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Feedback-Based Allocation and

Optimisation Heuristics

The vast majority of existing research into hard real-time scheduling on many-
core systems assumes workloads to be known in advance, so that traditional
scheduling analysis can be applied to check statically whether a particular
taskset is schedulable on a given platform [42]. The hard real-time scheduling
is desired in several time critical systems such as atomotive and aerospace
domains [56]. Under dynamic workloads, admitting and executing all hard
real-time (HRT) tasks belonging to a taskset can jeopardise system timeliness.
The decision of task admittance is made by admission control. Its role is to
fetch a task from the task queue and check whether it can be executed by any
core before its deadline and without forcing existing tasks to miss theirs. If the
answer is positive, the task is admitted, and rejected otherwise. The benefits
of this early task rejection are twofold: (i) the resource working time is not
wasted with a task that will probably violate its deadline, and (ii) a possibility
of early signalling the lack of admittance can be employed to perform an
appropriate precaution measures in order to minimize the negative impact of
the task rejection.

Dynamic workloads do not necessarily follow the relatively simple peri-
odic or sporadic task models and it is rather difficult to find a many-core
system scheduling analysis that relies on more sophisticated models [42],
[67]. Computationally-intensive workloads not following these basic models
are more often analysed in High Performance Computing (HPC) domain, for
example in [35]. The HPC community experience with these tasksets could
help introducing novel workload models to many-core system schedulability
analysis [42]. In HPC systems, tasks allocation and scheduling heuristics
based on feedback control proved to be valuable for dynamic workloads [82],
improving platform utilisation while maintaining timing constraints. Despite
a number of successful implementations in HPC community, these heuristics
are to the best of our knowledge never used in many-core embedded platforms
with hard real-time constraints.
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The Roadmap on Control of Real-Time Computing Systems [5], one of the
results of the EU/IST FP6 Network of Excellence ARTIST2 program, states
clearly that feedback scheduling is not suitable for applications with hard
real-time constraints, since feedback acts on errors. However, further research
[140, 162] show that although the number of deadline misses must not be used
as an observed value (since any positive error value would violate the hard
real-time constraints), observing other system’s parameters, such as dynamic
slack, created when tasks are executed earlier than their worst-case execution
time (WCET), or core utilisation, could help in allocating and scheduling tasks
in a real-time system.

The feedback-based dynamic resource allocation heuristics impose some
requirements on the target system. Usually, to perform resource allocation
decision one can rely on various metrics provided by the monitoring infrastruc-
ture tools and services, such as utilization and the time latency between input
and output timestamps [81]. The system should also guarantee an appropriate
level of responsiveness to the decisions made by the heuristics, as well as
update the values of the metrics used as inputs in the algorithm. Moreover, it
is important to provide the heuristic algorithm with realistic data about system
workload, service capacity, worst-case execution time and average end-to-end
response [84].

In order to address the aforementioned issues, we present a novel task
resource allocation process, which is comprised of the resource allocation and
task scheduling. The resource allocation process is executed on a particular
core. Its role is to send the processes to be executed to other processing cores,
putting them into the task queue of a particular core. Task scheduling is carried
out locally on each core and selects the actual process to run on the core.
The proposed approach adopts control-theory based techniques to perform
runtime admission control and load balancing to cope with dynamic workloads
with hard real-time constraints. It is worth stressing that, to the best of our
knowledge, no control theory based allocation and scheduling method aiming
at hard real-time systems has been proposed to operate in an embedded system
with dynamic workloads.

4.1 System Model and Problem Formulation

In Figure 4.1 the consecutive stages of a task life cycle in the proposed
system are presented. The task τl is released at an arbitrary instant. Then an
approximate schedulability analysis is performed, which can return either fail
or pass. If the approximate test is passed, the exact schedulability, characterised
with a relatively high computational complexity [42], is performed. If this test
is also passed, the task is assigned to the appropriate core, selected during the
schedulability tests, where it is executed before its deadline.
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Figure 4.1 Building blocks of the proposed approach.

Figure 4.2 A proposed many-core system architecture.

4.1.1 Application Model

A taskset Γ is comprised of an arbitrary number of tasks, Γ = {τ1, τ2, τ3, . . .}
with hard real-time constraints. The j-th job of task τi is denoted with τi,j .
If a task is comprised of only one job, these terms are used interchangeably
in this chapter. In case of tasks with job dependencies it is assumed that all
jobs of a task are submitted at the same time, thus it is possible to identify the
critical path at the instant of the task release. Periodic or sporadic tasks can be
modelled with an infinite series of job. The taskset is not known in advance,
thus the tasks can be released at any instant.

4.1.2 Platform Model

The general architecture of the proposed solution is depicted in Figure 5.3. The
system is comprised of n cores, whose dynamic slacks (slack vector whose
length |slack| = n) and busyness (vector U, |U| = n) are observed constantly
by the Monitor block.

In the Controllers block, one discrete-time PID controller for each
core is invoked every dt time. The controllers use dynamic slacks of the
corresponding cores as the observed values.
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The Admission controller block receives a vector of controllers’ outputs,
Y = [y1(t), . . . , yn(t)], from the Controllers block. Based on its elements’
values it performs, as shown in Figure 4.1, (i) approximate schedulability
analysis of a task admittance or rejection decision. If the decision is positive, an
(ii) exact schedulability analysis is performed by the Design Space Exploration
(DSE) block. If at the second stage the result of the task schedulability analysis
is negative, the task is rejected. Otherwise it is (iii) allocated to a core where
the execution before the deadline is guaranteed based on the schedulability
analysis performed in block DSE.

4.1.3 Problem Formulation

Given an application and platform models, the problem is to quickly identify
tasks whose hard timing constraints would be violated by the processing cores
and then to reject such tasks without performing costy exact schedulability
analysis. The number of rejected tasks should be reasonably close to the
number of tasks rejected in a corresponding open-loop system, i.e., the system
without the early rejection prediction. Meeting the deadlines for all admitted
tasks shall be guaranteed.

4.2 Performing Runtime Admission Control and Load
Balancing to Cope with Dynamic Workloads

In dynamic workloads, admitting and executing all hard real-time (HRT) tasks
belonging to a taskset G can jeopardise system timeliness. The role of the
admission control is to detect the potential deadline violation of a released
task, τl, and to reject it in such the case. Then the resource working time is not
wasted for a task that would probably violate its deadline and early signaling
of the rejection could be used for minimizing its negative impact.

The j-th job of task τi, τi,j , is released at ri,j , with the deadline di,j and
the relative deadline Di,j = di,j − ri,j . The slack for τi,j executed on core πa,
where τp,k was the immediate previous job executed by this core, is computed
as follows:

si,j =

{
Cp − cp,k if ri,j ≤ Ip,k + cp,k,
Fp,k − ri,j if Ip,k + cp,k ≤ ri,j < Fp,k,
0 if ri,j ≥ Fp,k,

(4.1)

where ri,j is release time of τi,j , Ip,k – initiation time of τp,k (also known as
the job execution starting time), cp,k and Cp – computation time and worst-
case execution time (WCET) of τp,k, and Fp,k – its worst-case completion
time. A similar slack calculation approach is employed in [162]. The three
possible slack cases (Equation (4.1)) are illustrated in Figure 4.3 (top, centre,
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Figure 4.3 Illustration of task τi,j slack in three cases from Equation (4.1).

bottom, respectively). In these figures the solid rectangle illustrates execution
time (ET) of τp,k, whereas the striped rectangle shows the difference between
WCET and ET of this task.

The normalised value of slack of currently executed job τi,j on core πa is
computed as follows:

slacka =
Di,j − si,j

Di,j
. (4.2)

This value is returned by a monitor and compared by a controller with setpoint
slack setpoint. An error ea(t) = slacka − slack setpoint is computed for
core πa, as schematically shown in Figure 5.3. Then the a-th output of the
Controllers block, reflecting the past and previous dynamic slack values in
core πa, is computed with formula

ya(t) = KP ea(t) + KI

IW∑
i=0

ea(t − i) + KD
ea(t) − ea(t − 1)

dt
, (4.3)
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where KP , KI and KD are positive constant components of the proportional,
integral and derivative terms of a PID controller. Their values are usually
determined using one of the well-known control theory methods, such as root
locus technique, Ziegler-Nichols tuning method or many others, to obtain the
desired control response and preserve the stability. In our research, we have
applied Approximate M-constrained Integral Gain Optimisation (AMIGO),
as it enables a reasonable compromise between load disturbance rejection and
robustness [8]. This method has been outlined in Chapter 3.

The value of slack setpoint is bounded between values: min slack
setpoint and max slack setpoint, which should be chosen appropriately
during simulation of a particular system. Similarly, the initial value of
slack setpoint can influence (slightly, according to our experiments) the final
results. In this chapter, it is initialised with the average between its minimal
and maximal allowed values to converge quickly with any value from the
whole spectrum of possible controller responses.

The slacks of the tasks executed by a particular processing core accumulate
as long as the release times of each task are lower than the worst-time
completion time of the previous task, which correspond to the first two cases
in Equation (4.1) and are illustrated in Figure 4.3 (top and centre). It means
that the slacks of subsequent tasks executed on a given core can be used as a
controller input value. However, previous values of dynamic slack are of no
importance when the core becomes idle, i.e., the core finishes execution of a
task and there is no more tasks in the queue to be processed, which corresponds
to the third case in Equation (4.1) illustrated in Figure 4.3 (bottom). To reflect
this situation, the current value of slack setpoint is provided as an error ea(t),
to enhance the task assignment to this idle core (since it corresponds with the
situation that the normalised slack would be twice as large as the current
setpoint value, i.e., behaves in the way the task would finish its execution
two times earlier than expected). Substituting this value not only positively
estimates the task schedulability at the given time instant, but also influences
future computation of the controller output, as it appears as a prior error value
in the integral part in Equation (4.3).

The Controllers block output value Y = [y1(t), . . . , yn(t)] is provided as
an input to the Admission controller block, where it is used to perform a task
admittance decision. If all Controllers’ outputs (errors) ya(t), a ∈ {1, . . . , n}
are negative, the task τl fetched from the Task queue is rejected. Otherwise,
a further analysis is conducted by the Design Space Exploration (DSE) block
to perform exact schedulability analysis. The available resources are there
checked according to any exact schedulability test (e.g., from [42]), which is
performed for each core with task τl added to its taskset as long as a schedulable
assignment is not found. In our implementation, this analysis has been carried
out using the interval algebra described in Chapter 2. If no resource is found
that guarantees the task execution before its deadline, it is rejected.
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The pseudo-code of the control strategy is presented in Algorithm 3.9.
This algorithm is comprised of two parts, described respectively by lines
1–18 and 19–24, which are executed concurrently. The first part consists of
the following steps.

• Step 1. Invocation (lines 1, 17).
The block functionality is executed in an infinite loop (line 1), activated
every time interval dt (line 17).

Algorithm 4.1 Pseudo-code of Admission controller involving DSE algorithm

inputs : Task τl ∈ Γ (from Task queue)
Vector of errors Y[1..n] (from Controller)
Controller invocation period dt
slack setpoint decrease period dt1, dt1 > dt

outputs : Core πa ∈ Π executing τl or job rejection
Value of slack setpoint

constants: min slack setpoint - minimal allowed value of slack setpoint
max slack setpoint - maximal allowed value of slack setpoint
slack setpoint add - value to be added to slack setpoint
slack setpoint sub - value to be subtracted from slack setpoint

1 while true do
2 while task queue is not empty do
3 fetch τl;
4 forall Ya > 0 do
5 if taskset Γa ∪ τl is schedulable then
6 assign τl to πa;
7 break;
8 end
9 if τl not assigned then

10 reject τl;
11 if ∃Ya : Ya > 0 ∧ slack setpoint < max slack setpoint then
12 increase slack setpoint by slack setpoint add;
13 end
14 end
15 end
16 end
17 wait dt;
18 end

19 while true do
20 if slack setpoint > min slack setpoint then
21 decrease slack setpoint by slack setpoint sub;
22 end
23 wait dt1;
24 end
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• Step 2. Task fetching and schedulability analysis (lines 2–8).
All tasks present in the Task queue are fetched sequentially (lines 2–3).
For each task, the Controllers’outputs are browsed to find positive values,
which are treated as an early estimation of schedulability (line 4). If such
value is found in an a-th output, an exact schedulability test checks the
schedulability of the taskset Γa of the corresponding core πa extended
with task τl using any exact schedulability test (line 5), e.g., from [42].
If the analysis proves that the taskset is schedulable, τl is assigned to πa

(line 6). Otherwise, the next core with the corresponding positive output
value is looked for.

• Step 3. Task rejection and setpoint increase (lines 9–15).
If all cores have been browsed and none of them can admit τl due
to either a negative controller output value or the exact schedulability
test failure, the task τl is rejected (line 10). In this case, if there
exists at least one positive value in the Controllers’ output vector, the
slack setpoint is increased by constant slack setpoint add provided
that it is lower than constant max slack setpoint (lines 11–12) to
improve the schedulability estimation in future.

The second part consists of two steps.

• Step 1. Invocation (lines 19, 23).
The block functionality is executed in an infinite loop (line 19), activated
every time interval dt1, dt1 > dt (line 23).

• Step 2. Setpoint decrease (lines 20, 21).
The value ofslack setpoint is decreased by constantslack setpoint sub
(provided that it is higher than constant min slack setpoint), which
encourages a higher number of tasks to be admitted in future.

4.3 Experimental Results

In order to check the efficiency of the proposed feedback-based admission
control and real-time task allocation process, a simple Transaction-Level
Modelling (TLM) simulation model has been developed in SystemC language.
Firstly, the controller components KP , KI and KD have to be tuned by
analysing the corresponding open-loop system response to a bursty workload.
Then three series of experiments have been performed. Firstly, a heavy
periodic workload has been used to observe the behaviour of the overloaded
system. Due to the regularity in the workload, some convergence of the setpoint
has been expected. In the second series, workloads of various weight have
been tested to observe the system behaviour under different conditions and
to find the most beneficial operating region. Then industrial workloads with
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dependent jobs have been used to determine the applicability of the proposed
approach in real-life scenarios.

To tune the parameters of the controller, the task slack growth response
on a step-input in the open-loop system (i.e., without any feedback) has been
analysed. This is a typical way in control-theory-based approaches [8]. As an
input, a burst release of 500 tasks (with execution time equal to 50 μs each)
has been chosen. The modelled system has been comprised of 3 computing
(homogeneous) cores. However, any number of tasks can be released, their
execution time may vary and the number of cores can be higher, which is shown
in further experiments. The obtained results have confirmed the accumulating
(integrating) nature of the process, and thus the accumulating process version
of AMIGO tuning formulas have been applied to choose the proper values of
PID controller components [8], similarly as it has been presented in Chapter 3.
With a series of trial-and-error processes, the following constant values
have been selected: min slack setpoint = 5, max slack setpoint = 95,
slack setpoint add = 1, slack setpoint sub = 5, the first part of the
proposed algorithm (Algorithm 3.9) is executed five times more often than the
second one.

During the first experiment, the system with the chosen parameters has
been experimentally evaluated under a periodic workload, consisting of 900
independent jobs (i.e., each task is comprised of a single job only), one released
every 5 μs, whose WCET equals to 50 μs and the relative deadline is equal to
60 μs. These parameters have been chosen appropriately to make the taskset
heavy enough to saturate the system. The exact schedulability test has been
performed for each task passing the early estimation based on the controller’s
output value. The systems with the number of processing cores ranging from
1 to 11 have been considered. The real execution time (ET) of each task varies
randomly between 60% and 100% of its WCET, which results in creation of a
dynamic slack. In the schedulability analysis, since the already executed tasks
may influence the execution of the task whose schedulability is being tested,
it is less pessimistic but still safe to provide the ET of these tasks instead of
their WCET.

The regularity of the workload should cause convergence of the setpoint
and decrease the variance of the normalised slack time. If the dynamic slack
time normalised to task deadlines is close to 0%, it can be treated as an
indication of well-chosen admission controller algorithm and the controller
parameters, since it implies that the controller managed to minimize the
steady-state error. The time needed to obtain this steady state indicates the
responsiveness of the system, which should not be too long.

To check the system response to tasksets of various heaviness, nine sets
of 10 random workloads have been generated. Each workload is comprised
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of 100 tasks, including a random number (between 1 and 20) of independent
jobs. The execution time of every job is selected randomly between 1 and
99 μs. All jobs of a task are released at the same instant, and the release time
of the subsequent task is selected randomly between ri + range min · Ci

and ri + range max · Ci, where Ci is the total worst-case computation time
of the current tasks τi released at ri, and range min, range max ∈ (0, 1),
range min < range max. These values influence the workload heaviness
which can be described with Param parameter, which we define as the total
execution time of all jobs divided by the latest deadline of these jobs. For
example, for pair range min = 0.001, range max = 0.01, ten random
workloads have been generated with Param ranging from 208.65 to 237.62,
with the average value Param = 224.52. The average Param values for the
generated workloads are given in Table 4.1. The value of �Param� can be
viewed as a lower bound of the number of cores needed for computing all tasks
in the workload before their deadlines. It is a rather optimistic value due to the
bursty nature of the workloads and their deadlines. For example, only 71% of
tasks are executed before their deadlines from a certain generated workload
with Param = 4.58 in an open-loop 5-core system, whereas to execute all
these tasks as many as 13 cores are needed.

4.3.1 Number of Executed Tasks, Rejected Tasks and
Schedulability Tests

4.3.1.1 Periodic workload
The number of tasks executed before their deadlines while using both ET and
WCET for schedulability analysis has been compared with the corresponding
open-loop system in Figure 4.4 (top). As expected, by using actual execution
time (ET), the number of tasks executed before their deadlines is slightly
increased. On average, an improvement of 3.7% is achieved. The results
obtained by closed-loop approaches are clearly worse than those obtained
with the open-loop approach, where schedulability of each task is analysed

Table 4.1 Average Param values for random workloads generated with different
range min and range max parameters

range min range max Param
0.001 0.01 224.52
0.0025 0.025 77.07
0.005 0.05 38.71
0.0075 0.075 25.56
0.01 0.1 18.90
0.02 0.2 9.11
0.03 0.3 6.12
0.04 0.4 4.60
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Figure 4.4 Number of executed tasks (top) and number of tasks rejected by the exact
schedulability test (bottom) in closed-loop WCET, closed-loop ET and open-loop systems
for the periodic task workload simulation scenario.

with an exact schedulability test only. The open-loop approach admits about
7.6% and 10.9% higher number of tasks than the closed-loop ET and WCET
case, respectively. However, this improvement is achieved with a significant
timing overhead. In an extreme case of one core system, 117 schedulability
tests are to be conducted for the closed-loop ET case (and 233 for WCET) in
comparison with 900 test executions in the open-loop system. It is important
to note that only 21 exact schedulability tests for the ET case (and 143 for
WCET) returned negative results, which demonstrates high accuracy of the
proposed estimation scheme for open loop system. For higher number of
cores, the differences are lower since each admitted task is to be checked
by the exact schedulability test to ensure its hard deadlines compliance. On
average, more than 38% and 34% of the schedulability tests can be omitted
for the estimation based on ET and WCET, respectively. This difference is
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caused by the number of tasks rejected by the exact schedulability test, which
is illustrated in Figure 4.4 (bottom).

4.3.1.2 Random workload
Figures 4.5 and 4.6 present the number of tasks computed before their
deadlines, rejected tasks and the number of the exact schedulability test
executions with respect to the number of processing cores (ranging from 1 to
9) and average values of Param, respectively, for open-loop and closed-loop
(ET) systems.

The numbers of executed tasks with respect to Param, both for the open-
loop and closed-loop systems, are approximated better with power than linear
regression (residual sum of squares is lower by one order of magnitude in case
of power regression; logarithmic and exponential regression approximations
were even more inaccurate). This regression model can be then used to
determine the trend of executed task number with respect to different workload
weights. Similarly, the difference between the number of admitted tasks by
open and closed loop systems can be relatively accurate approximated with
a power function (power regression result: y = 960.87x−1.18, residual sum
of squares rss = 3646.06). This relation implies that the closed-loop system
admits relatively low number of tasks when the workload is light. In such
lightweight condition, the number of schedulability tests to be performed
is only 12% lower in the extreme case of the set with Param = 4.60.
Thus, there is no reasonable benefits of using controllers and schedulability
estimations. In heavier loaded systems, however, the number of admitted tasks
in both configurations are more balanced, and the number of schedulability test
executions is significantly varied. For example, for the two heaviest considered
workload sets (i.e., with Param equal to 224.52 and 77.07) the schedulability
tests are executed about 65% rarer in the closed-loop system.

The number of executed tasks grows almost linearly with the number of
processing cores in both configurations and the slopes of their linear regression
approximations (both with correlation coefficients higher than 0.99) are almost
equal. This implies that both configurations are scalable in a similar way and
the difference between the number of executing tasks in open-loop and closed-
loop systems is rather unvarying. The number of schedulability test executions
is almost constant in the open-loop system regardless the number of cores.
However, for the closed-loop configuration, it changes in a way relatively
good approximated with a power regression model (power regression result:
y = 1476.29x−0.30, residual sum of squares rss = 14216.21). Since the
growing number of processing cores corresponds to less computation on each
of them, the conclusion is similar as in the Param variation case: the higher
the load for the cores, the more beneficial is applying of the proposed scheme.

The number of tasks rejected in the open-loop systems using the exact
schedulability test is considerably higher for heavier random workloads and
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Figure 4.5 Number of tasks executed before their deadlines (top), the number of rejected
tasks (centre) and number of the exact schedulability test executions (bottom) in baseline open-
loop and proposed closed-loop ET systems for the random workloads simulation scenario with
different weight of workloads.

lower number of cores, whereas for lighter random workloads or higher
number of cores it is similar to the closed-loop ET system. For the closed-
loop ET systems these figures illustrate the number of false positive errors of
the approximate schedulability analysis, whereas for the open-loop systems it
complements the number of tasks executed before deadlines.
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Figure 4.6 Number of tasks executed before their deadlines (top), the number of rejected
tasks (centre) and number of the exact schedulability test executions (bottom) in baseline open-
loop and proposed closed-loop ET systems with different number of processing cores for the
random workloads simulation scenario.

4.3.2 Dynamic Slack, Setpoint and Controller Output

4.3.2.1 Periodic workload
Figures 4.7 shows dynamic slack, setpoint and controller outputs during the
simulation for the periodic task workload executed on a system with 3 cores.
In Figure 4.7 (top), the initial relative large values of the slack of three cores
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Figure 4.7 Dynamic slack (top), setpoint (centre) and controller output (bottom) during the
simulation for the periodic task workload simulation scenario executed by a 3 core system.

(plotted with three different colors), normalised to task deadlines, equal to
46%, 42.8%, and 39.9% (the difference is caused with the random ET). The
slack values decrease fast and after 530 ms none of them is higher than 5% of
the task deadlines. This implies that tasks are executed relatively close to their
deadlines, but never miss them. This behavior is obtained due to the exact
schedulability test performed in the Design Space Exploration block and also
indicates minimization of the steady-state errors by controllers. Taking into
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account the initial high values of the setpoint, the time of reaching the low
normalised slack time can be treated as rather short. However, in random and
industrial workloads reaching any steady state is very rare due to the lack of
strict periodic behaviour of the workloads, as shown later in this chapter.

The early estimation based on controller outputs does not admit too many
unschedulable tasks (in this experiment only 19 such tasks have been detected
by the schedulability test). It is visible in Figure 4.7 (centre), where the
value of setpoint decreases from the initial value to the minimum (by the
functionality of the 2nd part of the algorithm presented in Algorithm 3.9), and
after 650 ms no increase is observed. It means that after this time not a single
unschedulable task has been wrongly identified as schedulable by the early
estimation. The initial high values of normalised slack and setpoint are also
reflected in Controllers’ output values (Figure 4.7 (bottom)). Every time the
value of an appropriate controller output is negative, a released task cannot
be executed on the corresponding processing core. Despite only a sign of the
controller output is important for the task admittance, relative large values of
the controller outputs denote significant variance over observed normalised
slack, which may be caused with not yet stabilised value of the controller
setpoint. After about 750 ms the absolute value of the controller outputs are
rather low, which means that the task slacks observed in the corresponding
cores are low and the workload is rather predictable as compared to the random
workload (next experiment).

4.3.2.2 Light workload
In Figure 4.8, the observed run-time metrics of the closed-loop 3-core system
simulation of one selected light workload (with Param = 7.89), taken
from [23], is presented. From this particular workload, 53 tasks have been
executed, 569 tasks rejected by the early estimation, and 293 tasks rejected
by the exact schedulability test. In comparison with the periodic workload
run-time characteristics, presented in Figure 4.7, more false positive early
estimations can be observed, which is reflected in higher values in the curve
depicting the setpoint value (Figure 4.8 (centre)). Since the execution time of
the tasks assigned to the cores vary significantly (from 1 ms to 95 ms), the
normalised slack times and consequently controller outputs differ considerably
for each system core (Figure 4.8 (top, bottom)), but overall decrease trend in
the normalised slack time can be noticed.

4.3.3 Core Utilization

For the periodic workload, Figure 4.9 (top) presents the total utilisation of the
three cores (100% core utilisation means that all cores are busy at a particular
instant). Except for the system initialisation, there is no situation that all three
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Figure 4.8 Dynamic slack (top), setpoint (centre) and controller output (bottom) during the
simulation for the selected light workload simulation scenario executed by a 3 core system.

cores are idle. On average, the core utilisation for this simulation is equal to
83%. All three cores are balanced as the difference in their utilisations does
not exceed more than 2 per mile. Similar utilisation and balance have been
observed for other system configurations.

For the light workload, used also as an example in the previous subsection,
a relatively long idle period of all cores can be observed (Figure 4.9 (bottom)).
It is caused with the lack of task release between 10 ms and 490 ms in this
particular workload. Except for this interval, it is rather difficult to observe any
controller steady state, which is due to the changeable nature of the workload.
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Figure 4.9 Core utilisation during the simulation for the periodic (top) and light (bottom)
workload simulation scenario with 3 core system.

4.3.4 Case Study: Industrial Workload Having Dependent Jobs

To analyse industrial workloads, 90 workloads have been generated based
on the grid workload of an engineering design department of a large aircraft
manufacturer, as described in [23]. These workloads include 100 tasks of 827
to 962 jobs in total. The job execution time varies from 1ms to 99 ms. Since the
original workloads have no deadlines provided explicitly, relative deadline of
each task has been set to its WCET increased by a certain constant (100 ms).

In these workloads all jobs of any task are submitted at the same time,
thus it is possible at the first stage to identify the critical path of each task
and admit the task if there exists a core that is capable of executing the jobs
belonging to the critical path before their deadlines. At the second stage, the
remaining jobs of the task can be assigned to other cores so that the deadline
of the critical path is not violated. The outputs from controllers can be used
for choosing the core for the critical path jobs (during the first stage) or the
cores for the remaining jobs (during the second stage). Four configurations,
summarised in Table 4.2, can be then applied.
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Table 4.2 Four configuration possibilities with respect to controllers’ output usage (OL and
CL stands for open-loop and closed-loop, respectively)

Core Selection for Core Selection for Tasks Configuration
Critical Path Tasks Outside the Critical Path Abbreviation
without controllers without controllers OLOL (baseline)
without controllers with controllers OLCL
with controllers without controllers CLOL
with controllers with controllers CLCL

Figure 4.10 (top) shows the number of jobs executed before their dead-
lines. The OLOL configuration can be treated as the baseline, since no control
theory elements have been applied (only exact schedulability tests are used to
select a core for a job execution). The cores are scanned in a lexicographical

Figure 4.10 Number of executed jobs (top) and number of schedulability test executions
(bottom) for systems configured in four different ways for the industrial workloads simulation
scenario.
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order as long as the first one capable of executing the job satisfying its timing
constraints is not found, whereas in the closed-loop configurations the tasks are
checked with regards to the decreasing value of the corresponding controller
outputs.

The OLOL configuration approach seems to be particularly beneficial in
the systems with lower number of cores (heavier loaded with tasks). However,
in the systems with more than two cores, the OLCL configuration leads to the
best results. Its superiority in comparison with CLCL stems from the fact that
an over-pessimistic rejection of critical path jobs leads to fast rejection of the
whole task. Thus the cost of a false negative estimation is rather high. Wrong
estimation at the second stage usually results in choosing an idler core. The
OLCL configuration admits 11% more jobs than OLOL, whereas CLCL is
only slightly (about 1.5%) better than the baseline OLOL.

The main reason for introducing the control-theory based admittance is,
however, decreasing the number of costly exact schedulability testing. The
number of the exact test executions is presented in Figure 4.10 (bottom). Not
surprisingly, the wider the usage of controller outputs, the lower is the cost
of schedulability testing. The difference between OLOL and OLCL is almost
unnoticeable, but the configurations with control-theory-aided selection of a
core for the critical path jobs leads to significant, over 30% reduction.

From the results it follows that two configurations OLCL and CLCL
dominate the others: the former in terms of number of executed jobs, the latter
in terms of number of schedulability tests. Depending upon which goal is more
important, one of them is advised to be selected. Interestingly, only in case
of low number of processing cores, the baseline OLOL approach is slightly
better than the remaining ones. For larger systems, applying PID controllers
for task admissions seems to be quite beneficial.

4.4 Related Work

A majority of works that apply techniques originated from control-theory
to map tasks to cores offers soft real-time guarantees only, which cannot
be applied to time-critical systems [82]. Relatively little work is related
to the hard real-time systems, where the task dispatching should ensure
admission control and guaranteed resource provisions, i.e., start a task’s job,
only when the system can allocate a necessary resource budget to meet its
timing requirements and guarantee that no access of a job being executed to
its allocated resources is denied or blocked by any other jobs [95]. Providing
such kind of guarantee facilitates to fulfill the requirements of time critical
systems, e.g., avionic and automotive systems, where timing constraints must
be satisfied [56, 75].
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Usually hard real-time scheduling requires a priori knowledge of the worst-
case execution time (WCET) of each task to guarantee the schedulability of the
whole system [42]. However, according to a number of experimental results
[48], the difference between WCET and observed execution time (ET) can
be rather substantial. Consequently, underutilization of resources can often be
observed during hard real-time system run-time. The emerging dynamic slack
can be used for various purposes, including energy conservation by means of
dynamic voltage and frequency scaling (DVFS) or switching off the unused
cores with clock or power gating and slack reclamation protocol [140].

In [162], the authors claim that numerous existing hard real-time schemes
are not capable of adapting to dynamically changing workloads in a satisfac-
tory manner and thus do not scale well in the average case, whereas substantial
energy dissipation savings are possible. An idea of splitting each task’s WCET
into two intervals is presented, where the length of the first interval is equal to
the predicted execution time and the remaining part is the second interval. The
entire dynamic slack, accumulated from previously executed tasks, is meant
to be consumed during the first interval, by executing the task with lower
voltage and frequency and, consequently, lower performance. The length
of this interval is determined with a proportional-integral-derivative (PID)
controller. Similar approaches have been applied in [3] and [140].

In [45], a response time analysis (RTA) has been used to check the
schedulability of real-time tasksets. This ensures meeting all hard deadlines
despite assigning various execution frequencies to all real-time tasks to
minimise energy consumption. In the approach proposed in this chapter, RTAis
also performed, but it is executed far less frequent due to the fast schedulability
estimation based on controllers and thus is characterised with shorter total
execution time.

Some researchers highlight the role of a real-time manager (RTM) in
scheduling hard real-time systems. In [74], an RTM is used together with
computing resources monitoring, while schedule information are precomputed
from an SDF graph statically to help guaranteeing the real-time constraints.
We have extended basic ideas from their scheme to work with dynamic
workloads using information gathered by the monitor. The role of RTM is
also highlighted in [72]. They described that after receiving a new allocation
request, it checks the resource availability using a simple predictor. Then
the manager periodically monitors the progress of all running tasks and
allocates more resources to the tasks with endangered deadlines. However,
it is rather difficult to guarantee hard real-time requirements when no proper
schedulability test is applied. In [131], an RTM exploits information about the
probability of task execution time to predict the slack available for power
management. It is assumed that the execution time of a task in terms of
its worst-case execution time is given by a known cumulative distribution
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function. The stochastic nature of this approach prevents it from application
in hard real-time systems if even tiny probability (e.g., 10−12 [16]) of missing
any deadline is not allowed.

From the literature survey it follows that applying feedback-based con-
trollers in hard real-time systems has been limited to determining the
appropriate frequency benefiting from DVFS. According to the authors’
knowledge, the feedback controller has not been yet used by an RTM to
perform hard real-time task allocation under dynamic workload on many-core
systems.

4.5 Summary

In this chapter we presented a novel scheme for dynamic workload task
allocation to many-cores using a control-theory-based approach. Unlike the
majority of similar existing approaches, we deal with workloads having hard
real-time constraints that is desired in time critical systems. Thus, we are
forced to perform exact schedulability tests, whereas PID controllers are used
for early estimation of schedulability.

We achieved an improved performance due to reduced number of costly
scheduling test executions, slightly limiting the number of admitted tasks in
the majority of cases. The controllers observe dynamic slack of executed tasks
and aim to select the core with the lowest load.

For heavy workloads the proposed scheme achieves a better performance
than using the typical open-loop approach. Up to 65% lower number of
schedulability tests are to be performed, whereas the number of admitted
tasks is almost equal for the heavy-loaded system and lower up to 19% with
lightweight scenarios, for which the proposed scheme is less appropriate. For
industrial workloads with dependent jobs executed on larger systems, the
number of executed tasks using the proposed approach was even higher than
the open-loop baseline system due to the selection of more idle cores for
computing jobs belonging to the critical path.

Since schedulability analysis requires relatively long computation time,
decreasing the number of its executions should lead to considerable com-
putation time and energy reduction. The exact gain depends on a particular
system configuration and will be evaluated in our future work. We also plan to
consider heterogeneous many-core system and extend the proposed approach
for mixed criticality workloads.
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