all tasks from all
groups are released. The computation time of each task is equal to 50 ms and
its deadline is set to the sum of computation time multiplied by an arbitrary
constant (equal to 1.5) and the task release time. This constant has been
introduced to provide some flexibility in task scheduling; otherwise, all tasks
would be required to start execution at their release time to meet the timing
constraints.

The obtained results have confirmed the accumulating (integrating) nature
of the process, and thus the accumulating process version of Approximate M-
constraint Integral Gain Optimization (AMIGO) tuning formulas have been
applied to choose the proper values of the PID controller components [7].
As a reference point, we executed a simulation without DVFS on a system
comprised of one processor with three cores. As many as 140 tasks have been
executed before the deadline, no task missed its deadline, and 360 tasks have
been rejected by the dispatcher.

To use the DVFS features efficiently, it is crucial to find an appropriate
value of threshold Υ. It should be large enough not to switch a core voltage
too frequently – the switching should be performed not only due to the high
value of u(t) generated by the proportional component, but also with the
relatively large value of the integral component, meaning that the error has
been large for a longer interval. Simulations results for selected values of Υ
are presented in Table 3.3. Form this table it follows that too high values
of Υ result in keeping the current frequency too long at the beginning of a
busy period, decreasing the performance of the system significantly (see the
number of tasks executed before the deadline for Υ ∈ (30, 60)). Particularly,
keeping the lowest frequency too long results in executing some tasks after
their deadlines. At some point (Υ = 70 in the considered case), the threshold
is too high for the given idle period and it does not manage to perform any
voltage scaling before the next busy period. For further experiments, based
on the above observations, we have chosen Υ = 10 as a trade-off between
performance and flexibility of the voltage switching.

In order to determine the threshold Γ of the task number that has to be
processed by the dispatcher between subsequent alterations of the core voltage,
we performed a series of simulation, where the threshold ranged from 25 ms
to 400 ms. The highest number of tasks executed before their deadlines is

42 Feedback-Based Admission Control Heuristics

Table 3.3 Total number of tasks executed before and after their deadlines and rejected tasks
with various Υ threshold in the introductory experiment (1 processor with 3 cores)

Threshold Tasks Tasks Tasks
Υ before Deadline after Deadline Rejected
5 120 0 380

10 120 0 380
20 120 0 380
30 64 84 352
40 52 92 356
50 52 92 356
60 52 92 356
70 140 0 360
∞ 140 0 360

observed with threshold Γ ∈ {25 ms, 50 ms, 100 ms}. The threshold set to
350 ms or above leads to the behaviour not differentiated from the simulation
without DVFS. Two values Γ = 50 ms and Γ = 300 ms have been used in
the further experiments.

To estimate the energy used by a processor, ACPI data for Pentium M
processor (with Intel SpeedStep Technology) has been used, but with slight
modification the proposed technique can be applied to any processor with
ACPI implemented2. In Pentium M, there are six levels of allowed frequency
and voltage pairs, known as P-States. In P-State P0, a core works with 1.6 GHz
and 1.484 V, whereas for P5 – 600 MHz and 0.956 V, which uses 24.5 W and
6 W, respectively.

3.6.2 Random Workloads

Having selected all the required constants, the efficiency of the system has
been checked against 11 sets of 10 random workloads, whose release and
execution time probability distributions are based on the grid workload of an
engineering design department of a large aircraft manufacturer, as described
in [22]. Each workload is comprised of 100 tasks, including a random number
(between 1 and 20) of independent jobs. The execution time of every job is
selected randomly between 1 and 99 ms. All jobs of a task are released at
the same instant, and the release time of the next task is selected randomly
between ri + range min · Ci and ri + range max · Ci, where Ci is the
total worst case computation time of the current tasks Ti released at ri, and
range min, range max ∈ (0, 1), range min < range max. These values
are inversely proportional to the workload weight.

2For example AMD Family 16h Series Processors ACPI parameters are provided in AMD
Family 16h Models 00h – 0Fh Processor Power and Thermal Data Sheet, AMD, 2013.

3.6 Experimental Results 43

We have measured the numbers of tasks computed before their deadlines
and the number of tasks rejected by the admission controller block in a
3-processor system with 3 processing cores and 2-processor system with 4
processing cores each for systems with DVFS and without DVFS (i.e., with
Γ = ∞) and presented it in Figures 3.10 and 3.11, respectively.

The number of tasks admitted with Γ = 300 ms is, in total, 26% higher
than with Γ = 50 ms. The reason for this is that in case of Γ = 50 ms, P-States
are changed more often and thus it is more likely to have a processor with a
lower frequency and voltage level while a task is fetched, and since decrease
of P-States is performed gradually (lines 8, 15, 19 and 31 in the algorithm
in Figure 3.9), tasks are attempted to be executed with lower processor

Figure 3.10 Tasks executed before their deadline in random workload scenarios for DVFS
with Γ = 50 ms (red), Γ = 300 ms (green) and Γ = ∞ (blue) – three processors with three
cores (top) and two processors with four cores (bottom) systems.

44 Feedback-Based Admission Control Heuristics

Figure 3.11 Tasks rejected in random workload scenarios for DVFS with Γ = 50 ms (red),
Γ = 300 ms (green) and Γ = ∞ (blue) – three processors with three cores (top) and two
processors with four cores (bottom) systems.

performance. It has been observed that this strategy leads to significant (about
39%) energy reduction. It may be, however, surprising, that the number of
the executed tasks is higher with DVFS when Γ = 300 ms than in the system
without DVFS for lighter workloads. This phenomena is innate to the proposed
technique and can be explained using the pseudo-code in Figure 3.9. In a
system without DVFS, each processor is always in its lowest P-State, P0. The
admission controller has then no flexibility in decreasing the P-State while
the Controller output is negative (checked in line 6) and then to clean the
I-Window in the PID controller and, finally, admit the task (line 21).

Different size of the systems does not influence the relationship between
obtained results. The number of tasks executed before deadlines for assorted
weights is almost linearly dependent between the two considered architectures

3.6 Experimental Results 45

(Pearson Correlation Coefficientρ = 0.96; similarly for the number of rejected
tasks ρ = 0.97, and for dissipated energy ρ = 0.98).

The dynamic energy dissipation, normalised with respect to the highest
obtained value during the experiment, is presented in Figure 3.12. In general,
almost 58% of the dissipated dynamic energy have been saved via the DVFS
approach. For heavier loads from the random workloads, choosing a lower Γ
value leads to significant energy reduction, whereas for lighter loads the result
difference between the two chosen Γ values is almost negligible.

Looking at the normalized energy dissipation per task (Figure 3.13),
computed for the system with three processors, it can be concluded that
parameter Γ = 50 ms leads to more even energy per task usage in comparison
with Γ = 300 ms, which is slightly more beneficial for lighter workloads only,

Figure 3.12 Normalized dynamic energy dissipation in random workload scenarios for DVFS
with Γ = 50 ms (red), Γ = 300 ms (green) and Γ = ∞ (blue) – three processors with three
cores (top) and two processors with four cores (bottom) systems.

46 Feedback-Based Admission Control Heuristics

Figure 3.13 Normalized dynamic energy dissipation per task meeting its deadline in random
workload scenarios for DVFS with Γ = 50 ms (red), Γ = 300 ms (green) and Γ = ∞ (blue).

but leads to similar energy per task value than in the system without DVFS
(i.e., Γ = ∞) for heavier loads.

3.7 Related Work

Dynamic real-time scheduling (RTS) algorithms like EDF and rate monotonic
support RTS characteristics (worst-case computation time, release rate, etc.),
but they remain open-loop: once the schedule is built, it stays fixed [80]. Such
algorithms perform well in meeting QoS levels in predictable systems. How-
ever, their performance degrade when dealing with unpredictable workloads
which cannot be modelled accurately a priori [2]. In unpredictable systems,
sophisticated schedulers like Spring depends on worst-case parameters which
can result to resource under-utilisation based on pessimistic estimation of
workloads [135].

It is desired to feed the system states back to the scheduler [26, 121],
so it can be aware of sudden/unpredicted changes and act accordingly in
order to meet the QoS levels. A system state can be defined as the system
performance with respect to service capacity, QoS levels etc. Real-time
systems analysis includes observing how tasks’ RTS characteristics affect (1)
meeting QoS levels e.g., high processor utilisation, and (2) compute resource
availability. This can help adapting towards the varying system states by
enforcing scheduling decisions [26]. This variance can be considered as system
error which is the deviance from the system output and the desired one (QoS
level(s)). Some related work like [26, 78] show the lack of adaptivity to varying
system states in traditional RTS algorithms.

3.7 Related Work 47

In the realm of control-theoretic RTS algorithms, there are adaptive
approaches that are cost-effective for performance guarantees in systems with
varying system states [26, 80]. For instance, Lu offers regulating the workload
of a single-CPU RTS system via a PID-based admission control (PID-AC)
algorithm to reduce the deadline miss ratio [80]. His algorithm guaranteed
95% CPU utilisation and 1% deadline miss ratio in comparison to an EDF
algorithm with 100% and 52% respectively. PID-AC algorithms are plausible
in some RTS systems where controlling tasks release rate is difficult, instead,
the scheduler rejects specific tasks to meet QoS levels.

Also, in [81], Lu uses two PID controllers to meet two QoS levels;
maximum CPU utilisation and minimum deadline miss ratio. The results
confirm the findings of [80] in ensuring performance guarantees as opposed
to basic EDF algorithm. The motivation behind Lu’s 2-PID algorithm was to
address the stability and transient response issues with the single PID algorithm
due to PID control limitations handling multiple QoS levels. Our work, in this
chapter, addresses minimising dependent tasks’ latency, not deadline miss
ratio, via a PID-based admission control algorithm.

Control-theory-based voltage level selection of unicore portable devices
has been firstly proposed in [106]. Varma et al. in [147] choose Proportional-
Integral-Derivative (PID) controllers to determine voltage of systems dealing
with the workload not accurately known in advance and interpreted the mean-
ing of the discrete PID equation terms with regards to dynamic workloads.
They proposed a heuristic to predict the future system load based on the
workload rate of change, leading to significant energy reduction. They also
demonstrated that the design space is not particularly sensitive to changes in
the PID controller parameters. However, the controller is used to predict the
future workload and does not use any feedback information from the system
about the processing core status.

In [162], a feedback-based approach to manage dynamic slack time for
conserving energy in real-time systems has been proposed. A PID controller
is used to predict a real execution time of a task, usually lower than its worst
case execution time (WCET). Then each execution time slot for a task is split
into two parts and the first part is executed with a lower voltage assuming the
execution time predicted by the controller. If the task does not finish by this
time, a core is switched to its highest voltage guaranteing that the task finishes
its execution before its deadline.

In [153] a formal analytic approach for DVFS dedicated to multiple clock
domain processors benefits from the fact that the frequency and voltage in
each functional block or domain can be chosen independently. A multiple
clock domain processor is modelled as a queue-domain network where queue
occupancies linking two clock domains are treated as feedback signals.

48 Feedback-Based Admission Control Heuristics

A clock domain frequency is adapted to any workload changes by a
proportional-integral (PI) controller.

The queue occupancy also drives PI controllers in [31]. In contrast to
previous research, the limitation of using single-input queues only have been
lessened and multiple processing stages have been allowed, but a pipelined
configuration is still required. A realistic cycle-accurate, energy-aware, mul-
tiprocessor virtual platform is used for demonstrating the superiority of
feedback techniques over the local DVFS policies during simulation of signal
processing streaming applications with soft real-time guarantees. It is assumed
that as long as the queues are not empty, a sufficient number of deadlines is
met and no further analysis or simulation of deadline misses are provided.

From the literature survey it follows that there is no previous work on
mapping the task dynamically to an MPSoC system and using DVFS together
with control-theory based algorithm.

3.8 Summary

In this chapter, we have explored the possibility of applying feedback
controlled values to dynamic task allocation and admission control for high-
performance computing clusters executing real-time tasks. Two real-time
metrics, task lateness and core utilisation, have been applied to perform
admission control, whereas the former has been also used as a metric for
dynamic task allocation. Two queue types (EDF and FIFO) have been used in
the open-loop system. The P and PI controllers have been tuned using classic
AMIGO and Ziegler-Nichols methods.

We have prepared simulation models in SystemC language and performed
a number of experiments. In case of uniform periodic workload the closed-
loop system has executed almost 5 times more tasks before their deadline
in comparison with an adequate open-loop system. The queue type and
controller value have slightly influenced the outcome. The metric-based
dynamic allocation, in the best configuration, has been about 8.5 per cent
better than the round-robin method.

In the case of bursty random workloads with large computation time
variance, a closed-loop-based system has been about 16% better than the
corresponding open-loop approach. However, to proper asses the difference
between these systems in more accurate way, the differentiate between tasks
of long and short execution time should be introduced.

We have also explored the possibility of applying feedback control values
to dynamic task allocation and admission control for multi-core processors
supporting DVFS while executing firm real-time tasks. Core utilisation has
been applied as a run-time metric to perform admission control and dynamic

3.8 Summary 49

task allocation. The proposed governor algorithm has been tested with various
parameter values and some guidance for tuning has been provided.

Even in case of relatively difficult bursty scenarios a significant power
reduction has been obtained in exchange for executing lower number of tasks
before their deadlines. It is a role of a system designer to choose proper
parameter values to obtain a satisfiable trade-off between energy consumption
and performance. The proposed approach leads to similar results in two
considered systems of different sizes, thus it may be viewed as quite robust to
different system configurations.

The minimal interval allowed between two consecutive switchings of P-
States (threshold Γ) influences workloads of various weights in different, but
predictable way. An adaptive choice of Γ value can be then viewed as a simple
yet effective improvement of the proposed technique.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

