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2.1 Numerical Simulation

G. Wedel and M. Schröter

Numerical simulation (including TCAD) tools were heavily used during
DOTSEVEN, aiding the device design and optimization during process
development and the physical understanding of the HBT operation so as
to support compact modeling. In addition, based on earlier work during
DOTFIVE on exploring the physical limitations of SiGe HBTs [Sch11], var-
ious numerical simulation tools were used to create the first comprehensive
and detailed roadmap in cooperation with the radio-frequency/analog mixed-
signal committee of the International Technology Roadmap of Semiconduc-
tors (ITRS)1 consortium in 2014. The flowchart displayed in Figure 2.1 for
finding the vertical and lateral HBT structure of a major ITRS technology
node is an example for the large variety of simulation tools that were

1In the course of the semiconductor industry consolidation only very few companies
have remained that have the financial means for developing advanced CMOS technologies.
Pursuing partially diverse manufacturing approaches for the associated MOSFET structures,
the common basis for technology development, which initially led to the ITRS consortium, is
gradually disappearing and rather results in a competition. Hence, the ITRS consortium has
been abandoned by the CMOS industry in 2015. The performance tables of the ITRS have
been taken over by the IRDS consortium.
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developed and employed in DOTFIVE and in DOTSEVEN, since the same
approach has been used to define the DOTSEVEN target HBT structure. As
already mentioned in-house tools for carrier transport have been based on the
DD, HD and BTE approach. In particular, a new deterministic BTE solver
was developed and applied to SiGe HBTs, which is described in Section 2.2.2
In addition, simulation tools were developed for the analysis of thermal and
parasitic effects in advanced HBTs.

A three-dimensional (3D) thermal solver was used for investigating the
temperature distribution within the device structure and its impact on the HF
characteristics. A more detailed analysis was performed and insights into the
microscopic effects of self-heating were gained with a new Boltzmann solver
for phonon transport which was then coupled to the already existing spherical
harmonics expansion based BTE solver for charge carrier transport. This
approach, which allows deeper insights into device reliability, is described
in Section 2.3.

Figure 2.1 Flowchart for finding the vertical and lateral HBT structure of a major technology
node [Sch17].
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In order to obtain a realistic estimate for the HF device performance, a 3D
Poisson solver has been used to calculate the various parasitic capacitances
within an actual 3D transistor structure.

2.2 Device Simulation

2.2.1 TCAD Device Optimization

The device design of advanced SiGe HBTs demands an as accurate as
possible prediction of the electrical behavior in order to shorten the time from
process development of new devices to product and to identify promising
device structures during the early stage of process development. Therefore,
technology computer aided design (TCAD) software offers a relatively fast
and cost effective approach, compared to fabricating and measuring test
devices. Of course, the predictive capability of TCAD strongly depends on
the accuracy of the employed physical models, such as those for carrier
transport, and their parameters.

The most widely used description for carrier transport is the so called
drift-diffusion (DD) model, which has been the workhorse in industry for
over 40 years. The DD transport model is derived from the Boltzmann
transport equation (BTE) by taking the first moments [Jun03][Sel84][Lun00]
and consists of the
• Poisson equation,
• hole and electron continuity equation and
• carrier transport equations.

Its major advantage is the low computational cost in terms of both memory
requirements and simulation time. However, these advantages are obtained at
the cost of physical accuracy, especially for today’s SiGe HBTs. For example,
the DD transport model significantly underestimates the HF performance of
advanced SiGe HBTs (i.e. too low transit frequencies fT) and overestimates
the impact of the Avalanche effect (e.g. too low BVCEO).

For improving the accuracy while maintaining reasonable simulation
times, the hydrodynamic (HD) and the energy transport (ET) model were
introduced. These models can also be derived from the BTE [Jun03][Lun00]
and include a description of energy transport. The ET model neglects the
momentum conservation and is thus a subset of HD model. The latter consists
of the

• Poisson equation,
• hole and electron continuity equation,
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• hole and electron transport equations,
• hole and electron energy balance equations and
• hole and electron energy flux equations.

Compared to DD, the HD transport model considers two additional equations
for each carrier type. In addition and due to the two additional equations, new
physical quantities, like the carrier energy relaxation time (for the energy
balance equation) and the thermal conductivity involved in the energy flux
description are introduced. Another point in terms of the HD transport model
is the impact of the carrier temperature (solution variable of the energy
balance equation as a representation of the kinetic carrier energy) on the
carrier transport equation. For the transport equation, the impact of the carrier
temperature, especially its gradient acting as additional driving force, needs
to be rather heuristically adjusted than set by physics-based considerations in
order to obtain reasonable results w.r.t. measurements or BTE simulation data
[Wed10]. Once the above mentioned issues have been clarified, a reasonable
agreement between HD and BTE can be obtained in terms of terminal
characteristics, like transfer currents or transit frequencies. In addition, the
HD simulation times are only slightly longer (by a factor of 1.5 up to 3.5) than
those of DD simulation. However, BTE results or, if available, measurement
data are needed for adjusting the HD transport model. Thus for the design of
advanced devices and realistic estimations of their performance, a BTE solver
is inevitable.

For solving the BTE, two kinds of methods exist: stochastic solvers based
on the Monte-Carlo (MC) method [Jun03][Tom93][Jac83] and deterministic
solvers [Hon11][Gal05][Wed16], which solve the BTE directly based on
discretized equations just like in the DD and HD case. The MC method is
more widely used, since it offers a relatively low implementation effort. In
addition, the memory consumption is low compared to deterministic solvers.
However, the major drawbacks of the MC method are long simulation times
(since MC is inherently a transient method), noisy results (due to its stochastic
nature) and a insufficient resolution of minority carrier densities, e.g. elec-
trons in the base region of an HBT. These drawbacks and the advances in
computer performance (faster CPUs and cheaper memory) gave rise to the
development of deterministic solvers. These solvers enable the calculation
of stationary solutions, which are smooth and noise free even for minority
carriers. However, these advantages are obtained at the cost of a high memory
consumption and especially a much more elaborate mathematical preprocess-
ing and implementation effort. Despite the strong reduction in simulation time
compared to the MC method, the computational effort still is significantly
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higher compared to DD and HD. Thus, the use of even deterministic BTE
solvers is practically not feasible for direct device design optimization, but
remains restricted to the 1D carrier transport and serves mostly as a reference
solution for advanced vertical HBT structures.

2.2.2 Deterministic BTE Solvers

The BTE is a seven-dimensional integro-differential equation defined over the
three real space dimensions (x,y,z), the three dimensions over the reciprocal
space (kx, ky, kz) and time t. In conservative form, the BTE for electrons reads
[Jun03][Lun00][Honll][Gal05][Wedl6]

∂fv

∂t
+∇−→r • (−→v vgfv)−

q

~
∇

k
−→v • (

−→
E v

efff
v) = C, (2.1)

with the particle distribution function (PDF) fv as the solution variable of the
BTE (with 0 <fv≤ 1), the carrier group velocity −→v vg and the collision term

C. The effective field
−→
E v

eff is defined as [Hon11][Wed16]

−→
E v

eff = ∇⇀
r

(
−ψ+

EvC,0
q

+
εv

q

)
(2.2)

with the electrostatic potential ψ obtained by the Poisson equation, the
material/composition dependent band edge EvC,0 and the kinetic energy εv.
The variable v denotes the observed valley within the first Brillouin-zone
of the reciprocal space. For the sake of readability, the dependencies of the
quantities involved have been omitted and are here shortly summarized:

• fv is a function of −→r ,
−→
k v and time t;

• −→v vg is a function of −→r and
−→
k v;

• ψ is a function of −→r and time t;
• EvC,0 is a function of −→r ;

• εv is a function of −→r and
−→
k v.

The collision term C describes the carrier interaction (scattering) due to lattice
vibrations (phonon scattering), impurities/alloys and other carriers.

For each considered scattering mechanism, a transition rate SX (X is a
placeholder for the considered scattering mechanism) is obtained by Fermi’s
Golden Rule and the collision term becomes (see e.g. [Jun03][Lun00])

C =
∑

X

∑
−→
k v
′

SX(
−→
k v
′
→
−→
k v)fv

′
(1− fv)− SX(

−→
k v →

−→
k v
′
)fv(1− fv

′
),

(2.3)
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where the summation over
−→
k v
′

discards the spin degeneracy [Lun00]. The
first term within the sums describes the in-scattering and the second one
the out-scattering of particles, respectively. Equation (2.3) sums first over

all possible
−→
k v
′

(defined by the transition rate (SX)) from where in- or
out-scattering might occur and sums these results up for each scattering
mechanism. The formulation of the collision term (2.3) contains terms

(1−fv,v
′
), which measures the vacancy of the state

−→
k v/v

′
, respectively. Thus,

in- or out-scattering might be blocked due to a fully occupied state, which
is called Pauli-exclusion principle [Hon11]. For low doping concentrations,
where the Fermi-level is sufficiently far away from the conduction band edge

(non-degenerate semiconductor), the PDFs fv,v
′

are much smaller than one.
In this case, (2.3) can be simplified to

C ∼=
∑

X

∑
−→
k v
′

SX(
−→
k v
′
→
−→
k v)fv

′
− SX(

−→
k v →

−→
k v
′
)fv. (2.4)

However, in both Equations (2.3) and (2.4) it is summed over discrete final

states
−→
k v
′
. Under the assumption that adjacent states are close enough, these

states are assumed to be continuous and the sum is converted into an integral
by the relation [Gal05][Wed16]∑

−→
k v
′

· · · → Ω

(2π)3

∫
· · · d
−→
k v
′
, (2.5)

with the crystal volume Ω. Thus, with (2.5) the collision terms become
[Hon11][Gal05][Wed16]
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Ω

(2π)3
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′
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for the degenerate case and
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′
)fv)d

−→
k v
′

(2.7)

for the non-degenerate case.
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Thus, the considered system of equations is set up by the BTE (2.1)
with the effective field (2.2) and the collision terms (2.6) or (2.7). For
the numerical treatment, it is more advantageous to express the vectors
−→
k v and

−→
k v
′

in terms of the kinetic energy εv and εv
′
, measured from

the minimum of the valley v/v
′
, respectively. For carrier scattering, both

momentum and energy conservation has to be fulfilled (see e.g. [Lun00]).
However, due to the complex shape of the phonon energy as function of

the scattering vector
−→
β =

−→
k v
′
−
−→
k v and the demand of εv

′
(
−→
k v
′
) =

εv(
−→
k v)± ~ω(

−→
β ) + (EvC,0 −Ev

′

C,0) (energy conservation), approximations
are employed for the phonon energy as function of the scattering vector,
which relax the momentum conservation. In practice, modeling the scattering
is mainly focused on the energy conservation, since ~ω(

−→
β ) is approxi-

mated to be either zero (elastic scattering) or constant (inelastic scattering).
With these simplifications, it is equivalent to consider the kinetic energies.
Thus for the BTE, a coordinate transformation has to be performed and
the valley dispersion relation εv(

−→
k v) needs to be a analytic and invertible

function. The most commonly used dispersion relation is the non-parabolic
one [Lun00][Tom93][Hon11][Gal05][Wed16]

εv(1 + αεv) =
~2

2m0m∗
|
−→
k v|2, (2.8)

with the effective mass m∗ and the non-parabolicity factor α. This dispersion
relation models equi-energy surfaces in the reciprocal space as spheres (due
to |
−→
k v|2), where α describes the increase of energy for increasing |

−→
k v|. For

α = 0, a parabolic dispersion relation is obtained, where the kinetic energy
increases quadratically with |

−→
k v|. With (2.8), the vector

−→
k v can be expressed

in spherical coordinates [Hon11][Gal05][Wed16]

−→
k v =

√
2m0m∗

~
√
εv(1 + αεv)

 µ√
1− µ2cos(ϕ)√
1− µ2sin(ϕ)

, (2.9)

with µ as the cosine of the polar angle and the azimuthal angle ϕ. In (2.9),
the spherical coordinate system is rotated to measure the polar angle µ w.r.t.
the kvx-axis instead of the kvz -axis. This rotation is advantageous for 1D
simulations in x-direction, since it allows to omit ϕ due to the rotational
symmetry of the PDF. Thus in this case, only two dimensions (εv and µ)
have to be discretized instead of the full [kxkykz] space [Honll][Wedl6].
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Nevertheless, the equi-energy surfaces do usually not exhibit a spherical
shape within the first Brillouin-zone of the reciprocal space. For example
in Si, ellipsoids aligned to the axis [kxkykz] are found for the so called X-
valleys, which mainly contribute to the carrier transport. Thus, the dispersion
relation (2.8) becomes in this case

εv(1 + αεv) =
~

2m0

(
(kvx)2

mv
x

+
(kvy)2

mv
y

+
(kvz )2

mv
z

)
, (2.10)

with the anisotropic effective masses mv
x, mv

y and mv
z . In order to account

for the valley anisotropy in (2.9), the Herring-Vogt transformation [Her56] is
employed, which basically scales the axis [kvx k

v
y k

v
z ] in such a way that the

ellipsoids are mapped to spheres. After the mapping, the considered k-space
[k̃vx k̃

v
y k̃

v
z ] is given by

−→̃
kv = [THV,v] •

−→
k v, (2.11)

−→̃
k v =

√
2m0m∗v
~

√
εv(1 + αεv)

 µ√
1− µ2cos(ϕ)√
1− µ2sin(ϕ)

 , (2.12)

with the Herring-Vogt transformation matrix

[THV,v] =


√

m∗v
mv

x
0 0

0
√

m∗v
mv

y
0

0 0
√

m∗v
mv

z

 , (2.13)

and the effective mass m∗v = 3
√
mv
xm

v
ym

v
z . Like for the isotropic dispersion

relation (2.8) and its k-vectors (2.9), also for the anisotropic description
(2.10) and the k-vectors (2.11)–(2.12), the ϕ-dependence can be omitted for
1D simulations in x-direction, as long as the Herring-Vogt matrix does not
contain off-diagonal elements. This assumption holds for the X-valleys in
Si/SiGe, but not for the L-valleys in some III–V materials, like GaAs. If one
considers the 1D transport in x-direction, the effective field

−→
E v

eff consists only
of a non-zero x-component. Thus, the PDF is only altered by the effective
field in kvx-direction. If the equi-energy surfaces are spheres or ellipsoids,
aligned to the [kxkykz] axis, their rotational symmetry allow to omit ϕ.
Otherwise, a change of the PDF in kvx-direction forces changes in the k̃vx, k̃

v
y
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and k̃vz directions and the PDF does not exhibit a rotational symmetry on
the equi-energy surfaces anymore. Focusing on Si/SiGe and considering the
x-direction only, the BTE (1) simplifies to [Wed16]

∂fv

∂t
+

d

dx
(THV,v

1,1 ṽv,xg fv)− q

~
∇−→̃
kv
• (THV,v •

−→
E v

efff
v) = C, (2.14)

with the carrier group-velocity

ṽv,xg =
1

~
∂

∂k̃vx
εv
(−→̃
kv
)

(2.15)

after the Herring-Vogt transformation and THV,v
1,1 being the first main-

diagonal element of the matrix (2.13). Assuming a spatial independent
transformation matrix THV,v, the BTE (2.14) transforms into the εv/µ-
space to

∂fv

∂t
+

d

dx
(axf

v)− q

~dosv(εv)

{
∂

∂εv
(aεvf

v) +
∂

∂µ
(aµf

v)

}
= C (2.16)

with the flux coefficients

ax =
1

~
µT

HV,v

1,1

d
dεv
|
−→̃
kv|

, (2.17)

aεv =
µdosv(εv)

d
dεv
|
−→̃
kv|

T
HV,v

1,1 , Ev,xeff , (2.18)

aµv =
(1− µ2)dosv(εv)

|
−→̃
kv|

T
HV,v

1,1 , Ev,xeff , (2.19)

the abbreviation

d
dεv
|k̃v| =

√
2m0m∗v
~

1

2

1 + 2αεv√
εv(1 + αεv)

(2.20)

and the density of states

dosv(εv) =
1

2

(√
2m0m∗v
~

)3√
εv(1 + αεv)(1 + 2αεv), (2.21)

which can be viewed as the transformed infinitesimal volume element
−→
d̃k

v
= dosv(εv)dεvdµdϕ. (2.22)
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At this point, the analytic pre-considerations/pre-processing, necessary for
the discretization, is almost done. There are various approaches, such as
the spherical harmonics expansion (SHE) [Hon11] or BIM-WENO approach
[Gal05][Wed16], which rely on the same underlying equations but differ
in the numerical representation for fv (PDF). The choice of the ansatz for
fv strongly affects the further treatment of the collision term. However,
regardless of the SHE or BIM-WENO ansatz, the transformed BTE (2.16)
is multiplied by the density of states (2.21) and integrated over a discretized
control volume in the reciprocal space. After the numerical representation of
the derivatives and integrals (collision term) involved, a set of equations (for
each discretization point) is obtained, which finally results in a sparse matrix
to be solved. The system to be solved also contains the Poisson equation,
needed for the electrostatic potential involved in the effective field

−→
E v

eff
(2.2). The main burden of solving the BTE deterministically arises from the
number of needed discretization points, especially for εv. The step size for
εv has to be fine enough to capture all energy exchanges by phonons, since
otherwise these scattering processes get smeared out by others and results in
less accurate results.

2.2.3 Drift-diffusion and Hydrodynamic Transport Models

As mentioned at the beginning of this chapter, both the DD and the HD
transport model can be derived from the BTE by the method of moments with
some simplifications. The Poisson and the continuity equations are employed
in both DD and HD analysis. The Poisson equation reads

∇−→r · (ε0εr∇−→r (ψ)) = −q(p− n+ND −NA), (2.23)

with the relative material permittivity εr, the elementary charge q, and the
donor and acceptor doping concentration ND and NA, respectively. The
carrier continuity equation reads

∇−→r · (
−→
Jc) = −sgn(c)q

(
R+

∂c

∂t

)
(2.24)

with the carrier density c, the carrier current density
−→
Jc and the net

recombination rate R.
The first difference between the DD and HD transport models is found

for the carrier transport equation [Syn15]
−→
Jc = qcµc

−→
E c,eff − qsgn(c)µcVT,c∇−→r c

− sgn(c)µcckB

[
f td + log

(
NX

nir

)]
∇−→r Tc (2.25)
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where the first two terms on the r.h.s. of (2.25) represent drift and diffusion
transport, and the last term considers the gradient of the carrier temperature
Tc acting as additional driving force for the carrier transport process. Here, µc
is the carrier mobility, VT,c is the thermal voltage for the carrier temperature
Tc, Nx is the effective density of states of electrons and holes (depending
on c), nir is the reference intrinsic carrier density, and f td is a HD transport
model parameter. Finally,

−→
E c,eff is the effective field given by

−→
E c,eff = −∇−→r (Ψ− sgn(c)VB,c) (2.26)

with the carrier band potential VB,c accounting for the impact of high-doping
and material composition effects on the respective band edge. Equations
(2.24)–(2.26) contain the function sgn, which is depends the carrier type:

sgn(c) =

{
−1, for electrons (c = n),

1, for holes (c = p).

}
. (2.27)

The DD transport model consists of Equations (2.23)–(2.26), with a carrier
temperature equal to the lattice temperature (Tc = TL). Thus, for isothermal
DD simulations, the last term on the r.h.s. in (2.25) vanishes. In the case of
HD simulations, the carrier temperature Tc is obtained by the energy balance
equation

∂

∂t
cωc =

−→
Jc ·
−→
E c,eff − (∇−→r ·

−→
S c)−Rωc + c

∂ωc
∂t

∣∣∣∣
coll.

, (2.28)

with ωc = 3
2kBTC and the energy flux

−→
S c = −

(
5

2
+ f tc

)(
kB

q

)2

qcµc∇−→r Tc + sgn(c)

(
5

2
+ f ec

)
kBTc
q

−→
J c.

(2.29)
Here, the first term on the r.h.s. Represents contains the thermal conductivity
after Wiedemann-Franz and the gradient of the carrier temperature (energy
transport due to spatially different carrier temperatures), where the second
term models the energy transport due to the carrier current density. Within
(2.25) and (2.29), three parameters f td, f tc and f ec are available in the HD
case for adjusting the impact of the respective contributions. These parame-
ters are usually not fixed and vary across technologies and generations in the
same material [Wed10]. The parameters are usually obtained by adjusting the
HD terminal behavior (such as transfer and output characteristics and transit
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frequency) to those obtained by BTE simulations or, if available, to measured
results. The simplicity of the DD and HD transport models demands an
elaborate set of physical material models for the

• carrier mobility (low and high field case, DD, HD),
• recombination and generation (DD, HD),
• band potential (DD, HD), and
• energy relaxation time (HD only).

Usually, the material models are developed and their parameters are adjusted
to BTE simulations of bulk material, where a homogenous and infinitely large
semiconductor is assumed.

2.2.4 Simulation Examples

The intention of this section is to give an rough impression about the applica-
bility of DD and HD transport models compared to the BTE for SiGe HBTs.
As an example, a one-dimensional (1D) SiGe HBT structure with fT ≈ 630
GHz [Paw09] is considered. The doping and Germanium profile is shown in
Figure 2.2.

2.2.4.1 DD simulation
The DD transfer characteristic and the transit frequency for the considered
device are shown in Figure 2.3 and compared with the results obtained by the
deterministic BTE solver based on the spherical harmonics expansion (SHE)
of the electron distribution function [Hon11].

Compared to the BTE results, a reasonable agreement for the transfer
characteristic between DD transport and BTE is obtained up to the onset
of collector high current effects. However, DD severely underestimates the

Figure 2.2 Net doping and Germanium profile of a SiGe HBT with fT = 630 GHz.
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Figure 2.3 Transfer characteristic (left) and transit frequency (right) obtained from DD
transport and BTE for the device of Figure 2.2. VCE = 1 V.

transit frequency fT. The main origin of the discrepancies is coming from
the assumptions involved in the derivation of the DD transport model. For
DD, it is assumed that the distribution function is in equilibrium with the
lattice. Thus, any displacement of the distribution function (towards higher
kinetic energies) is not directly taken into account, but indirectly by the elec-
tron velocity versus electric field model. Usually, a saturation drift velocity
limits the carrier velocity although the velocity obtained by BTE might in
some regions exceed that saturation limit (velocity overshoot) as shown in
Figure 2.4(a) for the peak fT range. Thus, DD predicts slower electrons and,
for the same current, a higher electron density in the base-collector region
(cf. Figure 2.4(b)). This results in a higher electron transit time and thus,
compared to the BTE, a lower fT. The constant DD electron density within

Figure 2.4 Electron velocity and density obtained by DD and BTE simulation.
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the BC space charge region (SCR) is the result of the saturation drift velocity
used in the DD simulation.

The discrepancies shown in Figures 2.3 and 2.4 are one example of the
deficiency of DD transport models. Another one is the underestimation of the
breakdown voltage.

2.2.4.2 HD simulation
Here, the most critical parameters are f td, f tc and f ec introduced in
Section 2.2.3. These parameters have a significant impact on the terminal
characteristics, which can even show a non-physical behavior. Usually, a
parameter constellations can be found that gives HD simulation results close
to the ones obtained by the BTE. For the SiGe HBT in Figure 2.2, the impact
of each of the above parameters is illustrated below. Figure 2.5 shows transfer,
transit frequency and output characteristic for different values of f td, while
the remaining parameters are kept at zero.

Figure 2.5 Illustration of the impact of f td on the transfer characteristic, transit frequency
and output characteristics for f tc = fec = 0.
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With increasing values of f td both the collector current density and the
transit frequency are decreasing, while the output conductance decreases and
can even become negative and thus non-physical in this case (of constant
VBE). This is caused by a too strong gradient of the carrier temperature acting
as driving force of the electron current. Thus, although f td often requires
larger values for adjusting fT,peak it needs to be limited. Fortunately, with
the parameter f tc the impact of f td on the output characteristics can be
damped as shown in Figure 2.6. With f tc, the thermal conductivity involved
in the energy flux equation (2.29) is altered. The smallerf tc the less energy
is transported by the gradient of the carrier temperature. Thus, the carrier
temperature profile becomes less smeared within the device, which in turn
diminishes the impact of the carrier temperature gradient on the transport
equation (2.25). With a increasing f tc, the collector current densities are
increased along with the output conductance.

Figure 2.6 Illustration of the impact of f tc on the transfer characteristic, transit frequency
and output characteristics at f td = fec= 0.
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Figure 2.7 Exemplary illustration of the impact of fec (f td= f tc = 0) on the transfer
characteristic, transit frequency and output characteristic.

The last HD transport model parameter f ec scales the energy transport
due to the current flow (see (2.29)). It has an opposite effect on the current
density compared to f tc, as shown in Figure 2.7. However, it allows to adjust
the peak value of transit frequency (fT,peak).

The main burden for meaningful HD simulations is the determination of
a proper set of HD transport model parameters. The following adjustment
strategy and range of values proved to be suitable for the simulation of
advanced SiGe HBTs:

• f td is used for adjusting JC(VBE) and fT(0.7 ≤ f td ≤ 2);
• f tc prevents a negative output conductance (−2.25 ≤ f td ≤ −1.75);
• f ec is usually around zero (−0.5 ≤ f ec ≤ 0.5).

Figure 2.8 compares the HD results obtained by the default HD model param-
eter set taken from SDevice [Syn15] with those obtained after adjustment to
BTE results. The DD results are also shown for comparison.
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Figure 2.8 Transfer characteristic and transit frequency of the SiGe HBT in Figure 2.2
obtained from HD simulation with adjusted HD transport model parameters and SDevice
defaults [Syn15], compared to BTE and DD simulation results.

Compared to DD, the HD transport model with the SDevice defaults gives
already a good agreement for the transit frequency. However, the current
densities are about twice as high as those obtained by the BTE and DD results.
This discrepancy can be eliminated by adjusting the HD parameters to the
BTE results. However, this agreement in the terminal characteristics is not
reflected in the internal quantities (e.g. electron densities), which exhibit a
different spatial dependence compared to the BTE results. In addition, there
is no common set of HD parameters across technologies and generations in
the same material. These parameters need to be readjusted for each major
doping profile change in order to obtain reasonable results. Therefore, the
computationally expensive BTE simulations are mandatory. In practice, it
suffices though to simulate just the major technology nodes with the BTE
and use those results to find the HD parameters for each node. With these
parameters, HD simulations can then be applied for device optimization
within a particular node [Wed10].

2.2.4.3 Effects beyond DD and HD transport
Due to the assumptions and simplifications involved in the derivation of the
DD and HD transport models, some physical effects can not be captured by
them compared to BTE solutions.

One assumption is the so-called single electron gas approximation
[Blo70]. Here, the transport relevant electrons are assigned to one val-
ley, which dominates the transport. In the case of silicon, the six valleys
in ∆-direction (usually denoted by X-valleys) are combined to a single
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Figure 2.9 (a) Net doping and Ge profile of the SiGe HBT given in [Sch11] and the
corresponding (b) transfer characteristic and (c) transit frequency obtained from BTE and
HD simulation.

valley, which is energetically located at the conduction band edge. How-
ever, for SiGe and for material under biaxial-compressive strain, two of
the six ∆-valleys are differently influenced with increasing Ge content
[Hon11][Wed16]. In this case, two ∆-valleys are energetically shifted to
higher potential energies, while the remaining four ∆-valleys undergo a
downward shift in the potential energy. Hence, two conduction band edges are
forming, where the lower conduction band edge is associated with the four
and the higher with the remaining two valleys, respectively. In the case of DD
or HD simulations, only the 4-fold lower conduction band edge is considered,
neglecting the higher 2-fold conduction band edge. Figure 2.9 shows the
impact of the neglected 2-fold conduction band for the SiGe HBT presented
in [Sch11], which represents the presently known physical limit of SiGe HBT
technology. According to Figure 2.9, the HD simulations overestimate both
the collector current density and the peak transit frequency by about a factor
of two. These discrepancies are caused by the abrupt rising edge of the Ge
profile and the neglect of the second conduction band edge.

For clarification purposes, the band edges, valley occupancies and quasi-
static electron densities at fT, peak as obtained by BTE simulations are shown
in Figure 2.10. Due to the abrupt rising edge of the Germanium profile, the
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Figure 2.10 (a) Band edges and Ge profile, (b) valley occupancy, and (c) electron density of
the SiGe HBT shown in Figure 2.9 obtained by BTE simulation at the operating point of peak
transit frequency.

conduction band edge associated with the 2-fold ∆-valleys is energetically
lifted up abruptly and thus forms an energy barrier (cf. Figure 2.10(a)). Only
few high energetic electrons are able to overcome this barrier, while instead
most of the electrons accumulate at the barrier (cf. Figure 2.10(b)). This leads
to an additional charge, which reduces both the transit frequency and the
transconductance [Hon11]. Obviously, the single electron gas approximation
used in conventional DD and HD tools cannot capture this effect.

In fabrication, a step Ge profile is unrealistic and a graded profile rather
occurs. The impact of a graded Ge profile is sketched in Figure 2.11. With
the graded Ge profile (Figure 2.11(a)), the 2-fold ∆-valley is continuously
shifted to higher energies so that the electrons are now able to gradually
transfer to the 4-fold ∆-valley, preventing an abrupt charge accumulation
(Figure 2.11(c)).
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Figure 2.11 (a) Band edges and graded Ge profile as well as the corresponding (b) valley
occupancy and (c) electron density obtained by BTE simulation at the operating point of peak
transit frequency.

While the grading prevents a degradation of the transconductance, the
higher quasi-static change of the electron density causes an increase of
the total capacitance Ctot connected to the base terminal. According to
Figure 2.12(a), Ctot increases by a factor of 1.76, whereas the transconduc-
tance gm improves by a factor of 2.57 (Figure 2.12(b)). Overall this leads to
an increase offT. According to

fT =
1

2π

gm
Ctot

, (2.30)

the higher improvement of the transconductance is resulting in an increase of
fT by a factor of 1.46.

Figure 2.13 shows the improvements in the collector current
(Figure 2.13(b)) and in fT (Figure 2.13(c)) due to the graded Ge profile.
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Figure 2.12 (a) Comparison of (a) the total 1D capacitance connected to the base node and
its components and (b) the transconductance, obtained for the initial (abrupt) and the new
(graded) SiGe HBT profile.

Figure 2.13 (a) Comparison of the initial and the new SiGe HBT profile with corresponding
(b) transfer characteristic and (c) transit frequency, obtained by both BTE and HD simulation.

The good agreement of the HD results the with those of the BTE can only
be obtained by readjusting the HD transport model parameters, since the Ge
grading constitutes a major profile change.
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Another limitation of the DD and HD transport model is the assumed
shape of the distribution function for deriving them. Conventionally, a Max-
well-Boltzmann distribution is assumed over energy which, in the DD case,
is assumed to be in equilibrium with the lattice or, in the HD case, has a
modified decay over energy due the spatially dependent carrier temperature.
However, in both cases a displacement of the distribution function off its
equilibrium position is not considered. Contrary to DD and HD transport, the
BTE is solved for the distribution function at each real-space point and over
the reciprocal space and thus offers information about both the actual decay
over energy and its displacement from the equilibrium position. Depending
on the considered doping profile, different shapes of important characteristics
can be obtained.

As an example, the SiGe HBT N3 in [Sch17] and shown in Figure 2.14(a)
is considered. According to the transfer characteristics and transit frequency
in Figure 2.14(b), (c), the deviations between HD and BTE occur despite

Figure 2.14 (a) Doping and Germanium profile of a SiGe HBT and the corresponding (b)
transfer characteristic and (c) transit frequency obtained from BTE and HD simulation.
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Figure 2.15 Transconductance and total capacitance of the N3 SiGe HBT.

adjusted HD transport model parameters. Especially for the transit frequency,
the BTE predicts an spike-like increase to fT,BTE,pk compared to HD trans-
port. As explained below, the deviations between HD and BTE originate from
the doping profile in conjunction with the doping dependent description of the
bandgap narrowing and the subsequent shift of the conduction band edge.

In Figure 2.15, the bias dependent total capacitance and the transconduc-
tance of the N3 HBT are shown. According to (2.30), the spike-like increase
in fT originates from the strong increase and dip of the transconductance.

Since the electron transport within the device is dominated by the peak of
the conduction band edge. The conduction band edge of the 4-fold ∆-valley
and the contours of the corresponding electron distribution function for three
different operating points are shown in Figure 2.16. Since the Pauli exclusion
principle is not considered, the distribution function exhibits values larger
than one (i.e. > 0 in Figure 2.16) near the conduction band edge in the highly

Figure 2.16 Conduction band edge versus location and superimposed contour lines of the
(logarithm of the) electron distribution function of the 4-fold ∆-valley over energy within
the emitter-base region for three operating points: (a) around fT,BTE,pk/2, (b) just before
fT,BTE,pk, and (c) and just after fT,BTE,pk.
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doped regions. As discussed before, the 4-fold ∆-valley carries by far most
of the electrons and thus it is sufficient to focus on this valley only.

According to Figure 2.16(a) and (b), the conduction band peak for the
current range up to around fT,BTE,pk is located at x = 19 nm, which coin-
cides with the steep doping gradient at the BE junction (see Figure 2.14(a)).
This decrease in conjunction with the commonly employed (doping depen-
dent) bandgap narrowing model [Slo77] leads to a sudden increase of the
bandgap and consequently to a bias independent conduction band barrier,
which is for the considered doping profile approximately 2.5 nm wide with a
barrier height of around 10 meV. Due to the bending of the conduction band
at higher applied VBE-voltages, a plateau like conduction band edge is seen
prior to fT,BTE,pk in Figure 2.16(b). At an operating point beyond fT,BTE,pk

(see Figure 2.16(c)), a potential well is forming between x = 13 nm, which
corresponds to the transition from the low to the highly doped emitter region
and the associated bandgap difference, and x = 19 nm.

At current densities below fT,BTE,pk, only high energetic electrons can
overcome the conduction band peak at x = 19 nm, which corresponds to the
classical function of the VBE modulated conduction band barrier that blocks,
in the absence of tunneling, low energetic electrons. With increasing VBE

this barrier decreases and is overcome by a larger fraction of electrons. The
resulting higher average electron velocity increases the current and transcon-
ductance and thus fT. Around fT,BTE,pk, the bias independent conduction
band peak x = 13 nm starts to get exposed and leads to a wider barrier
region with a potential well enclosed. Beyond fT,BTE,pk, this wider barrier is
more efficient in blocking the low energetic carriers. In addition, carriers also
accumulate in the potential well, thus causing a rapid decrease of fT.

In the case of the HD transport model, the Boltzmann distribution func-
tion is altered in its spread by the carrier temperature. But the behavior of low
and high energetic electrons can still not be separated and thus the blocking
effect of low energetic electrons around fT,BTE,pk can not be captured.
Figure 2.17(b) compares the assumed HD distribution function with the one
obtained by the BTE solver. Compared to the BTE result, HD overestimates
the low energetic and underestimates the high energetic electron popula-
tion. Therefore, the hill observed in gm in Figure 2.15 originating from
the increased average electron velocity at the conduction band peak is not
observed in the DD or HD results, which are compared in Figure 2.18(a).
Thus, the spike-like increase in fT,BTE (see Figure 2.14(c)) can neither be
reproduced by DD nor HD.
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Figure 2.17 Electron distribution function within the 4-fold ∆-valley just below fT,BTE,pk

within the emitter-base region. (a) Contours with the arrow marking the position of the doping
induced conduction band barrier. (b) Comparison of HD and BTE distribution function at the
barrier.

Figure 2.18 Comparison of (a) the transconductances and (b) the total capacitance obtained
by DD, HD and BTE simulation results.

In addition and due to the missing energy separation, all DD or HD
electrons participate to the charging of the capacitance, contrary to the BTE
where the blocked low energetic carriers do not contribute. Thus, the DD and
HD transport models are overestimating the total capacitance, as shown in
Figure 2.18(b). A more detailed insight is given by Figure 2.19. Figure 2.19(a)
compares the electron densities for the three considered operating points
obtained by the BTE (lhs) and the HD (rhs) solver. Contrary to the HD
results, only a slight variation of the electron densities within the lightly
doped emitter is seen around fT,BTE,pk due to the blocking of low energetic
carriers. Since these blocked electrons do not participate to the charging of
the dynamic capacitances, the quasi-static electron densities (dn/dVBE) in
the lightly doped emitter region are lower compared to those obtained by HD
(see Figure 2.19(b)).
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Figure 2.19 Comparison of the BTE and HD electron densities obtained by (a) an DC and
(b) an quasi-static analysis. In (b), also the quasi-static hole densities are shown. For (b), a
different axis intercept is used compared to (a) in order to visualize the contributions to the
emitter junction capacitance CjEi.

In terms of the emitter depletion capacitance [Sch06]

C jEi =

∫ xmE

0

∂

∂VBE
(n− p)

∣∣∣∣
vBC

dx, (2.31)

where xmE = x(dn/dVBE=dp/dVBE), the region of blocked electrons
reduces the contributions to C jEi from the regions before, due to the higher
quasistatic hole density (see Figure 2.19(b), lhs). Therefore, around fT,pk the
value of C jEi is overestimated in the HD results compared to the BTE results,
as shown in Figure 2.20.

The spike-like increase discussed above has not been measured on fabri-
cated devices, possibly because this effect might either be weakened due to
tunneling or be masked by the impact of peripheral and external elements. In
addition, the fabricated doping concentrations so far just do not have such a
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Figure 2.20 Comparison of CjEi obtained by BTE and HD simulations.

Figure 2.21 (a) Doping profile with smoothed high to low transition in the emitter (new) and
previous step-like profile (ini.). Corresponding terminal characteristics: (a) transfer current and
(b) transit frequency.

steep gradient. The latter hypothesis has been tested in Figure 2.21 showing
a smoothed transition in the emitter doping (Figure 2.21(a)). This results in
the disappearance of the previously observed peak fT overshoot for the BTE
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Figure 2.22 Electron distribution function within the 4-fold ∆-valley at fT,BTE,pk within
the emitter-base region. (a) Contours with the arrow marking the position of the doping
induced conduction band barrier. (b) Comparison of HD and BTE distribution function at
the barrier peak.

solver and terminal characteristics that are fairly close to the HD results (after
adjusting though the HD transport model parameters (f td, f tc and f ec).

In Figure 2.22(a), the conduction band edge and the contour lines of
the electron distribution function for the smoothed doping profile are shown
within the BE region. The corresponding distribution function in Figure
2.22(b) at the conduction band maximum at x = 17 nm shows no blocking
of low energetic electrons and thus the HD and BTE results are approaching
each other.

2.2.4.4 Comparison with experimental data
In the course of the DOTSEVEN project, a variety of experimental data of
fabricated SiGe HBTs were evaluated. In order to evaluate the predictive
capability of the TCAD infrastructure employed within the project, measured
terminal characteristics, such as transfer current and fT characteristics, were
compared with simulation results. Here, a SiGe HBT fabricated by IHP
and shown in Figure 2.23(a) is considered. For the comparison with the
1D simulation results, the measured data were deembedded by the external
elements of the actual 3D transistor structure. This was accomplished by
using the physics-based and geometry scalable properties of the HICUM/L2
compact model and its parameters, which were extracted from measured
data of transistors and special test structures [Paw17][Kor15]. A comparison
between the respective 1D measurements with the HD and BTE simulation
results is given in Figure 2.23(b), (c) for the transfer current and transit
frequency in the absence of self-heating, the impact of which has already
been accounted for during the parameter extraction.
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Figure 2.23 (a) Doping and Ge profile of a SiGe HBT (fabricated by IHP) with correspond-
ing (b) transfer current, and (c) transit frequency. Comparison HD and BTE simulation results
with 1D measurement data.

According to Figure 2.23(c), both HD and BTE simulation results agree
well with the measured data around peak fT and beyond. Below peak fT,
discrepancies exist which may be attributed to (i) too strong deembedding
of parasitic or external junction capacitances in the measured data, (ii) an
incorrect doping and Ge profile resulting in lower junction capacitances or
doping and Ge dependent bandgap for the device simulation, (iii) the neglect
of Carbon in the base region, or (iv) a significant difference in the doping,
Ge and C dependent bandgap modeling in the simulation. The observed
discrepancy in the transfer current (cf Figure 2.23(b)) indicates the latter as a
major cause for the differences at low current densities.

According to Figure 2.24, the experimentally determined bandgap nar-
rowing is indicating the presence of metastable strain, as reported in [Bea92].
For a first estimation of the impact of different bandgap narrowing values
as function of Germanium on the terminal characteristics, a simple linear
model (“lin.” in Figure 2.24) is employed for DD and HD simulations. The
corresponding terminal characteristics are shown in Figure 2.25.
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Figure 2.24 Comparison of the Ge concentration induced bandgap narrowing from exper-
imental data (exp.) and device simulation model (mod.). In addition, the lower and upper
boundary (lb and ub) for bandgap narrowing as function of Ge the presence of metastable
strain [Bea92] is shown.

Figure 2.25 Comparison of the 1D measurement data with DD, HD and BTE simulation
results. For the DD and HD simulation, the linear model indicated in Figure 2.24 is used. The
transit frequency obtained by DD is not shown, since its parameters have not been adjusted.

According to Figure 2.25(a), the linear bandgap narrowing model
improves the agreement between the simulated and experimental transfer
characteristics at low current densities, but there is little improvement for
fT (cf. Figure 2.25(b)). Since advanced SiGe HBTs exhibit a significant
carbon content, which is has not been considered in the simulations, further
investigations based on experimental data (variation of the Germanium and
carbon contents) are needed to clarify the origin of the discrepancies.

Nevertheless and focusing on trends only, the TCAD infrastructure
employed in the DOTSEVEN project is capable of predicting performance
trends correctly. Figure 2.26 displays the peak values of the measured 1D
transit frequency for four different SiGe HBTs obtained from a process split.
Here, both the quantitative and qualitative trend of the measurements is well
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Figure 2.26 Comparison of the performance trends predicted by TCAD (HD and BTE
simulation) with 1D measurement results (three samples) for a process split with four different
SiGe HBTs (fabricated by HP).

captured by HD and BTE simulation. For the SiGe HBT labeled by HBT
#3, the BTE results are overestimating the peak transit frequency. However,
as explained before, this overestimation is based on an improper doping
profile description at the metallurgical emitter-base junction and thus due to
an underestimation of low energetic electrons.

2.3 Advanced Electro-thermal Simulation

C. Jungemann and N. Rinaldi

2.3.1 Carrier–Phonon System in SiGe HBTs

Charge carriers are accelerated under high electric fields in semiconductor
devices and gain high kinetic energies. Carriers with energies higher than
60 meV scatter mainly with optical phonons. The optical phonons, which
have a negligible group velocity, cannot participate in heat transport. Instead,
they decay into long-wavelength acoustic phonons, which determine heat
conduction in semiconductors. Since this decay is relatively slow, compared
to the carrier–phonon interactions, a bottleneck for energy dissipation can
occur, which results in a large number of hot optical phonons in high-field
domains. The carrier–phonon and phonon–phonon interaction processes with
their corresponding scattering time constants are illustrated in Figure 2.27
[Pop06].

In order to investigate self-heating in ultra-scaled bipolar transistors
precisely, we have to consider a coupled system of transport equations for
electrons, holes, and phonons. For this goal, the coupling terms, which
describe carrier–phonon interactions, must be modeled accurately. In fact,
carriers gain energy from the electric field and diffuse several mean free paths
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Figure 2.27 Thermal energy transport diagram in semiconductor devices.

(tens of nanometers) before they lose their energy to the lattice. Therefore, the
so-called Joule-heating term, which represents the energy that carriers receive
from the electric field, is not appropriate to capture the spatial distribution
of heat generation in submicron devices. In order to tackle this problem,
an advanced hydrodynamic model has been proposed [Mus08] to describe
heat generation and transport in sub-micron silicon devices. However, this
approach is still based on a single averaged carrier temperature within the
relaxation time approximation and does not account for the spectral informa-
tion regarding the emitted phonons. Since inelastic carrier–phonon scattering,
which is described in detail by the scattering integral of the Boltzmann
transport equation (BTE), causes heat generation, solving the BTE is the most
accurate approach to study carrier–phonon interactions [Pop10].

The Monte Carlo (MC) method has been widely used to solve the BTE
for electrons coupled with heat transport equations. The Fourier heat equation
as the most elementary approach to consider heat conduction was used
in [Zeb06, Sad10], which is not valid for sub-micron devices. In a CPU-
efficient approach, a system of energy balance equations for both optical
and acoustic phonons was extracted from the phonon BTEs. This system
of equations coupled with an electron MC simulator, which was used to
study self-heating in silicon-on-insulator devices, can describe the phonon
bottleneck in thermal energy transport by distinguishing between optical and
acoustic phonon temperatures [Ral08, Vas09]; however, it cannot capture all
microscopic effects of non-equilibrium phonon transport due to the averaged
phonon temperatures. Nghiem et al. [Ngh14] introduced recently an elec-
trothermal simulator, which solves the BTE for both electrons and phonons
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self-consistently. However, in their system of equations, the feedback to
the electron system is the effective temperature extracted from the phonon
distribution function.

Despite great advances in understanding the physics of phonon transport
using the MC method, the stochastic basis of this method hinders calculation
of parameters with very small or slow variations. Alternatively, a determinis-
tic approach based on spherical harmonics expansion (SHE) can be used to
solve the BTE [Gnu93]. In this regard, Ramonas et al. [Ram15] presented a
deterministic solution of a non-equilibrium bulk electron–phonon system for
noise calculations.

Most recently, Kamrani et al. [Kam17a] presented a SHE method for the
coupled BTEs of electrons, holes, and phonons under stationary conditions
in a SiGe HBT. Since it has been shown that carriers in SiGe lose their
energy mainly by scattering with longitudinal optical (LO) phonons [Pop05,
Ni12], they solved the phonon BTE only for the LO phonon mode, and used
energy balance equations for the other optical and acoustic phonon modes.
In addition, the reduction of the thermal conductivity in a SiGe HBT was
accounted for by analytical models for the lattice thermal conductivity in a
way that is consistent with empirical data.

2.3.2 Deterministic and Self-consistent Electrothermal
Simulation Approach

In the framework of semi-classical transport theory, the kinetics of a non-
equilibrium carrier–phonon system under stationary conditions is described
by a coupled set of BTEs for the distribution functions of carriers (electrons/
holes) fe/h(−→r ,

−→
k ) and phonons n (−→r ,−→q ), defined on the position vector

−→r , carrier and phonon wave vectors
−→
k and −→q , respectively. To investigate

the impact of hot LO phonons on carrier transport, the non-equilibrium
distribution function of LO phonons must be obtained, while for the other
phonon modes, equilibrium distribution functions, which are evaluated at
averaged phonon temperatures of the optical Top and acoustic Tac phonon
branches, can be assumed. In this case, the BTE for the charge carriers is
written as:

L {f} = QLO {f, n}+ S {f, Top, Tac} (2.32)

where L {f} is the free-streaming operator, QLO {f, n} is the scatter-
ing operator for inelastic interactions of carriers with non-equilibrium LO
phonons, and S {f, Top, Tac} denotes the scattering operator of all other
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scattering mechanisms. The scattering term for non-equilibrium LO phonons
is expressed as:

QLO {f, n} = V0
(2π)3

∑
v′
∫ [

W v,v
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where C0 (−→r ) is the interaction constant, ~ωop is the constant energy for the
dispersionless LO phonons, and the upper sign refers to phonon absorption
and the lower to phonon emission.

The BTE for non-equilibrium LO phonons is written as:

n(−→r ,−→q )−neq(TL)

τop
+Gc {n, f} = 0 (2.35)

where the first term represents interactions between optical and acoustic
phonons within the relaxation time (τop) approximation, neq (TL) is the
equilibrium phonon distribution function, which follows the Bose–Einstein
statistics, TL is the lattice temperature which is equivalent to the averaged
acoustic phonon temperature, and Gc {n, f} is the phonon generation term
given by:

Gc {n, f} = 2V 0

(2π)3
∑

v

∫ [
W v,v
ab

(−→r ,−→k ,−→q , n)
−W v,v

em

(−→r ,−→k ,−→q , n)] fv (−→r ,−→k ) d3k

(2.36)
where W v,v

ab and W v,v
em refer to the transition rate for phonon absorption and

emission, respectively.
To solve this coupled system of BTEs, all the terms have to be expanded

into spherical harmonics, and the spherical coordinates of the q-space
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(q, θq, ϕq) can be expressed based on the modulus of the wave vector and
the angles of the initial and final carrier states by using the momentum

conservation rule,
−→
k
′

=
−→
k ±−→q .

In this simulation approach, non-equilibrium effects for the other phonon
modes are accounted for by a coupled set of energy balance equations for
the optical and acoustic phonon branches, where the energy loss rate due
to inelastic carrier–phonon scattering is used as the heat generation term
[Kam15]. Furthermore, the effects of Ge content [Pal04], doping profile
[Lee12], and boundary scattering [Vas10] in the reduction of the lattice
thermal conductivity, as the main parameter that models heat conduction by
acoustic phonons, were considered via analytical models.

2.3.3 Hot Phonon Effects in a Calibrated System

To investigate non-equilibrium effects for the carrier–phonon system in
bipolar transistors, a state-of-the-art toward-THz SiGe HBT fabricated by
Infineon Technologies AG within the framework of the European DOTFIVE
project with an emitter width of WE = 0.13 µm and a length of LE =
2.73 µm, and belonging to a technology development stage referred to as set
#3 in [d’Al14], was used to extract the thermal resistance based on simple
DC measurements. The extracted thermal resistance from measurements
RTH = 6,800 K/W [d’Al16] results in a junction temperature increase of
4T j = 38.5 K at VBE = 0.9 V and VCE = 1 V with IC = 5.66 mA.

To study self-heating in this device, 2-D electrothermal simulations were
performed for the structure, which is partly shown in Figure 2.2, the dop-
ing profiles of which were extracted by secondary ion mass spectrometry
(SIMS). For these simulations, a self-consistent steady-state solution of the
BTEs for electrons, holes, and LO phonons coupled with the energy balance
equations was obtained. Due to minor uncertainty in the extracted Ge profile,
a calibration of the Ge content by a few percent is used to reproduce the
measured IC at TB = 300 K by simulation. Figure 2.28 (top) depicts the
thermal conductivity over the 2-D SiGe HBT by considering the effect of
Ge content, doping concentration, and boundary scattering at 300 K.

Since the SHE solution of the BTEs for a 3-D real space is too CPU
intensive, only a 2-D real space was used and some important parts of the
structure for thermal conduction, such as metal layers, were neglected. To
mimic the 3-D nature of the heat propagation in 2-D simulation, the thermal
boundary conditions are adjusted to match the simulated average lattice tem-
perature increase over the space-charge region of the base–emitter junction
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Figure 2.28 (Top) Thermal conductivity in the 2-D SiGe HBT structure by taking into
account the effect of Ge content, doping concentration, and boundary scattering at 300 K.
(Bottom) Self-consistent lattice temperature at VBE = 0.9 V and VCE = 1 V.

equal to the extracted junction temperature from measurements [d’Al02].
Hence, a convective boundary condition at the emitter contact is considered,
and the heat transfer coefficient is calibrated to obtain an average junction
temperature increase of 38.5 K from the temperature distribution of the
simulation at the corresponding bias conditions. In this simulation, Neumann
(adiabatic) boundary conditions are considered for artificial boundaries, the
base and collector contacts, whereas the bulk contact at the bottom of the
substrate is set to a constant temperature of 300 K. Figure 2.8 (bottom) shows
the self-consistent lattice temperature obtained from the energy balance
equations.

The spatial distribution of the Joule-heating term and the energy loss rate
due to in-elastic carrier–phonon scattering are shown along the symmetry
axis of the device in Figure 2.29. This figure depicts the distance that carriers
have to travel before releasing their energy to the lattice; therefore, carriers
receive energy from the high electric field at the collector–base junction,
while they lose their energy via net phonon generation deep in the collector
region. Moreover, Figure 2.29 shows that carriers are mainly scattered by
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Figure 2.29 Profiles of the power densities received and dissipated by carriers which
are calculated from Joule-heating and energy loss rate due to inelastic phonon scattering,
respectively, along the symmetry axis of the HBT at VBE = 0.9 V and VCE = 1 V.

LO phonons which can lead to a strong deviation in the LO phonon distri-
bution function with respect to the equilibrium value evaluated at the lattice
temperature in the collector region which is shown in Figure 2.30 (top).

In order to investigate the effect of hot LO phonons and to make a
comparison with the lattice temperature, an effective temperature is extracted
from the non-equilibrium LO phonon distribution function which is shown in
Figure 2.30 (bottom). The higher value of the effective temperature for LO
phonons with respect to the lattice temperature, in the collector region, refers
to the so-called phonon energy bottleneck in thermal conduction obtained for
τop = 2 ps [Pop10]. The equality of TL and Teff around the base–emitter junc-
tion reveals the negligible effect of hot LO phonons on the collector current,
because the temperature at this junction dominantly determines the impact of
self-heating on the collector current increase. However, the large difference
between these two temperatures in the collector region might influence some
electrical phenomena, such as impact ionization (II) due to hot electrons,
which occurs mainly deep in the collector region. To examine this possibility,
the injected current due to electron II (III) was calculated in a simulation with
high collector–base voltage VCB = 2 V. A stronger phonon scattering due to
hot LO phonons obtained from the full electrothermal simulation leads to a
lower number of hot electrons. However, the reduction of the III at the same
collector current due to temperature increase is just a few percent. As a result,
the impact of hot LO phonons on electron II is not very strong in this case.
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Figure 2.30 (Top) The LO phonon distribution function (zeroth-order harmonic), and (bot-
tom) lattice temperature and effective temperature for LO phonons, along the symmetry axis
of the investigated HBT at VBE = 0.9 V and VCE = 1 V.

2.3.4 Thermal Resistance Extraction from the Simulated
DC Characteristics

To extract the thermal resistance by an approach similar to the experimental
extraction method [d’Al14], the required DC characteristics were calculated
and compared with measurement data (Figure 2.31). Figure 2.31 (top) dis-
plays the IC − VBE characteristics of the HBT at different homogeneous
temperatures, compared to experimental data measured under DC conditions
at various thermo-chuck temperatures. In these voltage/current ranges, self-
heating can be safely disregarded and the results are used for calculating the
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Figure 2.31 (Top) IC − VBE characteristics for different homogeneous temperatures at
VCE = 0.6 V. Solid lines show the isothermal simulation results at TB = 300, 320, 340, 360 K
and symbols show the corresponding measurement data. (Bottom) VBE − VCB characteristics
from electrothermal simulation and measurement at IE = 2 mA.

temperature coefficient ϕ = − (∂VBE/∂TB) |IC . The extraction of the other
parameter γ = (∂VBE/∂VCB) |IE can be troublesome with the MC method,
because the variation of VBE with respect to VCB for a constant IE is very
small. Moreover, thermal parameters of the device determine the slope of the
VBE − VCB curve [Kam15]; consequently, a self-consistent electrothermal
simulation is needed to evaluate the slope of this curve consistent with
the lattice temperature distribution of the device. Figure 2.32 shows the
VBE−VCB characteristics obtained from the deterministic and self-consistent
electrothermal simulator in comparison with the measurement data.
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Figure 2.32 IC − VBE characteristics with and without including self-heating compared to
measurement data at V CE = 1 V.

Since the simulated DC characteristics are in very good agreement with
measurement results, the extracted thermal resistance from electrothermal
simulations RTH = −γ/(IEϕ) matches the value obtained from measure-
ments. This confirms the consistency of the extracted junction temperature
from the simulated DC characteristics with the average lattice temperature
over the base–emitter junction observed in the temperature profile shown
in Figure 2.30 (bottom). Therefore, this result attests the accuracy of the
analytical model on which the experimental procedure is based.

Figure 2.32 shows the effect of self-heating on the collector current
increase observed in IC − VBE characteristics of the SiGe HBT by electro-
thermal SHE simulations, which matches measurement results very well.

2.4 Microscopic Simulation of Hot-carrier Degradation

2.4.1 Physics of Hot-carrier Degradation

Due to inevitable trade-offs in the performance optimization of SiGe HBTs,
these devices are operated closer and even beyond the classical safe-operating
area (SOA) borders. Hot-carrier degradation (HCD) is the main reliability
concern in bipolar transistors that strongly limits the lifetime of a device
operated close to the SOA limit [Fis15]. This degradation happens due to
trap states generated by hot-carriers along the oxide interfaces over time.
In general, imperfections at the Si/SiO2 interface lead to silicon dangling
bonds, which can capture electrons or holes. Hence, these dangling bonds
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Figure 2.33 (Left) Creation of Si dangling bonds at the Si/SiO2 interface. (Right) Passiva-
tion of the dangling bonds by incorporating hydrogen atoms.

are intentionally passivated by incorporating hydrogen atoms (Figure 2.33).
However, hot carriers can supply enough energy to break the passivated Si–
H bonds. A hot-carrier is a charge carrier which is accelerated under a high
electric field inside the device and attains significant kinetic energy (higher
than 1.5 eV) to break the bonds directly. Therefore, devices operating under
bias conditions, which produce large electric fields, are susceptible to the
HCD phenomenon.

In high-performance HBTs, shallow trench isolation (STI) and deep
trench isolation (DTI) schemes together with the emitter–base (EB) spacer
oxide are used to reduce parasitic capacitances and leakage currents [Mar09].
However, trap states resulting from the Si–H bond dissociation at the EB
spacer and STI oxide interfaces produce excess non-ideal base current via
Shockley–Read–Hall (SRH) recombination in the forward mode and reverse
mode, respectively (Figure 2.34). As a result, traps generated due to hot
carriers along the EB spacer oxide interface degrade the main parameters of

Figure 2.34 Schematic of a state-of-the-art SiGe HBT with the corresponding EB spacer
and STI oxides.
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the device such as current gain and noise figure [Cre04]. Hence, a profound
knowledge of the microscopic mechanisms of the interface trap generation
and annihilation as well as their impact on the electrical characteristics is
essential.

Although conventional methods for a physics-based investigation of HCD
in bipolar transistors, which are based on the lucky electron model, are
electric field driven [Che09, Moe12, Wie16], it has been shown that the
trap generation rate at the oxide interface is determined by the energy of the
interacting charge carriers [DiM89, DiM01]. Hence, another quantity called
the acceleration integral (AI), which is calculated from the carrier energy
distribution function (EDF), has been introduced to describe accurately the
spatial distribution of the interface traps obtained from charge pumping
measurement data [Sta11, Sta12]. In consequence, an energy-driven
paradigm based on the AI has been developed to model both single- and
multiple-carrier processes of the bond dissociation in the degradation analysis
of the n-channel MOSFETs [Bin14, Sha15, Tya16].

This model has been recently extended to include the effects of both hot
electrons and hot holes for describing the underlying mechanisms of HCD in
bipolar transistors [Kam16, Kam17b]. For this purpose, a coupled system
of BTEs for electrons and holes, which accounts for II and SRH, has to
be solved. Since stochastic algorithms such as the MC method impose an
enormous computational burden to resolve the high-energy tail of the EDF, a
deterministic approach based on a SHE was used to solve the BTEs including
full band structure effects [Hon11].

The reaction-diffusion model has been widely used to represent the com-
plex dynamics of the trap generation and subsequent annihilation in HCD
of bipolar transistors and negative-bias temperature-instability degradation
of MOSFETs [Moe12, Rag15, Kuf07]. Despite a very good matching for a
wide range of experimental observations, it has been shown that the reaction-
diffusion model is inconsistent with the measurement data at the microscopic
level [17]. Therefore, in [Kam17b] a degradation model based on the AIs
was used to calculate the dispersive bond-breakage rates associated with a
reaction-limited model to describe HCD effects in a SiGe HBT.

2.4.2 Modeling of Hot-carrier Effects

In an energy-driven framework, the bond-breakage rate is modeled by con-
sidering the interaction of the incident charge carriers with the passivated
Si–H bond. A Si–H bond is represented as a truncated harmonic oscillator



2.4 Microscopic Simulation of Hot-carrier Degradation 97

Figure 2.35 The energy configuration of the Si–H bond modeled as a truncated harmonic
oscillator.

characterized by a system of eigenstate energies [Sto98], which is depicted in
Figure 2.35.

Bond dissociation occurs via excitation of one of the bonding electrons
to the transport state, which is known as an antibonding (AB) process. As a
result, a repulsive force is induced, which detaches the hydrogen atom. The
dissociation rate from the ith state of the Si–H bond with the energy Ei,
triggered either by a hot electron or by a hot hole, is given by:

RAB,i = IeAB,i + IhAB,i + vr exp (−(Ea − Eoxd− Ei)/kBT0) (2.37)

where IeAB,i and IhAB,i are the AB acceleration integrals of electrons and
holes, respectively, vr is an attempt frequency, and Ea is the bond-breakage
activation energy, which is reduced due to the interaction of the bond dipole
moment d with the oxide electric field Eox. Furthermore, to account for the
fluctuations of the activation energy, a Gaussian distribution is considered
with a mean value and standard deviation of 〈Ea〉 and σE , respectively. The
AI for the AB process is given by [Bin14]

I
e/h
AB,i = σAB0

∫ ∞
Eth,i

[
fe/h (E) ze/h (E) ve/hg (E) [(E − Eth,i)/Eref ]p

]
dE

(2.38)
where Eth,i = Ea − Eoxd − Ei is a threshold energy for the ith level, σAB0

is the AB reaction cross section, fe/h (E) is the carrier distribution function,

ze/h (E) is the carrier density of states, ve/hg (E) is the carrier group velocity,
p = 11 is an empirical parameter, and Eref = 1eV.
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If a charge carrier does not provide enough energy to trigger the AB
mechanism, it can still contribute to the bond-breakage procedure via multiple
vibrational excitation (MVE) of the bond. In an accumulative consideration
of the MVE and AB mechanisms, the bonding electron can be firstly excited
by several colder particles to an intermediate energy level, and then disso-
ciated by a carrier with a relatively high energy. The bond excitation and
deexcitation rates triggered by either a cold electron or a cold hole, are given,
respectively, by

Pu = IeMV E + IhMV E + ωe exp (−~ω/kBT0) (2.39)

Pd = IeMV E + IhMV E + ωe (2.40)

where ωe is the reciprocal phonon life-time and ~ω is the energy distance
between the Si–H energy levels. The AI for the MVE process is defined as

I
e/h
MV E = σMVE

0

∫∞
~ω

[
fe/h (E) ze/h (E) v

e/h
g (E) [(E − ~ω)/Eref ]

]
dE

(2.41)
The cumulative bond-breakage rate, which accounts for all possible superpo-
sitions of the AB and MVE mechanisms, is calculated as

Ra = 1
k

∑
iRAB,i

(
Pu
Pd

)i
(2.42)

where k is a normalization prefactor defined as k =
∑

i (Pu/Pd)
i.

In the reaction-limited approach, the rate equation for the generation and
recombination of the interface trap states is written as [Jep77]

∂Nit/∂t = (N0 −Nit)Ra −Nit
2Rp (2.43)

where Nit is the density of the generated interface traps, N0 is the density of
the primary passivated Si–H bonds, and Rp is the recovery rate.

In this approach, the dispersion of the bond-breakage energy deter-
mines the power-law time dependence of the HCD results. The dispersive
effect of Ea is incorporated by discretizing an energy grid in the range of
[〈Ea〉 − 3σE , 〈Ea〉+ 3σE ] and evaluating Nit for each discretization point.
The interface trap density profile, which is the combination of every single
defect, is obtained by calculating the average of Nit at each energy point
weighted by the Gaussian distribution [Bin14].

To obtain the required distribution functions of the carriers, a coupled
system of the BTEs for electrons and holes has to be solved. The BTE for
electrons in the stationary case is written as:

L {fe} = S {fe}+Q
{
fe, fh

}
− Γe

{
fe, fh

}
(2.44)
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where S {fe} is the scattering operator, which accounts for carrier–phonon
scattering, impurity scattering, alloy scattering, and II scattering of primary
particles, Q

{
fe, fh

}
is the generation operator of secondary particles due

to II [Jab14], and Γe
{
fe, fh

}
is the SRH recombination operator [Jun07,

Rup16] defined on the boundary of the oxide interface.
In this simulation approach, a full-band SHE simulator is used to obtain

the carrier EDFs for a SiGe HBT under stress conditions. Then, theNit (−→r , t)
profile calculated at each stress time step is fed into the SHE solver to
calculate the characteristics of the degraded device which change due to SRH
recombination.

2.4.3 Simulation of SiGe HBTs under Stress Conditions Close
to the SOA Limit

The conventional mixed-mode (MM) stress conditions, which are the concur-
rent applications of a high collector-base voltage and a high collector current
density to accelerate the degradation procedure, set an upper limit for HCD of
the SiGe HBTs during RF operation [Fis15]. However, as the main drawback
they are far from typical operating conditions. Hence, to study the physics
behind the long-term base current degradation under more practical operating
conditions, three stress bias conditions P1, P2, and P3, along the border of
the SOA, were selected to degrade the device up to 1,000 h at 300 K, and
Gummel plots (VCB = 0 V) were measured at certain stress time intervals
[Jac15]. The corresponding bias voltage, current, and junction-to-ambient
temperature increase obtained from the extracted thermal resistance RTH =
2,850 K/W [d’Al14] are summarized in Table 2.1. Measurements showed
that the examined npn SiGe HBT is negligibly affected by stress at P1, and
P3 exhibits a higher base current degradation over time in comparison to P2.

For numerical simulations, a 2-D structure, the doping profiles of which
were extracted from SIMS, was used. As a first step of this analysis, the
simulator has to be calibrated to reproduce the measured Gummel plot and
IB − VCE characteristics of the fresh device. The base current reversal at

Table 2.1 Definition of the stress bias conditions P1, P2, and P3 and their corresponding
junction temperatures

P1 P2 P3
VCE [V] 1 (<BVCEO) 2 (>BVCEO) 3 (>BVCEO)

JC [mA/µm2] 10 5 1
∆T j [K] 37 37 11
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VCE>BVCEO due to avalanche multiplication of carriers is used as a basis to
determine the II rates initiated by primary electrons and holes. Figure 2.36
shows the II generation rates at P3 due to electrons and holes separately.

Under this stress condition, the high electric fields within the collector–
base junction accelerate electrons to reach enough energy required for initi-
ating avalanche generation of electron–hole pairs via II. Figure 2.36 shows
that hot electrons responsible for II are deep in the collector region while hot
holes are mainly found in the base region. To obtain a better understanding
of the energy of the carriers which participate in the degradation process,
Figure 2.11 depicts a cut of the EDFs for electrons and holes along the
symmetry axis of the investigated SiGe HBT with respect to kinetic energies.

Electrons move toward the collector region and gain sufficiently high
energies to initiate II, whereas the holes generated by II in the collector due
to hot electrons [Figure 2.36 (top)] are accelerated toward the base and gain
a lot of energy. Due to this high energy, some of the holes can shoot through

Figure 2.36 II generation rates in the SiGe HBT induced by electrons (top) and holes
(bottom) at P3.
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Figure 2.37 Cut of EDFs [eV−1 cm−3] for electrons (top) and holes (bottom) along the
symmetry axis of the HBT at P3.

the base into the emitter, where they still have a relatively large energy
[Figure 2.37 (bottom)]. A certain fraction of these hot holes hit the EB spacer
oxide interface, where they might break Si–H bonds.

This effect can only be captured by a model which resolves the depen-
dence of the carriers on energy. Thus, it is not possible to directly describe the
behavior of the hot holes with a drift-diffusion or a hydrodynamic model, in
which the hole gas in the base is assumed to be close to equilibrium. Unavoid-
ably, to perform physics-based degradation analysis relying on the classical
models, the probability of hot carrier creation has to be calculated via the
lucky electron model. This calculation based on the effective electric field
shows inaccurately that hot holes are found at the collector–base junction.
Subsequently, the possibility that a hot carrier reaches the oxide interface
without any deflection has to be separately estimated [Moe12].

The interface traps located within the EB space-charge-region have the
highest impact on the forward mode base current degradation via SRH
recombination. Therefore, the EDFs at the intersection of the EB junc-
tion and the oxide interface are compared for different stress conditions in
Figure 2.38 (top). The negligible role of electrons in the degradation process
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Figure 2.38 (Top) EDFs of electrons (dashed lines) and holes (solid lines) at the intersection
of the EB spacer oxide interface and the EB junction [denoted by node X in Figure 2.36
(Bottom)]. Profiles of the AB AIs for electrons (dashed lines) and holes (solid lines) along the
EB spacer oxide interface from node A to C denoted in Figure 2.36.

is concluded from the EDFs for electrons at P1 and P2, which exactly follow
the equilibrium EDF, and at P3, with a low-energy hump. Because of small
collector–emitter voltage in P1, even holes do not gain high energies, which
explains the negligible degradation rate at P1 observed in measurements.
Furthermore, the high-energy tails of the hole EDFs at P2 and P3 reveal
the dominant role of hot holes in the degradation process under the stress
conditions close to the SOA limit, which was also reported for conventional
MM stress conditions in [Van06]. However, the deterministic solver provides
the possibility to comprehensively describe the microscopic effects of hot
carriers and accurately obtain the EDFs up to high energies in a realistic 2-D
device structure and develop a practical physics-based degradation model to
evaluate the resulting excess base current.
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Although cold carriers can also participate in the MVE of the Si–H bonds,
hot carriers with energies greater than 1.5 eV have a much higher chance
to break the Si–H bonds directly [Tya16]. Moreover, the activation energy
parameters determine the power-law time dependence and the dependence
of the excess base current on the stress conditions. Hence, 〈Ea〉 = 1.6 eV
and σE = 0.2 eV, which are in good agreement with those experimentally
obtained [Ste96, Pob13], were considered for the activation energies of the
bond-breakage to achieve good agreement with measurement data.

The AB AIs along the EB spacer oxide interface obtained from this
calibration are depicted in Figure 2.38 (bottom). As an expected result,
the equilibrium electron EDFs at P1 and P2 result in zero AB AIs along the
oxide interface. Furthermore, due to the low-energy humps in the EDFs of
electrons at P3 and holes at P1, their corresponding AIs are very small. In
consequence, the measured base current degradations under P2 and P3 have
to be ascribed to hot holes with relatively high AB rates, in which the bigger
AI at P3 compared to P2 explicitly explains the bigger degradation current
under this stress condition.

Figure 2.39 represents the trap densities along the EB spacer oxide
interface for several stress time steps, which are significantly generated by
the AB process due to hot holes. These interface trap densities, calculated
for N0 = 1012 cm−2, reveal that the large variation of the AB AIs along the
oxide interface results in a strong non-uniformity in the spatial distribution of
the Nit profile.

Figure 2.39 Interface trap densities generated at different stress time steps from node A to
C denoted in Figure 2.36 at P3.
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The generated traps at the EB spacer oxide interface cause a non-ideal
increase in the forward mode base current via field-enhanced SRH recombi-
nation [Hur92]. Figure 2.14 (top) shows the Gummel characteristics of the
fresh device and the degraded device after 1,000 h stress application at P3.
The leakage currents observed for the fresh device due to packaging [Jac15]
have no impact in the degradation analysis and are not taken into account.
Since the recombination process has no considerable impact on the collector
current, the resulting increase in the base current degrades the current gain of
the transistor.

Figure 2.40 (Top) Gummel characteristics (VCB = 0 V) of the fresh and degraded SiGe HBT
after 1,000 h at P3 obtained from simulation (lines) and measurement (symbols). (Bottom)
Excess base currents over the stress time obtained from simulation (lines) and measurement
(symbols) at VBE = 0.67 V and VCB = 0 V.
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In order to assess the time dependence of the HCD effects, the excess
base current ∆IB = IB (t)− IB (0) is extracted over stress time [Figure 2.14
(bottom)]. Very good agreement between the simulation results and measure-
ment data proves that the EDF-based degradation model can directly explain
the time dynamics of the HCD results together with their dependence on the
stress bias conditions.
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[Paw09] A. Pawlak, M. Schröter, J. Krause, G. Wedel, and C. Jungemann. On
the Feasibility of 500 GHz Silicon-Germanium HBTs, SISPAD 2009,
San Diego, CA, 2009, pp. 1–4.

[Paw17] A. Pawlak, B. Heinemann, and M. Schröter, “Physics-based mod-
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