
7
Value-Based Allocation

In a many-core HPC data centers, jobs arrive at different moments of time
and they need to be serviced by allocating on the available system cores
at run-time. In doing so, the value (utility) achieved by servicing the jobs
should be maximized while trying to minimize the overall energy consumption
during system operation as mentioned earlier. A job may contain a number of
dependent/independent tasks or processes to be allocated on the system cores.
The allocation results for each job determine the value to be achieved and
also energy consumption, and thus allocation process needs to optimize both
the metrics (value and energy). Optimizing of energy of large scale HPC
data centers is of paramount importance as there is a huge concern about the
energy required to operate such systems [112]. The reports indicate the energy
consumption of data centers to be between 1.1% and 1.5% of the worldwide
electricity consumption [70]. Thus, both the value and energy consumption
need to be optimized during resource allocation process.

Previous researchers have introduced notion of values (economic or
otherwise) of the jobs to define their importance level [66]. In overload
situations where demand for available resources is higher than the supply, such
a notion facilitates in deciding to hold the low value jobs for late allocation
and allocating limited resources to the high value jobs. The value of a job can
change over time to reflect the impact of the computation over the business
processes, which adds complexity to the allocation process.

Existing dynamic resource allocation approaches allocate dynamically
arriving jobs to the platform resources by employing light-weight heuristics
that can find an allocation quickly. There have also been efforts to utilize
design-time profiled results to facilitate efficient resource allocation and
reduce the computations at run-time [125]. These efforts seem promising
to design job-specific-clouds, where the clients (or customers) and their
jobs to be submitted for execution are pre-defined, which can be realized
from the historical data. However, they optimize only for value. Further,
existing approaches optimizing for both value and energy cannot be applied to
dependent tasks. Since an HPC job may contain a set of dependent tasks, there

119

120 Value-Based Allocation

is a need to devise resource allocation approaches to be applied on dependent
tasks while optimizing both value and energy.

7.1 System Model and Problem Formulation

Figure 7.1 shows our target system model, which is based on typical industrial
HPC scenario. The system contains a many-core HPC platform that executes
a set of jobs submitted by various users at different moments of time. The
jobs are submitted to the platform resource manager that allocates resources
to them. This section provides a brief overview of the platform and workload
model along with the problem formulation.

7.1.1 Many-Core HPC Platform Model

The HPC platform HP contains a set of nodes (PG1, . . ., PGN), where each
node (server) contains a set of homogeneous cores, referred to as processing
elements (PEs), as shown in the bottom part of Figure 7.1. Similar to a typical
data center, each node represents a physical server.Anode n is represented as a
set of cores Cn, which communicate via an interconnect. Each core is assumed
to support DVFS (as briefly described in Chapter 3) and thus its voltage and

Figure 7.1 System model adopted in this chapter. A cloud data center containing different
nodes (servers) with dedicated cores (PEs) to execute jobs submitted by multiple users.

7.1 System Model and Problem Formulation 121

frequency can be independently adjusted in order to achieve a balance between
energy consumption and job execution time. A platform resource manager
controls access of platform resources and coordinates the execution of jobs
submitted by the users, which facilitates efficient management of resources
and incoming requests.

7.1.2 Job Model

Each job j in the HPC workload is modelled as a directed graph TG = (T, E),
where T is the set of tasks of the job and E is the set of directed edges
representing dependencies amongst the tasks. Figure 7.2(a) shows an example
job that contains 7 tasks (t1, . . ., t7) connected by a set of edges. Each task
t ∈ T is associated with its execution time (ExecTime, measured as worst-case
execution time (WCET)), when allocated on a core operating at a particular
voltage level. Such information can be obtained from previous executions of
the tasks in the job from historical data. Each edge e ∈ E represents data that
is communicated between the dependent tasks. A job j is also associated with
its arrival time ATj .

7.1.3 Value Curve of a Job

For each job j, the value curve V Cj is a function of the value of the job to
the user depending on the completion time of the job [66]. The value curve
is usually a monotonically-decreasing function and trends towards zero with
the increasing completion time, as shown in Figure 7.2(b). We assume a value
curve is given for each job, as this reflects its business importance as assessed
by the end user (i.e., domain specific economic model). The description of
the economic model is orthogonal to our approach and out of scope of this
chapter.

Figure 7.2 An example job model and its value curve.

122 Value-Based Allocation

Each job is considered to have a soft deadline [28]. This implies that the
violation of deadline does not make the computation irrelevant, but reduces
its value for the user [34, 62, 66]. The reduction in value due to delay can be
determined by observing the value in the value curve at the delayed completion
time. Deadlines missed by large margins may result in zero value and thus the
computation becomes useless for the user. Further, the energy spent on such
computation can be considered as wasted. Therefore, the job request should
be rejected if no (zero) value can be obtained by executing it.

7.1.4 Energy Consumption of a Job

The total energy consumption (Etotal) of a job is computed as the sum of
dynamic and static energy as follows.

Etotal = Edynamic + Estatic (7.1)

The dynamic energy consumption for all the tasks in the job is estimated from
Equation (7.2).

Edynamic =
∑

∀t∈T

(ExecT ime[t] → cv) · (pow → cv)] (7.2)

where ExecT ime[t] → cv and pow → cv are the execution time of task t
mapped on core c operating at voltage v, and respective power consumption,
respectively. The ExecT ime measures are provided in the job model. It is
assumed that the power consumption at different operating voltages is known
in advance and taken from chip manufacturer’s data sheet.

The Estatic for each core is computed as the product of overall execution
time of the job and static power consumption of the used cores. For p used
cores, total static energy is computed as p · Estatic, and unused cores are
considered as power gated so that they do not contribute to the overall energy
consumption.

7.1.5 Problem Formulation

In an HPC system (e.g., Figure 7.1), jobs (j1, . . ., jM) arriving at different
moments of time submitted by various users need to be efficiently allocated
on the resources (cores) of the platform nodes (PG1, . . ., PGN). The resource
allocation problem targeted in this paper is to jointly optimize value and energy
while servicing arrived jobs. It is assumed that the tasks of a job are allocated
to only one node (server) in order to avoid huge communication delay between
different nodes. To summarize, the targeted problem considers the following
set of input, constraints and objective.

7.2 The Solution 123

• Input: Workload, i.e., Job set (j1, . . ., jM), Value curve of each job V Cj ,
Arrival time of each job ATj (j ∈ 1, . . . , M), Cores of the HPC platform
nodes (PG1, . . ., PGN), Voltage levels (v1, . . ., vl) supported by each
core.

• Constraints: Limited resources (cores) on each node of HP .
• Objective: Maximize overall value V altotal and minimize energy

consumption Etotal.

For an arrived job, the allocation process followed by the global resource
manager needs to identify the node to execute the job, tasks to cores allocation
inside the node, and the voltage/frequency levels of the cores executing tasks of
the job. We assume negligible time for switching between voltage/frequency
levels of a core as it is in the order of nanoseconds while tasks execution is in
the order of minutes or hours [49]. Since there are several possible allocations
(tasks to cores assignment) for a job and several voltage scaling (VS) options
for each allocation, exploring the complete design space to identify the optimal
design in terms of value and energy might not be feasible within acceptable
time. Therefore, only efficient allocations and appropriate VS options need
to be evaluated. Further, for dependent tasks, applying VS on a core is rather
challenging as one needs to capture the VS effect on the execution of dependent
tasks allocated on other cores.

7.2 The Solution

This section describes solutions in order to address the aforementioned
problem. In order to allocate platform cores to the incoming jobs at run-time,
the platform resource manager is invoked to find allocations. The manager
follows profiling or non-profiling based approach, as shown in Figure 7.3.
The details of these approaches are as follows.

7.2.1 Profiling Based Approach (PBA)

This approach uses design-time profiling results of the jobs in the historical
data to perform run-time resource allocation for the incoming jobs, as shown

Figure 7.3 Profiling and non-profiling based approaches.

124 Value-Based Allocation

in Figure 7.3(a). For each job, the profiling process identifies the allocation
and voltage/frequency levels leading to optimized response time (determines
value) and energy consumption when utilizing different amount of computing
power in terms of number of cores. The response time is calculated as the
difference between the end and start time of the job execution after allocating
resources to it and should be minimized to optimize value. To jointly optimize
value and energy, we consider to minimize the product of response time
and energy consumption. At different number of cores, the allocation and
voltage/frequency levels leading to minimum product value are identified by
employing a genetic algorithm (GA) based evaluation, similarly as in [117].
The number of cores is varied from one to the number of tasks in the job. Such
variation can exploit all the potential parallelism present in the job as each
task can occupy only one core. For each job, the allocation, voltage/frequency
levels, value corresponding to the response time and energy consumption at
different number of cores are stored as the profiling results.

To perform resource allocation by using the profiling results, the manager
follows Algorithm 7.1. The algorithm takes profiling results of the jobs from
the storage along with their value curves and arrival times, and the HPC
Platform HP as input and identifies the value and energy optimizing allocation
for each job based on the number of available cores at different nodes in the
platform. The algorithm checks mainly for two events as follows: 1) any
already allocated job(s) finish execution to update the platform resources
(lines 1–3), and 2) any job(s) arrive into the platform to put into a job queue
(lines 4–6). If any of the two events or both of them occurs, the algorithm tries
to perform resource allocation for the queues job(s) having non-zero values
(lines 7–17).

To perform resource allocation for all valuable queued jobs (i.e., jobs
having positive values), all of them (count = 0 to JobQueue.size(), line 8)
are tried to be allocated on the platform resources as along as any core is
available. It is ensured that a queued job having zero value at the allocation
time is dropped from the queue as no value can be made out of it. The
allocation process continues until all the arrived jobs are allocated or dropped
due to having zero value while waiting in the job queue. First, bids (in terms
of number of available cores) from different platform nodes are collected,
then the maximum bid (maxBid) and the corresponding node is selected
(line 9). Choosing such a node to use its cores helps to achieve better load
balancing amongst nodes and thus better resource utilization. In case more
than one nodes have the same amount of bid, any of them is chosen. If
the estimate of maxBid is greater than zero (maxBid > 0, line 10), i.e.,
at least one core is available in the platform, the value/energy estimates of
jobs utilizing maxBid cores are computed and the job leading to maximum
value per energy consumption (maxV aluePerEnergyJob) is selected to

7.2 The Solution 125

Algorithm 7.1 Profiling Based Resource Allocation

Input: Incoming Jobs with arrival times, Jobs’ profiling results and value
curves, HPC Platform HP.

Output: Resource Allocation for Incoming Jobs.
1 if allocated job(s) finish execution then
2 Update platform resources;
3 end
4 if job(s) arrive then
5 Put the job(s) in JobQueue;
6 end
7 if JobQueue contains job(s) having positive values then
8 for count = 0 to JobQueue.size() do
9 Collect bids from all nodes and select maxBid;

10 if maxBid > 0 then
11 Compute value/energy estimates of unscheduled jobs when

utilizing maxBid cores;
12 Select maxV aluePerEnergyJob and its value, energy,

allocation, and voltage/frequency levels from profiling
results;

13 Schedule maxV aluePerEnergyJob on node having
maxBid cores by following the allocation to perform
execution at voltage/frequency levels;

14 Update platform resources;
15 end
16 end
17 end

be scheduled to the node having maxBid cores by following the allocation
and voltage/frequency levels leading to the optimized value and energy. The
computation of value/energy for each job considers its value at the allocation
time and the exact number of cores to be used by the job computed as minimum
between maxBid and the number of cores to be used to achieve maximum
value/energy. The platform resources are updated after scheduling each job
to have up to date resources’ availability information for the next allocation
instance. This helps to achieve an accurate and efficient allocation. Similar
process is repeated for all the arrived jobs.

For each job, this approach selects (from the profiling results) allocation
and voltage/frequency levels leading to maximum value/energy, and thus both
the value and energy consumption are optimized.

7.2.2 Non-profiling Based Approach (NBA)

The NBA approach does not use profiling results as no historical pattern of
jobs is available to perform advance profiling. Rather, all the computations

126 Value-Based Allocation

are performed at run-time. This approach is suitable to the scenarios when the
jobs to be executed are unknown in advance, i.e., no historical pattern of jobs
is available.

The steps followed by the NBA are similar to PBA and sketched in
Algorithm 7.2. Here, if maxBid is greater than zero (maxBid > 0), the
following two main steps are employed: i) Compute values of unscheduled
jobs by finding allocations on maxBid cores (line 6), and ii) Identify
voltage/frequency levels of used cores to execute allocated tasks to maximize
value over energy (line 8), which are described subsequently.

In step i), firstly, an appropriate allocation for each job is identified by
allocating on maxBid cores. The allocation considers the exact number of
cores to be used, which is the minimum between maxBid cores and the
number of cores equivalent to the number of tasks in the job. The exact
number of cores could be higher than that of PBAas no profiling information is
available to identify it exploiting the maximum parallelism. To find an efficient
allocation, we try to balance load across the used cores. Every task of the job
is allocated to a core such that the processing load is balanced over the cores.
In case the number of tasks in the job is higher than the number of cores, the
approach allocates highly communicating tasks on the same core to reduce the

Algorithm 7.2 Non-profiling Based Resource Allocation

Input: Incoming Jobs with arrival times, Value curves of Jobs,
HPC Platform HP .
Output: Resource Allocation for Incoming Jobs.

1 Steps 1 to 6 of Algorithm 7.1;
2 if JobQueue contains job(s) having positive values then
3 for count = 0 to JobQueue.size() do
4 Collect bids from all nodes and select maxBid;
5 if maxBid > 0 then
6 Compute values of unscheduled jobs by finding allocations on

maxBid cores;
7 Select maxV aluableJob, its allocation and respective

value;
8 Identify voltage/frequency levels of used cores in the

allocation to execute allocated tasks to optimize value and
energy;

9 Schedule maxV aluableJob on node having maxBid cores
by following the allocation to perform execution at found
voltage/frequency levels;

10 Update platform resources;
11 end
12 end
13 end

7.2 The Solution 127

communication overhead. These considerations can lead to minimal response
time and thus completion time of the job, resulting in maximum value. After
finding the allocation, the value is computed as the value in the corresponding
value curve at the completion time by taking the arrival time into account.
Similarly, value achieved by each job is computed.

From all the jobs, the one leading to the maximum value, i.e.,
maxV aluableJob, corresponding allocation and value is selected (line 7).
Then, voltage/frequency levels are identified in step ii) as described subse-
quently.

Step ii) follows Algorithm 7.3, which takes the set of voltage scaling
(VS) levels V available for cores as input and identifies the VS levels to be
applied on cores to execute allocated tasks. For each task t, available VS
levels are applied, and response time and value of the job at its completion
is computed. From here onwards, applying voltage scaling on a task implies
applying voltage scaling on the allocated core for the task. Similarly, VS level
of a task implies VS level of the allocated core to execute the task. The value
at completion is estimated by looking into the corresponding value curve
while taking the arrival time of the job into account. If an applied VS on a
task is valuable (valuejob completition > 0), then total energy consumption of
the job is calculated from Equation (7.1). Next, value at per unit of energy

Algorithm 7.3 Voltage/frequency Identification

Input: V = {vi|∀i ∈ [1, · · · , n]}.
Output: VS levels of tasks.

1 repeat
2 for each task t whose VS level is not fixed do
3 for each VS level vi do
4 Apply VS vi on t, and compute response time
5 and valuejob completition;
6 if valuejob completition > 0 then
7 Calculate total energy consumption Etotal

8 (by Equation 7.1) when applying vi on t;

9 V alPerUnitEnerg = valuejob completition

Etotal
;

10 end
11 end
12 end
13 Find task tf & VS level vf corresponding to maximum

V alPerUnitEnerg;
14 Fix voltage of tf to vf ;
15 until VS levels of all tasks are not fixed ;

128 Value-Based Allocation

consumption (V alPerUnitEnerg) is computed. Thereafter, the task and its
VS level corresponding to maximum V alPerUnitEnerg is found to fix
the voltage level to execute the task. The same process is repeated to find
VS levels of other tasks. Once voltage/frequency levels are identified, the
maxV aluableJob is scheduled on the node having maxBid cores based on
the allocation to perform execution at the identified voltage/frequency levels
(Algorithm 7.2).

7.3 Evaluations

The proposed value and energy optimizing resource allocation approaches
have been implemented in a C++ prototype and integrated with a SystemC
functional simulator. As a workload, job models from historical data of an
industrial HPC system at High Performance Computing Center Stuttgart
(HLRS) are considered. The jobs in the workload have varying arrival time.
It is considered that higher numbers of jobs arrive in peak times as compared
to off-peak times. To sufficiently stress the platform, we consider all the jobs
arriving over a day, i.e., 24-hour period. Each job contains a set of tasks having
predefined connections (edges) amongst them that determines dependencies.
For each task, the worst-case execution time (WCET) is known a priori and
specified in the job model. The number of tasks in the jobs varies from 5 to 10.
Further, it is assumed that the value curve of each job is given.

To evaluate our approaches under different load conditions, we conducted
experiments with varied arrival rates of jobs while keeping higher number
of arrivals during peak times over off-peak times. We have considered low,
moderate and high arrival rates, where jobs arrive in the orders of a few
seconds, dozens of seconds and minutes, respectively. It is assured that the
total number of jobs for different arrival rates remains the same as the number
of jobs considered for 24 hours.

To evaluate our approaches for different number of available servers
(nodes), varying number of nodes are considered in the HPC platform. Further,
the number of cores at each node is also varied to evaluate the approaches for
assorted chip manufacturing technologies, where different number of cores
can be integrated within a physical chip. The number of cores is varied such
that it covers a broad spectrum of technologies including advanced servers to
be available in future. The platform cores are assumed as the cores of Intel
Core M processor, which supports 6 voltage/frequency levels of operation.
However, any other type of core and higher number of voltage/frequency
levels can be considered.

The main evaluated performance metrics are value and energy consump-
tion, which are overall value achieved by executing the arrived jobs and energy

7.3 Evaluations 129

consumed by the platform cores to execute the jobs, respectively. We also
evaluate the percentage of rejected jobs that are removed from the job queue
as their value becomes zero before the resources become available to allocate
them. The rejected jobs also include jobs achieving zero value after their
execution, which can be prevented by employing proper admission control
and schedulability analysis.

7.3.1 Experimental Baselines

There are algorithms reported in the literature that apply DVFS to execute jobs.
However, most of them optimize either only for [141] or energy [124], and
both value and energy optimizing approaches do not consider jobs containing
dependent tasks [66].

We compare results obtained from our approaches (PBA and NBA) to
those of [141] and [124]. These approaches are considered for comparison
as they can be applied to jobs containing dependent tasks and DVFS can
be applied. In [141], the optimization is performed to optimize only value,
i.e., no DVFS is applied, and the cores are assumed to operate at the highest
supported voltage level. This approach chooses the maximum value job first
to optimize the overall value and has been referred to as ValOpt. It helps to
recognize energy savings by all the approaches applying DVFS. To employ this
approach, the voltage/frequency identification step (line 8, in Algorithm 7.2)
has been removed.

The approach of [124] identifies voltage/frequency levels of cores to
execute the tasks scheduled on them in order to optimize only energy
consumption. Therefore, it has been extended to optimize both the value
and energy for a fair comparison. To employ this approach, the greedy algo-
rithm of [124] is called for voltage/frequency identification in Algorithm 7.2
(line 8). In this algorithm, all the tasks scheduled on a core execute on a
fixed identified voltage/frequency level, referred to as fixing cores power
states (FCPS), as shown in example Figure 7.4. The voltage/frequency
identification follows a greedy heuristic, where voltages of cores are fixed
one by one during consecutive iterations. When employing voltage/frequency
identification of [124], the approach is referred to as NBA-FCPS. Our approach
identifies voltage/frequency levels of tasks in the similar manner, where
tasks scheduled on a core can be executed on different voltages, referred
to as fixing tasks power states (FTPS), as shown in example Figure 7.4.
In this case, our NBA approach has been referred to as NBA-FTPS. It
should also be noted that the run-time computation overhead of NBA
approach has been considered to capture accurate achieved value after the
job completion.

130 Value-Based Allocation

Figure 7.4 Voltage/frequency identification by FCPS and FTPS.

7.3.2 Value and Energy Consumption at Different Arrival Rates

Figure 7.5 shows the overall value and energy consumption when various
approaches are employed for different arrival rates of jobs. A high arrival rate
indicates that the jobs arrive quite frequently, whereas less frequently in low
arrival rate. The value and energy estimates are normalized with respect to
(w.r.t.) the value and energy by ValOpt approach at high arrival rate. The shown
results have been computed for 3 nodes, where each node contains 8 cores.
A couple of observations can be made from the figure. 1) The value obtained
by all the approaches increases from high to low arrival rates as more jobs are
processed before their value becomes zero due to late availability of cores.
2) The value obtained by PBA approach is always higher than that of other
approaches due to joint optimization effect. On an average, PBAachieves 5.6%
higher value than that of ValOpt. However, the joint optimization also leads
to higher energy consumption when jobs arrival rate is not high. For the sake
of both value and energy optimization, PBA is recommended to be employed.

Figure 7.5 Value and energy at different arrival rates.

7.3 Evaluations 131

3) The energy consumption by NBA-FCTS and NB-FTPS is close to each
other and lower than that of ValOpt. On an average, NBA-FCTS and PBA
reduce energy consumption by 15.8% and 5.8%, respectively, when compared
to ValOpt. Therefore, for the sake of both value and energy optimization, PBA
is recommended to be employed.

7.3.3 Value and Energy Consumption with Varying
Number of Nodes

Figure 7.6 shows the influence of the number of nodes (servers) on the overall
value and energy consumption. At each node, a total of 8 cores are considered.
The shown results are for high arrival rate of the jobs. The value and energy
results are normalized w.r.t. the value and energy by ValOpt approach at 2
nodes. It can be observed that the overall value by all the approaches increases
with the number of nodes due to increased processing capability leading to
completion of higher number of jobs before their value becomes zero. It can
also be observed that PBAachieves higher overall value than other approaches.
Further, on an average, PBA performs better than other approaches if both the
value and energy metrics are jointly evaluated as value divided by energy.

7.3.4 Value and Energy Consumption with Varying
Number of Cores in Each Node

Figure 7.7 shows the overall value and energy consumption when number of
cores at each node are varied for a total of 3 considered nodes. The jobs arriving
at high rate are considered. The value and energy results are normalized w.r.t.

Figure 7.6 Value and energy with varying number of nodes.

132 Value-Based Allocation

Figure 7.7 Value and energy with varying number of cores at each node.

the value and energy by ValOpt approach at 2 cores. A couple of observations
can be made from the figure. First, the value by all the approaches increases
with the number of cores due to increased processing capability leading
to completion of higher number of jobs before their value becomes zero.
Second, PBA achieves higher overall value than other approaches and better
results when both the value and energy need to be considered. Third, in case
profiling of jobs is not possible, i.e., PBA cannot be applied, NBA-FTPS can
be employed to achieve a better trade-off between value and energy over other
approaches.

7.3.5 Percentage of Rejected Jobs

Table 7.1 shows the rejected jobs (%) at different arrival rates when various
approaches are employed. The average over different arrival rates is also
shown for all the approaches. The tabulated results have been computed by
considering 3 nodes, where each node contains 8 cores. It can be observed
that, on an average, our proposed approaches NBA-FTPS and PBA reject
lesser number of jobs as compared to baseline approaches. The PBA has the
lowest rejection of jobs as each job is allocated on the exact number of cores

Table 7.1 Percentage of rejected jobs at different arrival rates
ValOpt NBA-FCPS NBA-FTPS PBA

High 49.0% 49.4% 48.8% 46.8%
Medium 29.2% 30.8% 30.0% 22.0%

Low 13.0% 12.8% 12.2% 00.0%
Average 30.4% 31.0% 30.3% 22.9%

7.4 Related Works 133

exploiting all the potential parallelism with the help of design-time profiled
results. This result in cores availability for higher number of jobs before their
value become zero and thus lowers rejections. It should be noted that rejection
rate by PBA for low arrival rate is not always zero and varies with number of
cores/nodes.

7.4 Related Works

The dynamic resource allocation process usually employs a heuristic following
some fundamental optimization procedure (e.g., incremental dynamic allo-
cation) to identify an efficient allocation for each job at run-time. Several
heuristics have been proposed to accomplish this aim [126]. These heuristics
optimize one or several performance metrics, e.g., response time and energy
consumption. In overload situation, these heuristics can lead to starvation,
missed deadlines, and reduced throughput. Further, these heuristics do not
take into account any notion of values of jobs to users and thus they do not
optimize the overall value achieved by executing different jobs.

Market-inspired resource allocation heuristics are proven to provide
promising results in the overload situation that is normally encountered in
HPC system [156]. The heuristics employ notion of values of jobs, where
values represent importance levels. Some researchers assume fixed value of a
job [141], whereas others consider values that can change with time, described
with so-called value curve of the job [25, 66]. In such curve, the value of a job
normally decreases with computation time and reflects the importance level
over the business process.

Market-inspired heuristics allocate jobs in several ways. For example, the
highest value job is chosen first [141]. This approach might lead to small
amount of available resources if a high value job requires a large amount
of resources. To overcome above problem, the job having maximum value
density can be chosen first [79], where the value density is computed as value
divided by the amount of required computational resources Another heuristic
to choose the job having minimum remaining value first is also proposed
[24]. The remaining value is calculated as the area under the value curve
from the current time to the time when its value is zero. These heuristics
try to optimize overall value, but they do not consider energy consumption
optimization. Further, they do not consider DVFS capable cores, which
provide opportunities to reduce energy consumption.

Energy optimization approaches for HPC data centers have focused mainly
on virtual machines (VMs) consolidation and DVFS. In consolidation, VMs
with low utilization are placed together on a single host so that other used hosts
can be freed to shut them down [13, 132, 148]. DVFS based approaches have

134 Value-Based Allocation

been explored to reduce energy consumption is several areas, e.g., clusters
[114, 149], web servers [142] and HPC data centers [28]. The approaches
for HPC data centers (e.g., [28]) do not consider jobs containing dependent
tasks. For other application domains, DVFS techniques for dependent tasks
are explored (e.g., [124]), but optimization is not performed for value.

Some heuristics considering DVFS and optimizing both the value and
energy consumption are reported in [66]. However, they consider independent
tasks or jobs containing independent tasks. There are some additional multi-
criteria optimization approaches, but they perform static resource allocation
[50, 105]. Further, in dynamic resource allocation process, they do not use
design-time profiling results, which can provide optimized value and energy.
In contrast, the reported profiling and non-profiling based dynamic resource
allocation approaches in this chapter consider jobs containing dependent tasks
and jointly optimizes for both value and energy while applying DVFS.

7.5 Summary

This chapter proposed value and energy optimizing resource allocation
approaches for HPC data centers. It has been shown that the approaches com-
bine identification of efficient allocation and appropriate voltage/frequency
levels to jointly optimize value and energy consumption. Whilst existing
approaches focus on methods like server consolidation and DVFS, they do
not consider jobs containing dependent tasks. It has been shown that the
proposed approach is able to significantly reduce energy consumption and
improve value while applying DVFS for jobs containing dependent tasks.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

