
1
Contract-Oriented Design of Distributed

Applications: A Tutorial

Nicola Atzei1, Massimo Bartoletti1, Maurizio Murgia1, Emilio Tuosto2

and Roberto Zunino3

1Università degli Studi di Cagliari, Italy
2University of Leicester, UK
3Università degli Studi di Trento, Italy

Abstract

Modern distributed applications typically blend new code with legacy (and
possibly untrusted) third-party services. Behavioural contracts can be used
to discipline the interaction among these services. Contract-oriented design
advocates that composition is possible only among services with compli-
ant contracts, and execution is monitored to detect (and possibly sanction)
contract breaches.

In this tutorial we illustrate a contract-oriented design methodology
consisting of five phases: specification writing, specification analysis, code
generation, code refinement, and code analysis. Specifications are written
in CO2, a process calculus whose primitives include contract advertisement,
stipulation, and contractual actions. Our analysis verifies a property called
honesty: intuitively, a process is honest if it always honors its contracts
upon stipulation, so being guaranteed to never be sanctioned at run-time.
We automatically translate a given honest specification into a skeletal Java
program which renders the contract-oriented interactions, to be completed
with the application logic. Then, programmers can refine this skeleton into
the actual Java application: however, doing so they could accidentally break
its honesty. The last phase is an automated code analysis to verify that honesty
has not been compromised by the refinement.

1

2 Contract-Oriented Design of Distributed Applications: A Tutorial

All the phases of our methodology are supported by a toolchain, called
Diogenes. We guide the reader through Diogenes to design small contract-
oriented applications.

1.1 Introduction

Developing service-oriented applications is a challenging task: programmers
have to reliably compose loosely-coupled services which can dynamically
discover and invoke other services through open networks, and may be
subject to failures and attacks. Usually, services live in a world of mutually
distrusting providers, possibly competing among each other. Typically, these
providers offer little guarantees about the services they control, and in partic-
ular they might arbitrarily change the service code (if not the Service Level
Agreement tout court) at any time.

Therefore, to guarantee the reliability and security of service-oriented
applications, one must use suitable analysis techniques. Remarkably, most
existing techniques to guarantee deadlock-freedom of service-oriented appli-
cations (e.g., compositional verification based on choreographies [35, 21])
need to inspect the code of all its components. Instead, under the given
assumptions of mutual distrust between services, one can only analyse those
under their control.

1.1.1 From Service-Oriented to Contract-Oriented Computing

A possible countermeasure to these issues is to use behavioural contracts to
regulate the interaction between services. In this setting, a service infrastruc-
ture acts as a trusted third party, which collects all the contracts advertised by
services, and establishes sessions between services with compliant contracts.
Unlike the usual service-oriented paradigm, here services are responsible for
respecting their contracts. To incentivize such honest behaviour, the service
infrastructure monitors all the messages exchanged among services, and
sanctions those which do not respect their contracts.

Sanctions can be of different nature: e.g., pecuniary compensations, adap-
tations of the service binding [29], or reputation penalties which marginalize
dishonest services in the selection phase [3]. Experimental evidence [3]
shows that contract-orientation can mitigate the effort of handling potential
misbehaviour of external services, at the cost of a tolerable loss in efficiency
due to the contract-based service selection and monitoring.

1.1 Introduction 3

1.1.2 Honesty Attacks

The sanctioning mechanism of contract-oriented infrastructures protects hon-
est services against malicious behaviours of the other services: indeed, if
a malevolent service attempts to break the protocol (e.g. by prematurely
terminating the interaction), it is punished by the infrastructure. At the same
time, a new kind of attack becomes possible: adversaries can try to exploit
possible discrepancies between the promised and the actual behaviour of a
service, in order to make it sanctioned. For instance, consider a naı̈ve online
store with the following process:

1. Advertise a contract to “receive a request from a buyer, and then
either send the price of the ordered item, or notify that the item is
unavailable”;

2. Wait to receive a request;
3. Advertise a contract to “receive a quote from a package delivery service,

and then either confirm or abort”;
4. Wait to receive a quote from the delivery service;
5. If the quote is below a certain threshold, then confirm the delivery

and send the price to the buyer; otherwise, send abort to the delivery
service, and notify as unavailable to the buyer.

Now, assume an adversary which plays the role of a delivery service, and
never sends the quote. This makes the store violate its contract with the
buyer: indeed, the store should either send price or unavailable to the buyer,
but these actions can only be performed after the delivery service has sent a
quote. Therefore, the store can be sanctioned.

Since these honesty attacks may compromise the service and cause
economic damage to its provider, it is important to detect the underlying
vulnerabilities before deployment. Intuitively, a service is vulnerable if, in
some execution context, it does not respect some of the contracts it adver-
tises. Therefore, to avoid sanctions a service must be able to respect all the
contracts it advertises, in all possible contexts — even in those populated by
adversaries. We call this property honesty.

Some recent works have studied honesty at the specification level, using
the process calculus CO2 for modelling contract-oriented services [6–9],
whose primitives include contract advertisement, stipulation, and contractual
actions. Practical experience has shown that writing honest specifications
is not an easy task, especially when a service has to juggle with multiple
sessions. The reason of this difficulty lies in the fact that, to devise an

4 Contract-Oriented Design of Distributed Applications: A Tutorial

honest specification, a designer has to anticipate the possible behaviour of
the context, but at design time he does not yet know in which context his
service will be run. Tools to automate the verification of honesty may be of
great help.

1.1.3 Diogenes

In this paper we illustrate the Diogenes toolchain [1], which supports the
correct design of contract-oriented services as follows:

Specification Designers can specify services in the process calculus CO2.
An Eclipse plugin supports writing such specifications, providing syntax
highlighting, code auto-completion, syntactic and semantic checks, and
basic static type checking.

Honesty checking of specifications Our tool can statically verify the hon-
esty of specifications. When the specification is dishonest, the tool
provides a counter example, in the form of a reachable abstract state
of the service which violates some contract.

Translation into Java The tool automatically translates specifications into
skeletal Java programs, implementing the required contract-oriented
interactions (while leaving the actual application logic to be imple-
mented in a subsequent step). The obtained skeleton is honest when the
specification is such.

Honesty checking of refined Java code Programmers can refine the skele-
ton by implementing the actual application logic. This is a potentially
dangerous operation, since honesty can be accidentally lost in the man-
ual refinement. The tool supports this step, by providing an honesty
checker for refined Java code.

1.2 Specifying Contract-Oriented Services in CO2

A service in our modelling language consists of a CO2 process. CO2 is a
process algebra inspired from CCS [28], and equipped with contract-oriented
primitives: contract advertisement, stipulation, and contractual actions.
Contracts are meant to model the promised behaviour of services, and they
are expressed as session types ([34]).

We show the main features of our language with the help of a small case
study, an online store which receives orders from customers.

1.2 Specifying Contract-Oriented Services in CO2 5

1.2.1 Contracts

We first specify the contract C between the store and a customer, from the
point of view of the store. The store declares that it will receive an order,
and then send either the corresponding price, or declare that the item is
unavailable. We formalise this contract as the following first-order binary
session type [19]:

contract C { order? string . (price! int (+) unavailable !) }

Receive actions are marked with the symbol ?, while send actions are marked
with !. The sort of a message (int, string, or unit) is specified next to
the action label; the sort unit is used for pure synchronizations, and it can
be omitted. The symbol . denotes prefixing. The symbol (+) is used to
group send actions, and it denotes an internal choice made by the store.

1.2.2 Processes

Note that contracts only formalise the interaction protocol between two
services, while they do not specify how these services advertise and realise the
contracts. This behaviour is formalised in CO2 [6, 7], a specification language
for contract-oriented services. For instance, a possible CO2 specification of
our store is the following:

1 specification Store {
2 tell x C . // wait until session x is created
3 receive@x order?[v:string] . (
4 if * // checks if the item is in stock
5 then send@x price ![*:int]
6 else send@x unavailable !) }

At line 2, the store advertises the contract C, waiting for the service infras-
tructure to find some other service with a compliant contract. Intuitively,
two contracts are compliant if they fulfil each other expectations1. When
the infrastructure finds a contract compliant with C, a new session is created
between the respective services, and the variable x is bound to the session
name.

At line 3 of the snippet above the store waits to receive an order, binding
it to the variable v of sort string. At line 4, the store checks whether the

1More precisely, the notion of compliance we use here is progress, that relates two
processes whenever their interaction never reaches a deadlock [4].

6 Contract-Oriented Design of Distributed Applications: A Tutorial

ordered item is in stock (the actual condition is not given in the specification).
If the item is in stock, then the store sends the price to the customer;
otherwise it notifies that the item is unavailable (lines 5-6). The sent price
*:int is a placeholder, to be replaced with an actual price upon refinement of
the specification into an actual implementation of the service.

1.2.3 An Execution Context

We now show a possible context wherein to execute our store. Although
the context is not needed for verifying the store specification, we use it to
complete the presentation of the primitives of our modelling language.

1 specification BuyerA {
2 tell y { order! string . price? int } .
3 send@y order ![*: string] .
4 receive@y price?[n:int]
5 }
6

7 specification BuyerB {
8 tell y { order! string . (price? int + unavailable ?

+ availablefrom ? string) } .
9 send@y order ![*: string] .

10 receive {
11 @y price?[n:int]
12 @y unavailable ?
13 @y availablefrom ?[date:string]}
14 }

The contract advertised by BuyerA at line 2 is not compliant with the
contract C advertised by the store: indeed, after sending the order, BuyerA
only expects to receive the price — while the store can also choose to send
unavailable. Therefore, any service implementing BuyerA will never be put
in a session with the Store. Instead, the contract advertised at line 8 by
BuyerB is compliant with C. Note that this is true also if the two contracts
are not one dual of each other: indeed, BuyerB accepts all the messages that
the store may send (i.e., price and unavailable), and it also allows for a
further message (availablefrom), to be used e.g. to notify when the item
will be available. Although this message will never be used by the Store,
it could allow BuyerB to establish sessions with more advanced stores. The
symbol + is used to group receive actions, and it denotes an external choice,
one which is not made by the buyer. At lines 11-13, BuyerB waits to receive
at session y one of the messages declared in the contract.

1.2 Specifying Contract-Oriented Services in CO2 7

1.2.4 Adding Recursion

Note that our Store can only manage the order of a single item: if some
buyer wants to order two or more items, she has to use distinct instances of
the store. We now extend the store so that it can receive several orders in the
same session, adding all the items to a cart.

We start by refining our contract as follows:

1 contract Crec {
2 addToCart ? string . Crec
3 + checkout ? . (
4 price! int . (accept? + reject?)
5 (+) unavailable !
6)
7 }

The contract Crec requires the store to accept from buyers two kinds of
messages: addToCart and checkout. When a buyer chooses addToCart, the
store must allow the buyer to order more items. This is done by recursively
calling Crec in the addToCart branch. When a buyer stops adding items to
the cart (by choosing checkout), the store must either send a price or state
that the items are unavailable. In the first case, the store allows the buyer to
accept the quotation and finalise the order, or to reject it and abort.

A possible specification of the store using the contract Crec is as follows:

1 specification StoreRec { tell x Crec . Loop(x) }
2 specification Loop(x: session) {
3 receive {
4 @x addToCart ?[item:string] -> Loop(x)
5 @x checkout ? -> Checkout (x)
6 }
7 }
8 specification Checkout (x:session) {
9 if * // checks whether the items are available

10 then
11 send@x price ![*:int] .
12 receive {
13 @x accept?
14 @x reject?
15 }
16 else send@x unavailable !
17 }

The store StoreRec advertises the contract Crec, and then continues as
the process Loop(x), where x is the handle to the new session. The process
Loop(x) receives messages from buyers through session x. When it receives
addToCart, it just calls itself recursively; instead, when it receives checkout,
it calls the process Checkout. This process internally chooses whether to send

8 Contract-Oriented Design of Distributed Applications: A Tutorial

the buyer a price, or to notify that the requested items are unavailable. In
the first case, it receives from the client a confirmation, that can be either
accept or reject.

A possible buyer interacting with StoreRec is the following:

1 specification BuyerC {
2 tell y { addToCart ! string . addToCart ! string . checkout !

. (price? int . (accept! (+) reject !) + unavailable ?)
} .

3 send@y addToCart ![*:string] .
4 send@y addToCart ![*:string] .
5 send@y checkout ! .
6 receive {
7 @y price?[n:int] ->
8 if * then send@y accept! else send@y reject!
9 @y unavailable ? -> nil

10 }
11 }

Note that the buyer’s contract is compliant with Crec, even though the
store contract is recursive, while the buyer’s one is not.

1.3 Honesty

In an ideal world, one would expect that services respect the contracts
they advertise, in all execution contexts: we call honest such services. In
this section we illustrate, through a series of examples, that writing honest
services may be difficult and error-prone. Further, we show how our tools
may help service designers in specifying and implementing honest services.

1.3.1 A Simple Dishonest Store

Our first example is a naı̈ve CO2 specification of the store advertising the
contract C at page 5:

1 specification StoreDishonest1 {
2 tell x C .
3 receive@x order?[v:string] . (
4 if *
5 then send@x price ![*:int]) }

The store above waits for an order of some item v. Then, it checks whether
v is in stock (the actual test is abstracted by the *:boolean guard). If the item
is in stock, the store sends a price quotation to the buyer (again, the price is
abstracted in the specification).

1.3 Honesty 9

Note that the store does nothing when the ordered item is not in stock. In
this way, the store fails to respect its advertised contract C, which prescribes
to always respond to the buyer by sending either price or unavailable.
Therefore, we classify this specification of the store as dishonest.

In this paper we give an intuitive description of honesty, referring the
reader to the literature [6, 7] for a formal definition. A specification A is honest
when, in all possible executions, if a contract at some session requires A to
do some action, then A actually performs it. Basically, this boils down to say
that when A is required to send a message, then it does so. Likewise, when A
is required to receive a message, then A is ready to accept any message that
its partner may be willing to send. More in detail:

• if the contract is an internal choice a1!S1 (+) ... (+) an!Sn, then A
must send a message having sort Si, and labelled ai, for some i;

• if the contract is an external choice a1?S1 + ... + an?Sn, then A must
be able to receive messages labelled with any labels ai in the choice
(with the corresponding sorts Si).

The honesty property discussed above can be automatically verified
using the Diogenes honesty checker, which uses the verification technique
described and implemented in [6]. This technique is built upon an abstract
semantics of CO2 which approximates both values (sent, received, and in
conditional expressions) and the actual context wherein a specification is
executed. Basically, the tool checks, through an exaustive exploration, that
in every reachable state of the abstract semantics a participant is always able
to perform some of the actions prescribed in each of her stipulated contracts.
Since this is a branching-time property, a natural approach to verify it is by
model checking. To this purpose we exploit a rewriting logic specification of
the CO2 abstract semantics and the Maude [12] search capabilities. This ab-
straction is a sound over-approximation of honesty: namely, if the abstraction
of a specification is honest, then also the concrete one is honest. Further, the
analysis is complete for specifications without conditional statements: i.e., if
an abstracted specification is dishonest, then also its concrete counterpart is
dishonest. If the abstractions are finite-state, we can verify their honesty by
model checking a (finite) state space2. Our implementation first translates a

2Abstractions are finite-state in the fragment of CO2 without delimitation/parallel under
process definitions. For specifications outside this fragment the analysis is still correct, but it
may diverge; indeed, a negative result [9] excludes the existence of algorithms for honesty that
are at the same time sound, complete, and terminating in full CO2.

10 Contract-Oriented Design of Distributed Applications: A Tutorial

CO2 specification into a Maude term [12], and then uses the Maude model
checker to decide the honesty of its abstract semantics.

The honesty checker outputs the message below, that reports that the
specification StoreDishonest1 is dishonest. The reason for its dishonesty
can be inferred from the following output:

result: ($ 0)(
StoreDishonest1[if exp then do $ 0 "price" ! int . 0 else 0]
| $ 0[" price" ! int . 0 (+) " unavailable " ! unit . 0]

)
honesty: false

This shows a reachable (abstract) state of the specification, where $ 0
denotes an open session between the store and a buyer.

The state consists of two parallel components: the state of the store

StoreDishonest1[if exp then do $ 0 "price" ! int . 0 else 0]

and the state of the contract at session $ 0, from the point of view of the store:

$ 0[" price" ! int . 0 (+) " unavailable " ! unit . 0]

Such contract requires the store to send either price or unavailable to the
buyer. However, if the guard exp of the conditional (within the state of the
store) evaluates to false, the store will not send any message to the buyer, so
violating the contract C. Therefore, the honesty checker correctly classifies
StoreDishonest1 as dishonest.

1.3.2 A More Complex Dishonest Store

We now consider a more evolved specification of the store, which relies on
external distributors to retrieve items. The contract D specifies the interaction
between the store and distributors:

contract D { req! string . (ok? + no?) }

Namely, the store first sends a request to the distributor for some item,
and then waits for an ok or no answer, according to whether the distributor is
able to provide the requested item or not.

Our first attempt to specify a store interacting with customers and
distributors is the following:

1 specification StoreDishonest2 {
2 tell x C .
3 receive@x order?[v:string] .

1.3 Honesty 11

4 tell y D .
5 send@y req ![v] .
6 receive {
7 @y ok? -> send@x price ![*:int]
8 @y no? -> send@x unavailable !
9 }

10 }

At line 2, the store advertises the contract C, and then waits until a session
is established with some customer; when this happens, the variable x is bound
to the session name. At line 3 the store waits to receive an order, binding it
to the variable v. At line 4 the store advertises the contract D to establish a
session y with a distributor; at line 5, it sends a request with the value v.
Finally, the store waits to receive a response ok or no from the distributor, and
accordingly responds price or unavailable to the customer (lines 6-9). The
price *:int is a placeholder, to be replaced upon refinement.

The honesty checker classifies StoreDishonest2 as dishonest. The reason
for its dishonesty can be inferred from the following output:

result: ("y",$ 0)(
StoreDishonest2[tell "y" D. (...)]
| $ 0[" price" ! int . 0 (+) "unavailable " ! unit . 0])

honesty: false

This output shows a possible (abstract) state which could be reached by
StoreDishonest2. There, $ 0 denotes an open session between the store
and a buyer, while "y" indicates that no session between the store and a
distributor is established, yet. The contract at session $ 0 requires the store to
send either a price or an unavailability message. However, in the given state
there is no guarantee to find a distributor, hence the store might be stuck in
the tell, never performing the required actions at session $ 0. Because of
this, the store does not fulfil the contract C, hence it is correctly classified as
dishonest.

1.3.3 Handling Failures

We try to fix the specification StoreDishonest2 by adapting it so to consider
the case where the distributor is not available. Let us refine the specification
StoreDishonest2 as follows:

1 specification StoreDishonest3 {
2 tell x C .
3 receive@x order?[v:string] . (
4 tell y D .

12 Contract-Oriented Design of Distributed Applications: A Tutorial

5 send@y req ![v] .
6 receive {
7 @y ok? -> send@x price ![*:int]
8 @y no? -> send@x unavailable !
9 }

10 after * -> send@x unavailable !
11)
12 }

Note that StoreDishonest3 uses the construct tell · · · after · · · at lines
4-10. This ensures that, if no session is established within a given deadline,
then the contract is retracted (i.e., removed from the registry of available
contracts), and the control passes to the after process. In particular, in our
StoreDishonest3, if no distributor is found, then D is retracted, and the store
performs its duties with the buyer by sending him unavailable. Since the
actual deadline is immaterial in this specification, it is abstracted here as *.

By running the honesty checker on the amended specification, we obtain:

result: ($ 0,$ 1)(
StoreDishonest3

[retract $ 1 . (...)
+ ask $ 1 True . do $ 1 "req" ! string .

(do $ 1 "no" ? unit . do $ 0 "unavailable " ! unit .
(...)

+ do $ 1 "ok" ? unit . do $ 0 "price" ! int . (...)
)]

| $ 0[" price" ! int . 0 (+) " unavailable " ! unit . 0]
| $ 1[" req" ! string . ("no" ? unit . (0).Id + "ok" ? unit .

(0).Id)]
)

honesty: false

Note that StoreDishonest3 is still dishonest. The output above shows a
reachable (abstract) state where the store has opened two sessions, $ 0 and
$ 1, with a buyer and a distributor, respectively. At session $ 0 the store
is expected to send either price or unavailable to the buyer. Now, the
store can perform do $ 0 "price" ! int only after receiving the input
from the distributor, i.e. after performing do $ 1 "ok" ? unit. Similarly,
the store can only perform the action do $ 0 "unavailable" ! unit after
the action do $ 1 "no" ? unit. Should the distributor fail to send either of
these messages, then the store would fail to honour its contract C with the
buyer. Therefore, the honesty checker correctly classifies StoreDishonest3
as dishonest. Note that, even if in this case the distributor would be dishonest
as well, (since it violates the contract D with the store), this does not excuse
the store from violating the contract C with the buyer.

1.3 Honesty 13

1.3.4 An Honest Store, Finally

In order to address the dishonesty issues in the previous specification, we
revise the store as follows:

1 specification StoreHonest {
2 tell x C .
3 receive@x order?[v:string] . (
4 tell y D .
5 send@y req ![v] .
6 receive {
7 @y ok? -> send@x price ![*:int]
8 @y no? -> send@x unavailable !
9 after * -> (

10 send@x unavailable !
11 | receive {
12 @y ok? -> nil
13 @y no? -> nil
14 }
15)
16 }
17 after * -> send@x unavailable !
18)
19 }

The main difference between this specification and the previous one is
related to the receive at session y. At line 9, after * represents the case
in which no messages are received within a given timeout (immaterial in
this specification). In such case, the store fulfils its contract at session x, by
sending unavailable to the buyer. Further, the store also fulfils its contract
at session y, by receiving any message that could still be sent from the
distributor after the timeout.

Now the honesty checker correctly detects that the revised specification
StoreHonest is honest.

1.3.5 A Recursive Honest Store

We reprise the specification of StoreRec in Section 1.2, by providing a
recursive store which interacts with buyers (via contract Crec at page 7) and
with distributors (via contract D).

1 specification StoreHonestRec {
2 tell x Crec . Loop(x)
3 }
4

5 specification Loop(x: session) {
6 receive {

14 Contract-Oriented Design of Distributed Applications: A Tutorial

7 @x addToCart ?[item:string] -> Loop(x)
8 @x checkout ? -> Checkout (x)
9 }

10 }
11

12 specification Checkout (x:session) {
13 tell y D .
14 send@y req ![*: string] .
15 receive {
16 @y ok? -> send@x price ![*:int] .
17 receive {
18 @x accept?
19 @x reject?
20 }
21 @y no? -> send@x unavailable !
22 after * -> (
23 send@x unavailable ! |
24 receive {
25 @y ok?
26 @y no?
27 }
28)
29 }
30 after * -> send@x unavailable !
31 }

The specification StoreHonestRec handles the checkout of buyers in the
process Checkout, which is identical to lines 4-14 in StoreHonest. The main
difference with respect to StoreHonest is that StoreHonestRec can receive
multiple requests from a buyer, via the recursive process Loop(x). Despite
this complication, the specification is still verified as honest by Diogenes.

1.4 Refining CO2 Specifications in Java Programs

Diogenes translates CO2 specifications into Java skeletons, using the APIs
of the contract-oriented middleware in [3]. This middleware collects the
contracts advertised by services, establishes sessions between those with
compliant contracts, and it allows services to send/receive messages through
sessions, while monitoring this activity to detect and punish violations. More
specifically, upon detection of a contract violation the middleware punishes
the culprit, by suitably decreasing its reputation. This is a measure of the
trustworthiness of a participant in its past interactions: the lower is the
reputation, the lower is the probability of being able to establish new sessions
with it.

1.4 Refining CO2 Specifications in Java Programs 15

1.4.1 Compilation of CO2 Specifications into Java Skeletons

We illustrate the translation of CO2 specifications into Java through an
example, the StoreHonest given in the previous section. From it, we obtain
the following Java skeleton3:

1 public class StoreHonest extends Participant {
2 public void run () {
3 Session x = tellAndWait (C);
4

5 Message msg = x.waitForReceive("order");
6 String v = msg. getStringValue();
7

8 try {
9 Session y = tellAndWait (D, timeoutP);

10 y. sendIfAllowed ("req", v);
11

12 try {
13 Message msg_1 = y. waitForReceive(timeoutP,"ok","no");
14 switch (msg_1. getLabel ()) {
15 case "ok": x. sendIfAllowed ("price", intP); break;
16 case "no": x. sendIfAllowed ("unavailable "); break;
17 }
18 }
19 catch (TimeExpiredException e) {
20 parallel (() ->{x. sendIfAllowed (" unavailable ");});
21 parallel (() ->{y. waitForReceive("ok","no");});
22 }
23 }
24 catch(ContractExpiredException e) {
25 // contract D retracted
26 x. sendIfAllowed ("unavailable ");
27 }
28 }
29 }

We comment below how the specification of StoreHonest at page 13 is
rendered in Java.

• tell x C (at line 2) is translated into the assignment

3 Session x = tellAndWait (C)

The API method tellAndWait advertises the contract C to the middle-
ware, and blocks until a compliant buyer contract is found. Then, it
returns a new object, representing the newly established session between
the store and the buyer.

3Minor cosmetic changes are applied to improve readability.

16 Contract-Oriented Design of Distributed Applications: A Tutorial

• receive @x order?[v:string] (at line 3) is translated into

5 Message msg = x. waitForReceive(" order");
6 String v = msg. getStringValue();

where the call to waitForReceive blocks until the store receives a
message labelled order on session x.

• The block tell y D ... after * ... (at lines 4-17) is translated in
Java as the try-catch statement:

try {
Session y = tellAndWait (D, timeoutP);
...

}
catch(ContractExpiredException e) {
...
}

The call tellAndWait(D, timeoutP) advertises the contract D; the sec-
ond parameter specifies a timeout (in milliseconds) to find a compliant
contract. If the timeout expires, the contract D is retracted, and an excep-
tion is thrown. Then, the exception handler performs the recovery action
specified in the after clause by sending unavailable to the client.

• send @y req![*:string] (at line 5) is translated as

y. sendIfAllowed ("req", stringP)

This method call sends a message labelled req at session y, blocking
until this action is permitted by the contract.

• The receive block at lines 6-16 is translated into a try-catch statement

try {
Message msg_1 = y. waitForReceive(timeoutP ,"ok","no");
...

}
catch (TimeExpiredException e) {

parallel (() ->{x. sendIfAllowed (" unavailable ");});
parallel (() ->{y. waitForReceive("ok","no");});

}

The waitForReceive waits (until the given timeout) to receive on ses-
sion y a message labelled either yes or no, throwing an exception in
case the timeout expires. In such case, the catch block performs the
recovery actions in the after clause of the specification. Namely, the

1.4 Refining CO2 Specifications in Java Programs 17

service spawns two parallel processes, which send unavailable to the
buyer, and receives late replies from the distributor.

Note that the timeout values timeoutP, as well as the order price intP, are
just placeholders. Further, in an actual implementation of the store service,
we may want e.g. to read the order price from a file or a database. This can
be done by refining the skeleton, introducing the needed code to make the
service actually implement the desired functionality.

1.4.2 Checking Honesty of Refined Java Programs

Note that when refining the skeleton into the actual Java application, pro-
grammers could accidentally break its honesty. In general, this happens when
the refinement alters the interaction behaviour of the service. For instance, in
an actual implementation of our store service, we may want to delegate the
computation of price to a separated method, as follows:

public int getOrderPrice (String order) throws MyException {...}

and change the placeholder intP at line 15 of the generated code with an
invocation getOrderPrice(v). The method could read the order price from a
file or a database, and suppose that, in that method, each possible exception
is either handled or re-thrown as MyException. If getOrderPrice throws an
exception, then the sendIfAllowed() at line 15 is not performed. Unless the
store performs it while handling MyException, the store violates the contract
with the buyer, and so it becomes dishonest.

To address this issue, the Diogenes toolchain includes an honesty checker
for Java programs, to be used after refinement. This honesty checker is built
on top of Java PathFinder (JPF [27, 37]). We define suitable listeners for
JPF, to intercept the requests to the contract-oriented middleware, and to
simulate all the possible responses that the application can receive from
it. Through JPF we symbolically execute the program, in order to infer a
CO2 specification that abstracts its behaviour, preserving dishonesty. Once a
specification is constructed in this way, we apply the CO2 honesty checker
discussed in Section 1.3 to establish the honesty of the Java program.

We can check the honesty of a Java program through the static method
HonestyChecker.isHonest(StoreHonest.class), which returns one of the
following values:

• HONEST: the tool has inferred a CO2 specification and verified its honesty;
• UNKNOWN: the tool has been unable to infer a CO2 specification, e.g.

because of unhandled exceptions within the class under test.

18 Contract-Oriented Design of Distributed Applications: A Tutorial

In our example, we just provide the following stub implementation of the
method getOrderPrice:

@SkipMethod
public int getOrderAmount(String order) throws MyException {

return 42; }

where the annotation @SkipMethod is interpreted by the honesty checker
as follows: assume that the method terminates (possibly throwing one of
the declared exceptions), and it does not interact with the contract-oriented
middleware. For our refined store, the honesty checker returns UNKNOWN,
outputting:

error details: MyException :
This exception is thrown by the honesty checker .

Please catch it!
at i.u.c.store.StoreHonest . getOrderPrice (Store.java:30)
at i.u.c.store.StoreHonest .run(Store.java :15)
at i.u.c.honesty. HonestyChecker. runProcess (HonestyChecker.java

:182)

As anticipated above, this output remarks that if getOrderAmount throws
an exception, then the store is dishonest.

As a first (naı̈ve) attempt to recover honesty, we further refine the store by
catching MyException, and just logging the error in the exception handler:

try {
...
case "ok": x. sendIfAllowed (" price",getOrderPrice (v)); break;
...

}
catch (TimeExpiredException e) { ... }
catch (MyException e) { System.out.println (" failed"); }

In this case, the honesty checker correctly classifies the store as
DISHONEST, producing the following output:

result ($ 0,$ 1)(
StoreHonest [0] |
$ 0[" price" ! unit . 0 (+) "unavailable " ! unit . 0] |
$ 1[0])

honesty: DISHONEST

This output highlights the reason for dishonesty: StoreHonest[0] means
that the store does nothing, while at session $ 0, it should send either price
or unavailable to the buyer.

1.5 Conclusions 19

To recover honesty, rather than just logging the error, we also perform
x.sendIfAllowed("unavailable") in the exception handler, in order to fulfil
the contract with the buyer:

catch (MyException e) {
System.out. println(" failed");
x. sendIfAllowed ("unavailable ");

}

With this modification, the Java honesty checker correctly outputs HONEST.

1.5 Conclusions

We have presented Diogenes, a toolchain for the specification and verification
of contract-oriented services. Diogenes fills a gap between foundational
research on honesty [6–9] and more practical research on contract-oriented
programming [3]. Our tools can help service designers to write specifica-
tions, check their adherence to contracts (i.e., their honesty), generate Java
skeletons, and refine them while preserving honesty. We have experimented
Diogenes with a set of case studies (more complex than the ones presented in
this tutorial); our case studies are available at co2.unica.it/diogenes.

The effectiveness of our tools could be improved in several ways, ranging
from the precision of the analysis, to the informative quality of output
messages provided by the honesty checkers.

The precision of the honesty analysis could be improved e.g., by im-
plementing the type checking technique of [7], which extends the class of
infinite-state processes for which honesty can be verified. More specifically,
the type system in [7] can also handle some processes with delimitation and
parallel composition under recursion.

Another form of improvement would be to extend the formalism and the
analysis to deal with timing constraints. This could be done e.g. by exploiting
the timed version of CO2 [3] and timed session types [2]. Although the
current analysis for honesty does not consider timing constraints (and there-
fore is unsound in such scenario), it can still give useful feedback when
applied to timed specifications. For instance, it could detect that some
prescribed actions cannot be performed because the actions they depend on
may be blocked by an unresponsive context.

When a specification/program is found dishonest, it would be helpful for
programmers to know which parts of it is responsible for contract violations.
The error reporting facilities of Diogenes could be improved to this purpose:

20 Contract-Oriented Design of Distributed Applications: A Tutorial

this would require e.g., to signal what are the contract obligations that are not
fulfilled, and in what session, and in particular which part of the specifica-
tion/program should be fixed. Further, it would be useful to suggest possible
corrections to the designer.

Another direction for future work is to formally establish relations be-
tween the original CO2 specification and the refined Java code. In fact, our
tools can only check that the user-refined Java code obtained from an honest
CO2 specification is honest, but this does not imply that the refined Java
code still “adheres” to the specification. Indeed, improper refinements could
drastically modify the interaction behaviour of a service, e.g. by removing
some contract advertisements — while preserving honesty. An additional
static analysis could establish that the CO2 process inferred from the user-
refined Java code is behaviourally related to the original specification. An
alternative way to cope with this issue would be to enhance the gener-
ation of the skeletal Java program, by providing a more structured class
hierarchy. More precisely, we could avoid accidental breaches of honesty
by separating, in the generated skeleton, the part that handles the interac-
tions from the parts to be refined. This could be done e.g. by inserting
entry points to invoke classes/interfaces whose behaviour is defined apart,
so separating the application logic and simplifying possible updates in the
specifications.

1.5.1 Related Work

In recent years many works have addressed the safe design of service-oriented
applications. A notable approach is to specify the overall communication
behaviour of an application through a choreography, which validates some
global properties of the application (e.g. safety, deadlock-freedom, etc.).
To ensure that the application enjoys such properties, all the components
forming the application have to be verified; this can be done e.g. by projecting
the choreography to end-point views, against which these components are
verified [35, 21]. Examples of how to embody such approach in existing
programming languages and models are presented for C [33], for
Python [30], and for the actor model [31]. All those approaches are based on
Scribble [38], a protocol description language featuring multiparty session
types [21]. The strict relations between multiparty session types and actor-
based models such as communicating machines [15] has been used to develop
a framework to monitor Erlang applications [18].

1.5 Conclusions 21

This top-down approach assumes that designers control the whole ap-
plication, e.g., they develop all the needed components. However, in many
real-world scenarios several components are developed independently, with-
out knowing at design time which other components they will be integrated
with. In these scenarios, the compositional verification pursued by the top-
down approach is not immediately applicable, because the choreography is
usually unknown, and even if it were known, only a subset of the needed
components is available for verification. However, this issue can be mitigated
when the communication pattern of each component is available. In fact, in
such case if the set of components is compatible, it is possible to synthesise
a faithful choreography [26] with a suitable tool [24]. Such choreography
can then be used to distil monitors for the components that are not trusted
(if any). The ideas pursued in this paper depart from the top-down approach,
because designers can advertise contracts to discover the needed components
(and so ours can be considered a bottom-up approach). Coherently, the main
property we are interested in is honesty, which is a property of components,
and not of global applications. Some works mixing top-down and bottom-up
composition have been proposed in the past few years [5, 16, 25]. Recent
works [32] have explored how to integrate the bottom-up approach with
inference of multiparty session types from GO programs.

The problem of ensuring safe interactions in session-based systems has
been addressed by many authors [10, 11, 13, 14, 17, 19, 21–23, 36]. When
processes have a single session, our notion of honesty is close (yet different)
to session typeability. A technical difference is that we admit processes to
attempt interactions which are not mandated by the contract. E.g., the process:

1 specification P {
2 tell x { a! . b! } . (send @x a! | send @x b!)
3 }

is honest, while it would not be typeable according to most works on session
types, because the action b is not immediately mandated by the contract.

Other, more substantial, differences between honesty and session typing
arise when processes have more than one session. More specifically, we
consider a process to be honest when it enjoys progress in all possible
contexts, while most works on session typing guarantee progress in a given
context. For instance, consider the process:

22 Contract-Oriented Design of Distributed Applications: A Tutorial

1 specification Q {
2 tell x { a! } . tell y { b? } . receive @y b? . send @x a!
3 }

We have that Q is not honest, because the action at session x is not possible
if the participant at the other endpoint of session y does not send b. Note
instead that Q would be well-typed in [20], even if some contexts R can lead
Q to a deadlock. The interaction type system in [14] would allow to check the
progress of Q|R, given a context R.

Acknowledgments This work has been partially supported by Aut. Reg.
of Sardinia P.I.A. 2013 “NOMAD”, and by EU COST Action IC1201
“Behavioural Types for Reliable Large-Scale Software Systems” (BETTY).

References

[1] Nicola Atzei and Massimo Bartoletti. Developing honest Java programs
with Diogenes. In Formal Techniques for Distributed Objects, Com-
ponents, and Systems (FORTE), volume 9688 of LNCS, pages 52–61.
Springer, 2016.

[2] Massimo Bartoletti, Tiziana Cimoli, Maurizio Murgia, Alessandro Se-
bastian Podda, and Livio Pompianu. Compliance and subtyping in timed
session types. In Formal Techniques for Distributed Objects, Compo-
nents, and Systems (FORTE), volume 9039 of LNCS, pages 161–177.
Springer, 2015.

[3] Massimo Bartoletti, Tiziana Cimoli, Maurizio Murgia, Alessandro Se-
bastian Podda, and Livio Pompianu. A contract-oriented middleware. In
Formal Aspects of Component Software (FACS), volume 9539 of LNCS,
pages 86–104. Springer, 2015. http://co2.unica.itco2.unica.it

[4] Massimo Bartoletti, Tiziana Cimoli, and Roberto Zunino. Compliance
in behavioural contracts: a brief survey. In Programming Languages
with Applications to Biology and Security, volume 9465 of LNCS, pages
103–121. Springer, 2015.

[5] Massimo Bartoletti, Julien Lange, Alceste Scalas, and Roberto Zunino.
Choreographies in the wild. Science of Computer Programming, 109:
36–60, 2015.

[6] Massimo Bartoletti, Maurizio Murgia, Alceste Scalas, and Roberto
Zunino. Verifiable abstractions for contract-oriented systems. Journal of
Logical and Algebraic Methods in Programming (JLAMP), 86:159–207,
2017.

References 23

[7] Massimo Bartoletti, Alceste Scalas, Emilio Tuosto, and Roberto Zunino.
Honesty by typing. Logical Methods in Computer Science, 12(4), 2016.
Pre-print available as: https://arxiv.org/abs/1211.2609

[8] Massimo Bartoletti, Emilio Tuosto, and Roberto Zunino. Contract-
oriented computing in CO2. Sci. Ann. Comp. Sci., 22(1):5–60, 2012.

[9] Massimo Bartoletti and Roberto Zunino. On the decidability of honesty
and of its variants. In Web Services, Formal Methods, and Behavioral
Types, volume 9421 of LNCS, pages 143–166. Springer, 2015.

[10] Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca,
Mariangiola Dezani-Ciancaglini, and Nobuko Yoshida. Global progress
in dynamically interleaved multiparty sessions. In CONCUR, volume
5201 of LNCS, pages 418–433. Springer, 2008.

[11] Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, Elena Giachino,
and Luca Padovani. Foundations of session types. In ACM SIGPLAN
Conference on Principles and Practice of Declarative Programming
(PPDP), pages 219–230. ACM, 2009.

[12] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso
Martı́-Oliet, José Meseguer, and José F. Quesada. Maude: Specification
and programming in rewriting logic. TCS, 2001.

[13] Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and
Nobuko Yoshida. Inference of global progress properties for dynam-
ically interleaved multiparty sessions. In COORDINATION, volume
7890 of LNCS, pages 45–59. Springer, 2013.

[14] Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and
Luca Padovani. Global progress for dynamically interleaved multiparty
sessions. Mathematical Structures in Computer Science, 26(2):238–
302, 2016.

[15] Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty session types
meet communicating automata. In European Symposium on Pro-
gramming (ESOP), volume 7211 of LNCS, pages 194–213. Springer,
2012.

[16] Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty compatibility
in communicating automata: Characterisation and synthesis of global
session types. In International Colloquium on Automata, Languages,
and Programming (ICALP), volume 7966 of LNCS, pages 174–186.
Springer, 2013.

[17] Mariangiola Dezani-Ciancaglini, Ugo de’Liguoro, and Nobuko
Yoshida. On progress for structured communications. In Trustworthy

24 Contract-Oriented Design of Distributed Applications: A Tutorial

Global Computing (TGC), volume 4912 of LNCS, pages 257–275.
Springer, 2007.

[18] Simon Fowler. An Erlang implementation of multiparty session actors.
In Interaction and Concurrency Experience, volume 223 of EPTCS,
pages 36–50, 2016.

[19] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language
primitives and type disciplines for structured communication-based pro-
gramming. In European Symposium on Programming (ESOP), volume
1381 of LNCS, pages 22–138. Springer, 1998.

[20] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asyn-
chronous session types. In ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), pages 273–284. ACM,
2008.

[21] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty
asynchronous session types. J. ACM, 63(1):9:1–9:67, 2016.

[22] Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Luı́s Caires, Marco
Carbone, Pierre-Malo Deniélou, Dimitris Mostrous, Luca Padovani,
António Ravara, Emilio Tuosto, Hugo Torres Vieira, and Gianluigi
Zavattaro. Foundations of session types and behavioural contracts. ACM
Comput. Surv., 49(1):3:1–3:36, 2016.

[23] Naoki Kobayashi. A new type system for deadlock-free processes. In
Proc. CONCUR, volume 4137 of LNCS, pages 233–247. Springer, 2006.

[24] Julien Lange and Emilio Tuosto. A toolchain for choreography-
based analysis of application level protocols. Available at https:
//bitbucket.org/emlio_tuosto/gmc-synthesis-v0.2

[25] Julien Lange and Emilio Tuosto. Synthesising choreographies from lo-
cal session types. In CONCUR, volume 7454 of LNCS, pages 225–239.
Springer, 2012.

[26] Julien Lange, Emilio Tuosto, and Nobuko Yoshida. From communicat-
ing machines to graphical choreographies. In ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL), pages
221–232, 2015.

[27] Flavio Lerda and Willem Visser. Addressing dynamic issues of program
model checking. In SPIN workshop on Model checking of software,
pages 80–102, 2001.

[28] Robin Milner. Communication and concurrency. Prentice-Hall, Inc.,
1989.

References 25

[29] A. Mukhija, Andrew Dingwall-Smith, and D.S. Rosenblum. QoS-aware
service composition in Dino. In ECOWS, volume 5900 of LNCS, pages
3–12. Springer, 2007.

[30] Rumyana Neykova. Session types go dynamic or how to verify
your Python conversations. In Workshop on Programming Language
Approaches to Concurrency and Communication-cEntric Software
(PLACES), volume 137 of EPTCS, pages 95–102, 2013.

[31] Rumyana Neykova and Nobuko Yoshida. Multiparty session actors.
In COORDINATION, volume 8459 of LNCS, pages 131–146. Springer,
2014.

[32] Nicholas Ng and Nobuko Yoshida. Static deadlock detection for concur-
rent go by global session graph synthesis. In International Conference
on Compiler Construction (CC), pages 174–184. ACM, 2016.

[33] Nicholas Ng, Nobuko Yoshida, and Kohei Honda. Multiparty session
C: safe parallel programming with message optimisation. In Objects,
Models, Components, Patterns (TOOLS), pages 202–218, 2012.

[34] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An interaction-based
language and its typing system. In PARLE, pages 398–413, 1994.

[35] Wil M. P. van der Aalst, Niels Lohmann, Peter Massuthe, Christian
Stahl, and Karsten Wolf. Multiparty contracts: Agreeing and implement-
ing interorganizational processes. Comput. J., 53(1):90–106, 2010.

[36] V. T. Vasconcelos. Fundamentals of Session Types. Information and
Computation, 217:52–70, 2012.

[37] Willem Visser, Klaus Havelund, Guillaume Brat, SeungJoon Park,
and Flavio Lerda. Model checking programs. Automated Software
Engineering, 10(2):203–232, 2003.

[38] Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng.
The Scribble protocol language. In Trustworthy Global Computing
(TGC), volume 8358 of LNCS, pages 22–41. Springer, 2013.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

