
6
Swarm Intelligence Algorithms for Dynamic

Task Reallocation

The resource allocation mechanisms discussed so far in this book have
some features in common: they have (some) a priori knowledge about the
application load they are managing, and they are executed in a centralised
or hierarchical manner. In this chapter, we explore an approach that does not
require explicit information about application load, and that is able to make
decisions about resource allocation in a distributed fashion. To better motivate
such an approach, let us consider a concrete case study.

Multimedia applications such as video and audio processing are among the
most communication and computation-intensive tasks performed by current
embedded, high-performance and cloud systems. Hardware platforms with
hundreds of cores are now becoming a preferred target for such applications
[138], as the computational load in video decoding can be parallelised and
distributed across the different processing elements on the chip to minimise
metrics such as overall execution time, power or even temperature.

An important design constraint in such systems is performance predictabi-
lity.There is plenty of evidence showing that inconsistent performance in video
decoding applications can lead to reduced user engagement [46]. However,
the task of predictably manage multimedia load is not trivial. Video decoding
execution times vary greatly depending on the spatial and temporal attributes
of the video [63]. Furthermore, when decoding multiple streams of live video
(e.g., multipoint video conferencing, multi-camera real-time video surveil-
lance, multiple view object detection), the workload characteristics became
increasingly dynamic and thus difficult to model. Thus, efficient resource
allocation is critical in achieving load balance, power/energy minimisation
and latency reduction [43].

Centralised resource management with a master-slave approach, for
instance, is a straightforward way to approach this problem, and is probably
good enough for small systems, but there are many issues that appear as one
scales up the amount of load to be handled [4, 127]. Cluster based resource
management techniques have been introduced (e.g., [69]) to overcome the

95

96 Swarm Intelligence Algorithms for Dynamic Task Reallocation

limitations of centralised systems by partitioning the system resources and
employing multiple cluster managers. Despite those efforts, the complexity
of dynamic applications and the avaliability of distributed large-scale multi-
processor systems motivate the investigation of fully-distributed, autonomous
self-organising/optimising mechanisms [21, 97, 145]. Such systems should
be able to adapt or optimize itself to changing workload and internal
conditions and to recover from faults. Many of these systems implement
self-management features by autonomously controlling and adapting task
allocation and resource management at runtime.

As a basis for a distributed resource allocation approach, this chapter
focuses on the behaviour of biological systems. More specifically, we study
the swarm intelligence phenomenon, where the individual decisions made
by the members of a swarm in a distributed manner can result in a global
behaviour that is beneficial to the whole group. By applying such approach to
the management of multi-stream video processing load, we hope to show
its potential and to hint on its applicability to similar kinds of resource
management problems.

6.1 System Model and Problem Formulation

6.1.1 Load Model

We consider a load model (Figure 6.1) consisting of workflows which resemble
a container for parallel video stream decoding requests that may arrive at
arbitrary times, but respecting a specified inter-arrival time. Such load model is
general enough to describe systems handling a time-varying number of parallel
video decoding streams. A video stream consists of an arbitrary number of N
independent jobs. Each job (Ji) represents a MPEG group of pictures (GoP),
and is modelled via a fixed dependency task-graph, and takes the structure
defined in Figure 6.1. Each node in the task-graph is a MPEG-2 frame-level
decoder task, and has fixed precedence constraint and communication flow
shown via the graph edges. A decoder task can only start execution iff its
predecessor(s) have completed execution and their output data is available.
A decoder task τi is characterised by the following tuple: (pi, ti, xi, ci, ai);
where pi is the fixed priority, ti is the period, xi is the actual execution time,
ci is the worst-case computation cost and ai is the arrival time of the decoder
task τi. Decoder tasks are preemptive and have a fixed priority. Tasks within a
job are assigned fixed mapping and priorities at the start of the video stream;
these exact assignments are used for all tasks of all subsequent jobs in a video
stream. Tasks of low resolution video streams are given higher priority over
high-resolution video streams, to ensure low-resolution video streams have a
lower response-time.

6.1 System Model and Problem Formulation 97

Figure 6.1 System overview diagram.

The spatial resolution of a video stream will correspond directly to the
computation cost of the task and the payload of the message flows generated
by those tasks. The exact execution time of the tasks are unknown in advance;
however, it is assumed that the worst-case computation cost can be estimated.
Subtask deadlines are unknown but each job is considered schedulable if
it completes execution within its end-to-end deadline (Jr

i ≤ De2e). The
response-time of a job (denoted Jr

i) is the arrival time of the job to the point in
time which all of its subtasks have completed execution. A job is considered
late when (Jr

i − De2e) > 0 and late jobs impact the viewing quality of
experience (QoE) of the real-time video stream. We assume that the arrival
rate of jobs are sporadic, and the arrival pattern of new video decoding streams
are aperiodic.

Once a task has completed execution, its output (i.e., the decoded frame
data) is immediately sent as a message flow to the processing element
executing its successor child tasks, as well as to a buffer in main memory.
Message flows inherit the priority of their source tasks, with an added offset
to maintain unique message flow priorities.Amessage flow, denoted by Msgi is
characterised by the following tuple: (Pi, Ti, PLi, Ci); where Pi is the priority,
Ti is the period, PLi is the size of the message payload and Ci is the maximum
no-load latency of message flow Msgi, which can be calculated a priori and

98 Swarm Intelligence Algorithms for Dynamic Task Reallocation

usually depends on the topology of the multiprocessor interconnect and on
the total size of the message (i.e., payload plus headers and other overheads).

6.1.2 Platform Model

The multiprocessor platform we target in this chapter is composed of P
homogeneous processing elements (PEs) connected by a Network-on-Chip
(NoC) interconnect. Each PE has a local scheduler that handles a task-queue
which is contained within its local memory. The PEs are directly connected
to the NoC switches which route data packets towards any destination PE.
We assume the NoC in our platform model uses fixed priority preemptive
arbitration, has a 2D mesh topology and uses a deterministic routing algorithm
such as in [19].

In such a platform, the no-load latency Ci of a message flow as given in
Equation (6.1) includes the hop-distance and the number of data units (i.e.,
header and payload flits).

Ci = (numHops × arbitrationCost) + (numFlits) (6.1)

We assume that the NoC link arbiters can preempt packets when higher-priority
packets request the output link they are using. This makes it easier to predict
the outcome of network contention for specific scenarios. We assume all inter-
PE communication occurs via the NoC by passing messages. Once a task is
released from a global input buffer, it is sent to the task queue of the assigned
PE. The PE upon completing a tasks execution, transmits its output to the
appropriate PEs dependency buffer. Once a task has completed, the local
scheduler picks the next task with the highest priority with dependencies
fulfilled, to be executed next. The resource manager (RM) of the system
(Figure 6.1), performs initial task mapping and priority assignment and task
dispatching to the PEs. It also maintains a task-to-PE mapping table of the jobs
of every admitted and active video stream in the system. The mapping table is
essentially a hash-table where keys are task-identifiers and values are node-
identifiers. In this chapter, the terms RM and dispatcher are interchangeable
as task dispatching is a functionality of the RM. The main responsibility of
the RM is to make initial mapping decisions for new video streams, and
to dispatch tasks to the mapped PEs according to the task-to-PE mapping
table. Most importantly, the system is open-loop as the RM does not gather
monitoring information from the PEs.

6.1.3 Problem Statement

In a centralised closed-loop system, PEs would continuously feedback the
state of the tasks they were allocated (e.g., their completion time) to a central

6.2 Swarm Intelligence for Resource Management 99

manager via status message flows. The central manager would then have global
knowledge of the system in order to make efficient resource management
decisions for future workloads. As discussed in [4, 127], these advantages
come at the price of higher communication traffic, congestion hot-spots,
higher probability of failure, and bottlenecks around the centralised manager.
Furthermore, such issues are made worse as the NoC size and workload
increase.

Cluster-based distributed management approaches can offer a certain
degree of redundancy and scalability by varying the number of clusters and
respectively local cluster managers. However, appropriate cluster size selec-
tion is vital to balance communication-overhead/performance; for example,
cluster monitoring message flow routes and the cluster manager processing
overhead will increase as the cluster size increases. Furthermore, the local
cluster managers are still points of failure in the system, where if one of them
fails the respective cluster of nodes will severely degrade in performance.

Fully distributed approaches offer higher levels of redundancy and scal-
ability over cluster based approaches for large scale systems, due to not
having any central management nodes. However, due to the lack of global
knowledge and no monitoring being performed by a centralised authority,
the system may be load-unbalanced, and cause jobs to miss their deadlines
and become late. To reduce this job lateness of the admitted dynamic varying
workload, we follow a bio-inspired distributed task-remapping technique with
self-organising properties. This technique builds upon existing bio-inspired
load balancing approaches by Caliskanelli et al. [30] and Mendis et al. [91].

6.2 Swarm Intelligence for Resource Management

6.2.1 PS – Pheromone Signalling Algorithm

A distributed load-balancing algorithm based on the pheromone signalling
mechanism used by honey bees has been introduced in [30]. That algorithm,
henceforth referred to as the PS algorithm, was originally developed to
improve availability in wireless sensor networks but has features that make it
attractive as a general load balancing approach. It is based on the concept of
queen nodes (QN) and regular nodes (WN) in a network, drawing inspiration
from queen bees and worker bees. The algorithm mimics the process of
pheromone propagation by queen bees, which by doing so prevent the birth
of new queens. If a queen dies or leaves the hive, the pheromone levels
decay and worker bees are then triggered to feed larvae with royal jelly
and thus differentiate one of them into becoming the new queen. Perhaps
counter-intuitively, the PS algorithm uses the pheromone signalling process
to select queen nodes that will be allocated workload (there can be many

100 Swarm Intelligence Algorithms for Dynamic Task Reallocation

queens in a system), while worker nodes are not allocated any load unless
they become queens themselves (which is a completely different behaviour
from the biological system that inspired the approach). QNs are dynamically
differentiated from other nodes to indicate they are ready to handle a workload,
and the aim of the algorithm is to produces sufficient QNs to handle all the
required system functionality.

The algorithm is based on the periodic transmission of pheromone by
QNs, and its retransmission by receipients to their neighbours. The pheromone
level at each node decays with time and with distance to the source. All
nodes accumulate pheromone received from QNs, and if at a particular time
the pheromone level of a node is below a given threshold this node will
differentiate itself into a QN. This typically happens when this node is too
far from other QNs. The PS algorithm consists of three phases, which are
executed asynchronously on every node of the network: two of them are time-
triggered (differentiation cycle and decay of pheromone) and one of them is
event-triggered (propagation of received pheromone).

The first time-triggered phase, referred to as the differentiation cycle
(Algorithm 6.1), is executed by every node of the network every TQN time
units. On each execution, the node checks its current pheromone level hi

against a predefined level QTH . The node will differentiate itself into QN
(or maintain its QN status) if hi < QTH , otherwise it will become a WN. If
the node is a QN, it then transmits pheromone to its network neighbourhood
to make its presence felt. Each pheromone dose hd is represented as a two-
position vector. The first element of the vector denotes the distance in hops
to the QN that has produced it (and therefore is initialised as 0 in line 4 of
Algorithm 6.1). The second element is the actual dosage of the pheromone
that will be absorbed by the neighbours.

Algorithm 6.1 PS Differentiation Cycle

Input: Differentiation period TQN , local pheromone level hi, local threshold
QTH , initial pheromone dosage hQN

Output: Pheromone dose hd, Queen Node status QNi

1 while true do
2 if hi < QTH then
3 QNi = true;
4 broadcast hd = {0, hQN};
5 else
6 QNi = false;
7 end
8 wait for TQN ;
9 end

6.2 Swarm Intelligence for Resource Management 101

The event-triggered phase of PS deals with the propagation of the
pheromone released by QNs (as described above in the differentiation cycle)
and received at neighbouring nodes. The purpose of propagation is to extend
the influence of QNs to nodes other than their directly connected neighbours.
Propagation is not a periodic activity, and happens every time a node receives
a pheromone dose. Its pseudocode appears in Algorithm 6.2. Upon receiving
a pheromone dose, a node checks whether the QN that has produced it is
sufficiently near for the pheromone to be effective. It does that by comparing
the first element of the vector hd with a predefined thresholdhopcount. If the
hd has travelled more hops than the threshold, the node simply discards it. If
not, it adds the received dosage of the pheromone to its own pheromone level
hi and propagates the pheromone to its neighbourhood. Before forwarding
it, the node updates the hd vector element by incrementing the hop count,
and by multiplying the dosage by a decay factor 0 < Khopdecay < 1. This
represents pheromone transmission decaying with distance from the source.
Figure 6.2 shows four WNs connected to a QN and retransmitting a lower
dose of pheromone to their neighbours.

The second time-triggered phase of the algorithm, shown in Algorithm 6.3
is a simple periodic decay of the local pheromone level of each node. Every
Tdecay time units, hi is multiplied by a decay factor 0 < Ktimedecay < 1. It
can be easily inferred from the PS differentiation cycle that each node makes
its own decision on whether and when it becomes a QN by referring to local
information only: its own pheromone level hi. This follows the principles
of swarm intelligence, where decisions are based on local information and
interactions within a small neighbourhood.

The computational complexity of the PS algorithm is very low, as each of
the phases is a short sequence of simple ALU operations. The communication
complexity, which in turn determines how often the PS propagation step

Algorithm 6.2 PS Propagation Cycle

Input: Propagation threshold thresholdhopcount, decay factor Khopdecay ,
pheromone dose hd

Output: Updated pheromone dose hd
1 if hd received then
2 if hd[1] < thresholdhopcount then
3 hi = hi + hd[2];
4 broadcast hd = {hd[1] + 1, hd[2] × Khopdecay};
5 else
6 drop hd;
7 end
8 end

102 Swarm Intelligence Algorithms for Dynamic Task Reallocation

Figure 6.2 PS pheromone propagation

Algorithm 6.3 PS Decay Cycle

Input: Decay period TDECAY , local pheromone level hi,
decay factor Ktimedecay

Output: Updated local pheromone level hi

1 while true do
2 hi = hi × Ktimedecay;
3 wait for TDECAY ;
4 end

is executed, depends on the connectivity of the network and on the Tdecay

parameter. The protocol also provides a stability property, in that a lone node
with no peers will become and always remain a queen node after a given delay,
unlike in other distributed resource management approaches where nodes may
be probabilistically deactivated for some intervals.

6.2.2 PSRM – Pheromone Signalling Supporting Load
Remapping

The PS algorithm described in the previous subsection can be used as a general-
purpose load balancing approach. Given a set of parameters, it will converge
to a set of QNs that will then serve the system workload as it arrives. Once
a QN becomes fully utilized, it can simply decide not to be a QN anymore.
By stopping pheromone propagation, its neighbours’ pheromone levels will
reduce over time due to the decay phase of the algorithm, until one or more

6.2 Swarm Intelligence for Resource Management 103

will have their levels below the threshold and will differentiate themselves into
QNs. The new QNs will then be ready to handle new workload as it arrives.

In this subsection, we explore another possibility: using the PS algorithm to
handle load remapping. In this case, it enables distributed resource allocation
to optimise a centralised allocation mechanism which may not be fully aware
of the state of each resource. Such variation of the PS algorithm has been
applied to the problem of dynamically allocating video streams to a NoC-based
platform, as described in Section 6.1.

Algorithm 6.4 shows extensions made to the original PS differentiation
cycle, aiming to support the remapping functionality. In the original algorithm,
QTH is fixed as a parameter of the algorithm. In this case, QTH is dynamically
adjusted depending on the workload mapped on the resource (namely, the PE
connected to the NoC). The cumulative slack of the tasks mapped on the PE is
used to vary the QN threshold QTH , such that a node will differentiate itself
into a QN if it has enough slack to accommodate additional tasks (line 4). The
slack of a task is calculated as the difference between the relative deadline (di)
and the observed response-time of the task ri. A negative cumulative slack
value indicates the PE does not have any spare capacity to take additional

Algorithm 6.4 PSRM Differentiation Cycle

Input: Differentiation period TQN , local pheromone level hi,
local threshold QTH , initial pheromone dosage hQN

Output: Pheromone dose hd, Queen Node status QNi

1 while true do
/* calc. normalised cumulative TQ slack */

2 TQSlack =

∑

∀τi∈P EMP T

(di−ri)

∑

∀τi∈P EMP T

(di)
;

/* calc. QN threshold */
3 if TQSlack > 0 then
4 QTH = QTH × (1 + (TQSlack × Qα

TH));
5 else
6 QTH = hi × Qβ

TH ;
7 end

/* determine queen status */
8 if hi < QTH then
9 QNi = true;

10 broadcast hd = {0, hQN , QNxy, PEMPTinfo};
11 else
12 QNi = false;
13 end
14 wait for TQN ;
15 end

104 Swarm Intelligence Algorithms for Dynamic Task Reallocation

tasks, and hence the node is converted or remains a worker node. Line 2 in
Algorithm 6.4 shows the calculation of the task queue (TQ) cumulative slack
(TQSlack) of the mapped tasks. If TQSlack is positive, QTH is incremented by
a ratio defined by (TQSlack +Qα

TH); where {Qα
TH ∈ � | 0 ≤ Qα

TH ≤ 1} is a
parameter of the algorithm. If TQSlack is negative, then the algorithm ensures
the node does not become a QN in this differentiation cycle, by setting QTH

as a proportion of hi as given in Line 6; here {Qβ
TH ∈ � | 0 ≤ Qβ

TH ≤ 1}
is also a parameter of the algorithm. The self-organising behaviour of the
distributed algorithm (specifically the Differentiation cycle in Algorithm 6.4),
stabilises the number and position of the QNs in the NoC, as time progresses
and depending on the workload. A node propagates pheromones immediately
after it becomes a queen (line 10). We represent the pheromone dose (hd) as
a four position vector containing the distance from the QN, the initial dosage
(hQN), the position of the QN in the network (QNxy) and a data structure
(PEMPTinfo) containing the pi and ci of the tasks mapped on the QN.
The worker nodes will receive and store this information as the pheromones
traverse through the network.

Now that the extension to PS has been introduced, let us focus on its
integration to a centralised mapping of video stream tasks. We assume the
centralised mapping is performed according to a lowest worst-case utilisation
heuristic. Once mapped, a task within a job may be late due to the PE or network
route being over-utilised and/or due to the heavy blocking incurred by higher-
priority tasks and flows. We then aim to change the task-to-PE mapping of late
tasks, such that these causes of lateness can be mitigated. The task-remapping
procedure (Algorithm 6.5) is executed by each PE periodically, using only its
local knowledge gathered via the pheromone doses.

Algorithm 6.5 illustrates the proposed remapping procedure that utilises
the adapted PS algorithm, denoted as PSRM . The following steps occur at
each remapping cycle (seen in Figure 6.3). Firstly the task with the maximum
lateness τMAX

L from the PE task queue, is selected as the task that needs to be
remapped to a different PE (line 1). The deadline of a task (di) is calculated as a
ratio of the end-to-end job deadline (De2e), as given in [65]. Each node is aware
of the nearest QNs (QList), and their mapped tasks, by storing the information
received from each pheromone dose hd. In Lines 3–10, the algorithm evaluates
the worse-case blocking that will be experienced for the target task τMAX

L and
the number of lower priority tasks that will be blocked, by mapping it onto
each Qi ∈ QList. Once a list of QNs with lower blocking than the current
blocking is obtained (lines 7–9), they are requested (RQ) for their availability
(line 11) via a low payload, high priority message flow. The QNs reply (REP)
with its availability (i.e., if other worker nodes have been remapped to a
QN in that remapping cycle, then the QNs’ availability is set to false). This
avoids unnecessary overloading of QNs. τMAX

L will then be remapped to the

6.2 Swarm Intelligence for Resource Management 105

Algorithm 6.5 PSRM Remapping
1 while true do

/* find most late task from task queue */

2 τMAX L
i = MAX({τi ∈ TQ | (ai + di) ≤ tc});
/* get current blocking for late task */

3 B(τMAX L
i) = getCurrentBlocking(hp(τMAX L

i));
/* find suitable QNs which offer lower blocking, than

current blocking */

4 QB
List = { };

5 foreach Qi ∈ QList do
/* get target task blocking factor */

6 Self BQ =
∑

∀τj∈hp(τMAX L
i)

cj ;

/* get number of lower priority tasks */

7 LPsize =
∣
∣lp(τMAX L

i)
∣
∣;

8 if Self BQ < B(τMAX L
i) then

9 Insert {Qi, LPsize} to QB
List;

10 end
11 end

/* request for QN availability */

12 Avlb QB
List = requestAvailability(QB

List);
/* get available QN that has least amount of lower

priority tasks */

13 {QMIN LP
i , LP MIN

Q } = MIN(Avlb QB
List);

/* Update dispatcher task-mapping table */

14 Notify dispatcher: τMAX L
i → PE(QMIN LP

i);
15 wait for TRM ;
16 end

QN with the least number of lower priority tasks (denoted QMIN LP
i) from

the available QN list (Avlb QB
List) (line 12). Finally, the task dispatcher is

notified via message flow to update the task mapping table; the dispatcher
looks up the task-id in the table and updates the corresponding node-id with
the new remapped node-id. When the tasks of the next job of the video stream
arrives into the system they will be dispatched to the node-id indicated by the
updated mapping table. Therefore, remapping will only take effect from the
subsequent arrival of the next job in the video stream. Even though there is
an update message sent to the dispatcher at a remapping event, the remapping
decision is achieved purely using local information at each PE, based on the
PSRM algorithm.

Figure 6.4 illustrates an example of the remapping procedure in a 4 × 4
NoC. The (x, y) coordinates refer to the processing node in column x and
row y. In step 1 of Figure 6.4, at each remapping interval (TRM) each PE

106 Swarm Intelligence Algorithms for Dynamic Task Reallocation

Figure 6.3 Sequence diagram of PSRM algorithm related events. Time triggered (periodic):
PSDifferentiation, PSDecay and Remapping cycles; Event triggered: PSPropagation.

identifies the late tasks in their task queues; they are also aware of the position
of any nearby QNs due to the pheromone signals. τ1 and τ2 on PE(1,0) and
PE(2,2) are tasks that are late, at that time instant. In step 2, they determine
the suitability of each QN to remap the late tasks to. τ1 can either be remapped
to Q(1,1) or Q(3,0); and τ2 can be remapped on to either Q(3,2) or Q(1,1) but
Q(3,2) is not suitable due to the task blocking behaviour and Q(0,3) is not in
the QList due to distance. In step 2, the nodes request for the suitable QNs’
availability; in this instance PE(1,0) obtained a lock on Q(1,1) first. Hence,
τ1 will be remapped onto Q(1,1) and τ2 will be remapped to Q(2,3). In step 3

6.2 Swarm Intelligence for Resource Management 107

Figure 6.4 Task remapping example. (Q = queen nodes; D = Dispatcher; [τ1, τ2] are late
tasks; Blue lines represent communication.

the PEs notify the dispatcher via a message flow regarding the remapping.
In step 4 the next job arrives and τ2 and τ3 are now dispatched to the new
processing elements – PE(1,1) and PE(2,3) respectively.

The performance of adaptive algorithms such as PSRM is highly dependent
on the selection of a good set of parameters. Manual selection of parameters
is not feasible due to the size of the search space. Table 6.1 shows several
important parameters obtained via a search-based parameter selection method
inspired by [29]. The parameters TQN , TDECAY and TRM and their ratios

108 Swarm Intelligence Algorithms for Dynamic Task Reallocation

Table 6.1 PSRM algorithm parameters
Differenciation cycle (TQN) 0.22
Decay cycle (TDECAY) 0.055
Remapping period (TRM) 6.9
Default QN threshold (QTH) 20
QN threshold inc./dec. factors (Qα

TH , Qβ
TH) 0.107, 0.01

Pheromone time and hop decay factors 0.3, 0.15
Pheromone propagation range 3

play a key role in obtaining a good performance from the algorithm. The
experimental results during the parameter search process show that the
remapping frequency has a significant impact in accuracy and communication
overhead. The relationship between these parameters have been investigated
extensively in previous work [29, 30]. As a general guideline, to keep the
communication overhead low, the event cycles (TQN and TRM) and the QN
hormone propagation range must be kept relatively low.

The platform model used in this case study has fixed priority preemptive
NoC arbiters and local schedulers. Hence, tasks and flows can be blocked by
higher priority tasks and flows. The remapping heuristic takes into account
the new tasks’ blocking incurred by a possible remapping (lines 4–10 of
Algorithm 6.5). However, since the processing nodes lack a global view of the
communication flows, the remapping heuristic cannot take into account the
change in the overall network communication interference pattern caused by
the reallocation of the tasks. Therefore, there are situations where remapping
a task can result in an actual lateness increase. As shown in Figure 6.3
and Algorithm. 6.4, every TQN time units the worker nodes get updates
from all QNs in close proximity to them. However, between subsequent
PSDifferentiation events, the workload of the QN can change rapidly when
the system is heavily utilised, which may lead to inaccurate local knowledge
regarding the nearby QNs. Furthermore, late tasks should be remapped ideally
before the next job invocation. However, the remapping event is periodic (i.e.,
every TRM seconds) which allows the remapping overhead to be kept at a
minimum, but does not guarantee synchronisation with the workload arrival
pattern. Longer periodic events may lead to inconsistency in data and states,
but are used to keep the communication overhead at a minimum.

6.3 Evaluation

6.3.1 Experiment Design

To evaluate the resource allocation approach described in this chapter, we
performed a number of simulations of realistic load patterns allocated over

6.3 Evaluation 109

a 100-core Network-on-Chip platform. A discrete-event, abstract simulator
described in [92] has been adopted. The volume of load was configured such
that there would be an upper limit of 103 parallel video streams at any given
time in the simulation. Experiments were performed under 30 unique workload
situations, where the number of videos per workflow, their resolutions and
arrival patterns vary based on the randomiser seed used in each simulation run.
The computation to communication ratio of the workload was approximately
2:1. The resolution of the video streams were selected at random from a list
of low to high resolutions (e.g., from 144p to 720p). The inter-arrival time
of jobs in a video stream were set to be between 1 to 1.5 times the De2e.
Tasks were initially mapped to the lowest utilised PE (according to worst-
case utilisation) and priority assignment of the tasks followed a scheme were
the lowest-resolution tasks get the highest priority. This initial mapping and
assignment scheme were constant variables for all evaluations.

6.3.1.1 Metrics
The experiments have multiple dependent variables as described below:

• Total number of fully schedulable video streams is the number of all
admitted video streams that have no late jobs (i.e., Jr

i ≤ De2e).
• Cumulative job lateness (CJobs

L) is calculated as the summation of
lateness of all the late jobs from every video stream (vi) admitted to
the system (Equation (6.2)). In Equation (6.2), JL

i is a late job and V S
denotes all the video streams admitted to the system. We measure the
job lateness with remapping enabled/disabled, hence a reduced CJobs

L ,
when remapping is enabled is considered an improvement to the
system. This metric gives us a notion of how the remapping technique
reduced the lateness of the unschedulable video streams, which directly
affects the QoE of the video stream.

• Communication overhead is calculated as the sum of the basic latencies
(Ci) of every control signal in the respective remapping technique.
In the PSRM algorithm these are the pheromone broadcast and QN
availability request signals. In the cluster-based technique the PE status
update traffic and the inter-cluster communication traffic contributes to
the overhead. Furthermore, the task dispatcher notification messages
in all the remapping techniques are included in the overhead. Lower
communication overheads lead to less congested networks as well as
lower communication energy consumption [39].

• Distribution of PE utilisation is calculated by the measured total busy
time for every PE on the network during a simulation run. PE utilisation
gives a notion of the workload and a lower variation in workload
distribution is desirable. Overloading a single resource and/or having

110 Swarm Intelligence Algorithms for Dynamic Task Reallocation

a high number of idle PEs, are undesirable properties which may lead to
reduced reliability and increased wear-and-tear.

CJobs
L =

∑
∀vi∈V S

⎡
⎣ ∑

∀JL
i ∈vi

(Jr
i − De2e)

⎤
⎦ (6.2)

Comms. overhead =
∑

∀msgi ∈ ControlMsgs

Ci (6.3)

6.3.1.2 Baseline Remapping Techniques
The PSRM resource manager was evaluated against the following baselines:

• CCPRMV 2 – is a cluster-based management proposed in [91] as an
improvement of the original work by Castilhos et al. [33]. It is configured
with a cluster size of 2 × 5 (i.e., 10 clusters).

• Centralised management – is essentially CCPRMV 2 with only one
10 × 10 cluster. A single centralised resource manager receives status
updated from every slave PE in the network and performs periodic
remapping as described in [91]. The manager notifies the task dispatcher
of any remapping decisions.

• A random remapper – is a remapping scheme where, every remapping
interval each PE selects the most late task in its task queue and randomly
selects another node on the network to remap to. The task dispatcher is
notified of the remapping event.

6.3.2 Experimental Results

6.3.2.1 Comparison between clustered approaches
The comparison of CCPRMV 1 and CCPRMV 2 for the CJobs

L metric is shown in
Figure 6.5(a). In this plot a positive improvement indicates that task remapping
has helped to reduce the cumulative job lateness in the admitted video streams.
Anegative improvement indicates that the remapping has instead worsened the
lateness of the jobs. Each sample in the distribution corresponds to a simulation
run with a unique workload. It is clear that the modifications made to the
original CCPRMV 1 technique has resulted in an improvement in reducing job
lateness. In CCPRMV 1 a majority of the data shows negative improvement,
while CCPRMV 2 shows more positive job lateness improvement. However,
this improvement has costed a 4% increase in communication cost. Certain
constraints in the local remapping decisions in CCPRMV 2 would result in more
communication with neighbouring clusters which might explain the increased
overhead.

6.3 Evaluation 111

Figure 6.5 Comparison of CCPRMV 1 (original) and CCPRMV 2 (improved). (a) Cumulative
job lateness improvement. (b) Communication overhead.

6.3.2.2 Comparison regarding video processing performance
Figure 6.6 shows the distribution of cumulative job lateness improvement
for each of the remapping techniques. Firstly, all the techniques show both
negative and positive improvements; hence, under certain workload situations
the remapping techniques have failed to improve the lateness of the jobs.
However, a majority of the distribution in both PSRM and CCPRMV 2 are in the
positive improvement region. PSRM has a smaller spread in lateness compared
to the baselines. The upper quartile and a significantly large proportion of the
inter-quartile range (IQR) falls in the positive improvement area, which is not
seen in any of the baselines. In over 60% of the workload scenarios PSRM
will produce positive improvement to the job lateness of the video streams but
the actual improvement is small (up to 3%–4%). Futhermore, in Figure 6.7,
we can see PSRM is marginally better than the CCPRMV 2 in the number
of fully schedulable video streams. CCPRMV 2 shows a better job lateness
improvement over the centralised management, because the monitoring traffic
is shorter in route-length and hence is less disruptive to the data communica-
tion. We can see that the centralised management has the highest number of
schedulable video streams out of the evaluated remappers. This could indicate
that CCPRMV 2 and PSRM gave significant job lateness improvements only
to a few video streams while the centralised management was able to make
minor improvements to multiple video streams. The random remapper shows

112 Swarm Intelligence Algorithms for Dynamic Task Reallocation

Figure 6.6 Distribution of cumulative job lateness improvement after applying remapping.

Figure 6.7 Comparison of fully schedulable video streams for each remapping technique.

the worst results with a majority of the experiments resulting in negative
improvements and produces the lowest number of fully schedulable video
streams. It was interesting to note that there were a few scenarios where
random remapping produced significant job lateness improvements, which is
seen by the high upper whisker in the box plot (Figure 6.6).

6.3.2.3 Comparison regarding communication overhead
PSRM shows a significant communication overhead reduction when com-
pared to the baselines (Figure 6.8). The mean and IQR of PSRM commu-
nication overhead is lower than the baselines but the larger variance of the

6.3 Evaluation 113

Figure 6.8 Communication overhead of the remapping approaches.

results is due to the different range of workloads and their effect on the
QN differentiation cycle in each experimental run. The maximum overhead
is comparable to that of CCPRMV 2. Both the CCPRMV 2 and centralised
management show a higher and narrower distribution of communication over-
head than PSRM. A higher upper whisker in PSRM shows that under certain
workload scenarios the overhead can be costly and similar to the CCPRMV 2
baseline. The lower communication overhead distribution of the centralised
manager when compared with CCPRMV 2, is due to the lack of inter-cluster
communication. In the centralised management scheme communicating tasks
mapped at the middle of the NoC will suffer due to the network congestion
caused by the incoming monitoring traffic. Furthermore, these traffic flows
will occupy longer routes than CCPRMV 2. Furthermore, we are shown in [69],
that the centralised managers’ communication overhead issues become severe
after the NoC size exceeds 12 × 12. The random mappers’ communication
overhead is many orders of magnitude lower than the others as it only incurs
overhead when notifying the task dispatcher regarding remapping decisions.

6.3.2.4 Comparison regarding processor utilisation
The PE utilisation distribution shown in Figure 6.9(a), indicates the PEs with
higher utilisation using lighter shade, while the darker shades show PEs with
low utilisation levels. The data shown in this plot are normalised such that
each remapping technique is relative to each other. PSRM shows a slightly
similar variation in the workload distribution to CCPRMV 2 with only a single

114 Swarm Intelligence Algorithms for Dynamic Task Reallocation

Figure 6.9 Comparison of PE utilisation for all remapping techniques. (a) Distribution of PE
utilisation across a 10 × 10 NoC. (b) Histogram of PE busy time (normalised; 20 bins).

6.3 Evaluation 115

PE with extremely high utilisation and a few with very low utilisation. The
curves fitted to the histogram data shown in Figure 6.9(b) indicates that all
four remapping techniques have a similar spread of workload distribution.
However, closer examination to the statistical properties of the distributions
(given in Table 6.2), indicate that centralised management has the lowest
variance and the mean utilisation. The random remapper has the highest
variance and mean utilisation. The frequency spikes of the centralised and
random remappers in Figure 6.9(b) at 0.8, 0.4 and 0.7 probably give rise to
these statistical properties. PSRM shows a higher mean utilisation and lower
distribution variance when compared with CCPRMV 2.

6.3.3 Outlook

Overall the results indicate the PSRM technique helps to reduce lateness in
the video stream jobs and to increase the number of schedulable video streams
when compared with the CCPRMV 2 remapper. It is important to note that this
improvement, even though is marginal, comes at a much lower communication
overhead (up to 30% lower than the cluster-based and centralised approaches).
A higher maximum lateness improvement can be obtained using CCPRMV 2,
but only in 40%–50% of the workload scenarios. Communication overhead
of CCPRMV 2 may grow as the cluster sizes increase, however in the PSRM
technique this overhead will vary depending on the distribution of QNs in the
network. Also, unlike in the baseline approaches, in PSRM the pheromone
signalling message paths are usually short (only a few hops) regardless of
the NoC size increases. A centralised resource manager can help to evenly
distribute the workload much better than PSRM, because of its global knowl-
edge of the PE status and the mapped tasks. However, PSRM shows better
workload distribution when compared with a cluster-based approach. Unlike
in the cluster-based management, in PSRM, there are no resource managers
in the network; each node executes a simple set of rules using only local
knowledge to collectively improve the performance. The execution cost of
the remapping event (Algorithm 6.5) is bounded by the number of QNs in
the local vicinity and the number of tasks mapped on the node. In the cluster

Table 6.2 PE utilisation distribution statistics. Lower variance (var.) = better workload
distribution

mean var.
PSRM 0.455 0.033
CCPRMV 2 0.454 0.034
Centralised management 0.447 0.032
Random remapper 0.462 0.035

116 Swarm Intelligence Algorithms for Dynamic Task Reallocation

based approach each local processor’s execution overhead for management
functions (such as remapping, inter-core communication, monitoring etc.)
would increase as the cluster size increases. Unlike in the centralised approach,
PSRM is decentralised hence has no single point of failure or an isolated
communication congestion area. Each PE has the capability of performing
remapping and becoming a QN, hence the level of redundancy in the system
is greater than in the baseline remappers.

One of the identified limitations in PSRM is the sensitivity of the param-
eters. The parameters need to be tuned for a specific network size and can
produce varying results based on the nature of the workload. Parameters that
are suitable for a smaller NoC size may not necessarily produce favourable
results for a larger NoC. The experimental results during the tuning of the
parameters for the PSRM and CCPRMV 2 techniques show that the remapping
frequency has a significant impact on the performance and communication
overhead. Furthermore, depending on the value of TQN and TDECAY , PSRM
will vary in the time it takes to identify suitable QNs in the network, and hence
better performance results can be seen after longer runs of the algorithm.

6.4 Summary

This chapter presented extensions to a fully distributed resource management
technique based on swarm intelligence. We have shown how such an approach
can be applied to a multiple video stream decoding application with several
unknown dynamic workload characteristics, on a NoC-based multicore. With
low communication overhead, it relies on task-remapping strategies to pro-
gressively distribute the workload in the network and to reduce the overall job
lateness.

The experimental results have shown that the bio-inspired remapper gives
a marginal (2%–4%) improvement in lateness reduction but incurs 10%–30%
lower communication overhead and minor improvement to workload distri-
bution than the baseline cluster-based and centralised management schemes.
The centralised management allows the system to increase the number of
total schedulable video streams, but the improvement to the cumulative job
lateness of the late video streams is poor and the communication overhead
is higher than in the proposed technique. The benefits of the centralised
management degrade as the scale of the network and workload increase [4].
Results show that the proposed PSRM approach give a marginal benefit in
reducing the cumulative job lateness of the video streams when compared
against the CCPRMV 2 cluster based resource management approach; however
it is important to note that the improvement is obtained using a significantly less
(up to 30% lower) communication overhead than the cluster based approach.

6.4 Summary 117

A reduced communication overhead may lead to lower energy consumption
[39] and less congested communication network, making PSRM more efficient
than the cluster-based approach. Furthermore, unlike in the centralised or
cluster-based approaches the proposed PSRM remapping technique does not
depend on a single or group of management entities. Each node is independent
and capable of relocating late tasks to improve the overall job latency, hence
adopting this technique introduces a high degree of redundancy for NoC-based
multi/many-cores that require reliable and timely operation.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

