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Abstract

Type systems with parametric polymorphism can encode a significant pro-
portion of the information contained in session types. This allows concurrent
programming with session-type-like guarantees in languages like ML and
Java. However, statically enforcing the linearity properties of session types,
in a way that is also natural to program with, is more challenging. Haskell
provides various language features that can capture concurrent programming
with session types, with full linearity invariants and in a mostly idiomatic
style. This chapter overviews various approaches in the literature for session
typed programming in Haskell.

As a starting point, we use polymorphic types and simple type-level func-
tions to provide session-typed communication in Haskell without linearity.
We then overview and compare the varying approaches to implementing
session types with static linearity checks. We conclude with a discussion of
the remaining open problems.

The code associated with this chapter can be found at http://github.
com/dorchard/betty-book-haskell-sessions.

10.1 Introduction

Session types are a kind of behavioural type capturing the communication
behaviour of concurrent processes. While there are many variants of session
types, they commonly capture the sequence of sends and receives performed
over a channel and the types of the messages carried by these interactions. A
significant aspect of session types is that they enforce linear use of channels:
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220 Session Types with Linearity in Haskell

every send must have exactly one receive (no orphan messages), and vice
versa (no hanging receives). These properties are often referred to together as
communication safety. A channel cannot be reused once it has “used up” its
capability to perform sends and receives. This aspect of session types makes
them hard to implement in languages which do not have built-in notions of
linearity and resource consumption in the type system.

The following two example interactions will be used throughout.

Example 1 (Integer equality server and client). Consider a simple server
which provides two modes of interaction (services) to clients. If a client
chooses the first service, the server can then receive two integers, compare
these for equality, send the result back as a boolean, and then return to the
start state. The second service tells the server to stop hence it does not return
to providing the initial two services.

A potential client requests the first behaviour, sends two integers, receives
a boolean, and then requests that the server stop. These server and client
behaviours are captured by the following session types, using the notation
of Yoshida and Vasconcelos [18], which describe the interaction from the
perspective of opposite channel endpoints:

Server := μα.&{eq :?Z.?Z.!B.α, nil : end}
Client := ⊕{eq :!Z.!Z.?B.⊕{nil : end}}

The server has a recursive session type, denoted μα.S which binds the
variable α in scope of a session type S. Session types are typically equi-
recursive, such that μα.S ≡ S[μα.S/α]. The operator & denotes a choice
offered between branches, labelled here as eq and nil. In the eq case, two
integers are received and a boolean is sent before recursing with α. In the nil
case the interaction finishes, denoted by end.

The client selects the eq service, denoted by ⊕. Two integers are sent
and a boolean is received. Then the nil behaviour is selected via ⊕, ending
the interaction. Session types thus abstract communication over a channel, or
equivalently, they describe a channel’s capabilities.

The two types are dual: they describe complementary communication
behaviour on opposite end-points of a channel. Duality can be defined
inductively as a function on session types:

!τ.S = ?τ.S &{li : Si}i∈I = ⊕{li : Si}i∈I μα.S = μα.S[α/α]

?τ.S = !τ.S ⊕{li : Si}i∈I = &{li : Si}i∈I end = end
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Recursion variables come in two flavours: α and their dual α. The dual of a
dualised variable (α) = α is the undualised α. This formulation of duality
with recursive types is due to Lindley and Morris [7].

Duality enforces communication safety. If the communication patterns
of the server and client do not match then duality does not hold. Duality also
encompasses linearity, as any repetition of actions by the server or client leads
to non-matching communication behaviour.

Example 2 (Delegating integer equality). Following the expressive power
of the π-calculus, session types can also capture delegation, where channels
are passed over channels. Thus, the types of communicated values τ include
session types of communicated channels, written 〈S〉.

As a permutation on the previous example, we introduce a layer of
indirection through delegation. The server, after receiving two integers, now
receives a channel over which the resulting boolean should be sent. Dually,
the client sends a channel which has the capability of sending a boolean. This
is captured by the session types:

Server := μα.&{eq :?Z.?Z.?〈!B〉.α, nil : end}
Client := ⊕{eq :!Z.!Z.!〈!B〉.⊕{nil : end}}

The server’s capability to receive a channel, over which a boolean is sent, is
denoted ?〈!B〉 whose dual in the client is !〈!B〉: the sending of a channel over
which a boolean can be sent.

The reader is referred to the work of Yoshida and Vasconcelos [18] for a
full description of a session type theory for the π-calculus on which our more
informal presentation is based here.

To unpack the problem of encoding session type linearity in Haskell,
we first introduce a relatively simple encoding of session types capturing
sequences of send and receive actions on channels and some notion of
session duality. However, this approach does not fully enforce linearity
(Section 10.2). We then overview the various approaches in the literature for
encoding session types in Haskell, focusing on their approach to linearity
(Section 10.3). Outstanding problems and open questions in this area are
discussed finally in Section 10.4.

Throughout, “Haskell” refers to the variant of Haskell provided by
GHC (the Glasgow Haskell Compiler) which provides various type system
extensions, the use of which is indicated and explained as required.
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10.2 Pre-Session Types in Haskell

Haskell provides a library for message-passing concurrency with channels
similar in design to the concurrency primitives of CML [14]. The core
primitives have types:

newChan :: IO (Chan a)

readChan :: Chan a -> IO a

writeChan :: Chan a -> a -> IO ()

forkIO :: IO () -> IO ThreadId

These functions operate within the IO monad for encapsulating side-effectful
computations; creating channels (newChan), sending and receiving values on
these channels (writeChan and readChan), and forking processes (forkIO)
are all effectful. Channels have a single type and are bi-directional. The
following program implements Example 1:

server c d = do

x <- readChan c

case x of

Nothing -> return ()

Just x’ -> do

(Just y’) <- readChan c

writeChan d (x’ == y’)

server c d

main = do {c <- newChan; d <- newChan; forkIO (client c d); server c d}

client c d = do

writeChan c (Just 42)

writeChan c (Just 53)

r <- readChan d

putStrLn $ "Result: " ++ show r

writeChan c Nothing

The choice between the two services is provided via a Maybe type, where
server :: Chan (Maybe Int) -> Chan Bool -> IO (). Two channels are
used so that values of different type can be communicated. The channel
types ensure data safety: communicated values are of the expected type.
However, this typing cannot ensure communication safety. For example,
the following two alternate clients are well-typed but are communication
unsafe:
client’ c d = do

writeChan c (Just 42)

writeChan c (Just 53)

writeChan c (Just 53)

r <- readChan d

putStrLn $ "Result: " ++ show r

writeChan c Nothing

client’’ c d = do

writeChan c (Just 42)

readChan c

r <- readChan d

putStrLn $ "Result: " ++ show r

writeChan c Nothing

On the left, an additional message is sent which is left unreceived in the
server’s channel buffer. On the right, a spurious readChan occurs after the
first writeChan leading to a deadlock for the server and client.
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send c x = do

c’ <- newChan

writeChan c (Send x c’)

return c’

recv c = do

(Recv x c’) <- readChan c

return (x, c’)

fork f = do

c <- newChan

c’ <- newChan

forkIO (link (c, c’))

forkIO (f c)

return c’

close c = return ()

Figure 10.1 Implementations of the communication-typed combinators where link ::

Links => (Chan s, Chan (Dual s)) -> IO ().

A significant proportion of communication safety (mainly the order of
interactions) can be enforced with just algebraic data types, polymorphism,
and a type-based encoding of duality.

10.2.1 Tracking Send and Receive Actions

Taking inspiration from Gay and Vasconcelos [3], we define the following
alternate combinators (with implementations shown in Figure 10.1) and data
types:

send :: Chan (Send a t) -> a -> IO (Chan t)

recv :: Chan (Recv a t) -> IO (a, Chan t)

close :: Chan End -> IO ()

data Send a t = Send a (Chan t)

data Recv a t = Recv a (Chan t)

data End

The send combinator takes as parameters a channel which can transfer values
of type Send a t and a value x of type a returning a new channel which can
transfer the values of type t. This is implemented via the constructor Send,
pairing the value x with a new channel c’, sending those on the channel c,
and returning the new continuation channel c’.

The recv combinator is somewhat dual to this. It takes a channel c on
which is received a pair of a value x of type a and channel c’ which can
transfer values of type t. The pair (x, c’) is then returned. The close

combinator discards its channel which has only the capability of transferring
End values, which are uninhabited (empty data types).
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The following implements a non-recursive version of the integer equality
server with delegation from Example 2 (for brevity C = Chan):

server :: C (Recv Int (Recv Int (Recv (C (Send Bool End)) End))) -> IO ()

server c = do

(x, c) <- recv c

(y, c) <- recv c

(d, c) <- recv c

d <- send d (x == y)

close c

close d

The type of the channel c gives a representation of the session type
?Z.?Z.?〈!B〉.end from Example 2. At each step of the program, the channel
returned by a send or receive is bound to a variable shadowing the chan-
nel variable used e.g. (x,c) <- recv c. This programming idiom provides
linear channel use.

10.2.2 Partial Safety via a Type-Level Function for Duality

One way to capture duality is via a type family. Type families are prim-
itive recursive type functions, with strong syntactic restrictions to enforce
termination. We define the (closed) type family Dual:

type family Dual s where

Dual (Send a t) = Recv a (Dual t)

Dual (Recv a t) = Send a (Dual t)

Dual End = End

Duality is used to type the fork operation, which spawns a process with a
fresh channel, returning a channel of the dual type:

fork :: Link s => (Chan s -> IO ()) -> IO (Chan (Dual s))

Figure 10.1 shows the implementation which uses a method link of the type
class Link to connect sent messages to received messages and vice versa. A
client interacting with server above can then be given as:

client c = do

c <- send c 42

c <- send c 53

d <- fork (\d’ -> do { c <- send c d’; close c })

(r, d) <- recv d

putStrLn ("Result: " ++ show r)

close d

example = do { c’ <- fork client; server c’ }
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Thus, the client sends two integers on c then creates a new channel d’, which
is sent via c before c is closed. On the returned channel d (with dual session
type to d’), we receive the result, which is output before closing d. Thus,
Chan essentially provides the end-points of a bi-directional channel. The type
of client can be given as:1

client :: (Dual s ~ Recv Bool End, Link s) =>

Chan (Send Int (Send Int (Send (Chan s) End))) -> IO ()

Swapping a send for a recv, or vice versa, means the program will no longer
type check. Likewise, sending or receiving a value of the wrong type or at the
wrong point in the interaction is also a type error.

10.2.3 Limitations

The approach described so far captures sequences of actions, but cannot
enforce exact linear usage of channels; nothing is enforcing the idiom of
shadowing each channel variable once it is used. For example, the first few
lines of the above example client could be modified to:

client c = do

c <- send c (42 :: Int)

_ <- send c 53

c <- send c 53

...

By discarding the linear variable-shadowing discipline, an extra integer is
sent on c in the third line. This is not prevented by the types. While the
typing captures the order of interactions, it allows every action to be repeated,
and entire session interactions to be repeated. Thus, the session type theory
captured above is a kind of Kleene-star-expanded version where sequences
of actions in a session type A1. . . . .An.end are effectively expanded to allow
arbitrary repetition of individual actions and entire interaction sequences:
(A∗

1. . . . .A
∗
n)

∗.end.
We thus need some additional mechanism for enforcing proper linear use

of channels, rather than relying on the discipline or morality of a program-
mer writing against a communication specification. We have also not yet
considered branching behaviour or recursion, which are highlighted in the
approaches from the literature.

1A more general type can be inferred, since both Int types can be replaced with arbitrary
types of the Num class and Bool with an arbitrary type of the Show class.
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10.3 Approaches in the Literature

There are various different approaches in the literature providing session-
typed concurrent, communicating programs in Haskell with linearity:

• Neubauer and Thiemann [9] give an encoding of first-order single-
channel session types with recursion;

• Using parameterised monads, Pucella and Tov [13] provide multiple
channels, recursion, and some building blocks for delegation, but require
manual manipulation of a session type context;
(http://hackage.haskell.org/package/simple-sessions)

• Sackman and Eisenbach [15] provide an alternate approach where
session types are constructed via a value-level witness;
(http://hackage.haskell.org/package/sessions)

• Imai et al. [5] extend Pucella-Tov with delegation and a more user-
friendly approach to handling multiple channels;
(http://hackage.haskell.org/package/full-sessions)

• Orchard and Yoshida [11] use an embedding of effect systems into
Haskell via graded monads based on a formal encoding of session-typed
π-calculus into PCF with an effect system;
(https://github.com/dorchard/sessions-in-haskell)

• Lindley and Morris [8] provide a finally tagless embedding of the GV
session-typed functional calculus into Haskell, building on a linear λ-
calculus embedding due to Polakow [12].
(https://github.com/jgbm/GVinHs)

The following table summarises the various implementations’ support for
desirable session-type implementation features: recursion, delegation, mul-
tiple channels (for which we summarise how session contexts are modelled
and its members are accessed), idiomatic Haskell code, and whether manual
user-given specification of session types is feasible.

NT04 PT08 SE08 IYA10 OY16 LM16

Recursion � � deBruijn �labels � Affine
Delegation � � � �
Multi-channel � � � � �
− Contexts stack map list map list
− Access positional labels deBruijn names member

Idiomatic � � �� �� �
Manual spec � � �value � �
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We characterise idiomatic Haskell as code which does not require interposing
combinators to replace standard syntactic elements of functional languages,
e.g., λ-abstraction, application, let-binding, recursive bindings, and variables.
In the above, for example, PT08 has one tick and IYA10 has two since PT08
must use specialised combinators for handling multiple channel variables
whilst IYA10 does not require such combinators, instead using standard
Haskell variables.

10.3.1 Note on Recursion and Duality

Early formulations of session types e.g. [18], defined duality of recursive
types as μα.S = μα.S. Whilst this duality is suitable for tail-recursive
session types, it is inadequate when recursive variables appear in a communi-
cated type [2]. For example, the type μα.!〈α〉 should have the unfolded dual
type of ?〈μα.!〈α〉〉 but under the earlier approach is erroneously ?〈μα.?〈α〉〉.
In Section 10.1, duality was defined using dualisable recursion variables, akin
to Lindley and Morris [7], which solves this problem. However, all session-
type implementations which support delegation and recursion (PT08, IYA10,
OY16) implement the erroneous duality. This is an area for implementations
to improve upon.

10.3.2 Single Channel; Neubauer and Thiemann [9]

Neubauer and Thiemann provided the first published implementation of
session types in Haskell. Their implementation is based on a translation
from a simple session-typed calculus that is restricted to one end of a
single communication channel. The session type theory is first order (i.e.,
no channel delegation), but includes alternation and recursive sessions using
a representation based on the following data types:

data NULL = NULL -- the closed session

data EPS = EPS -- the empty session

data SEND_MSG m r = SEND_MSG m r -- send message m, then session r

data RECV_MSG m r = RECV_MSG m r -- receive message m, then session r

data ALT l r = ALT l r -- alternative session: either l or r

data REC f = REC (f (REC f)) -- fixed-point of a parametric type

Session types are specified by defining a value using the above data construc-
tors which provides a homomorphic type-level representation of the session
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type. For example, the following value and its type describes a sequence of
receiving two integers and sending a bool:

simple = RECV_MSG intW (RECV_MSG intW (SEND_MSG boolW EPS))

where intW = 0, boolW = False witness the integer and boolean types and
simple :: RECV MSG Int (RECV MSG Int (SEND MSG Bool EPS)).

Duality is provided by parameterising such specification values by place-
holders for the ‘send’ and ‘receive’ actions which can then be applied
to SEND MSG and RECV MSG in one order or the other to provide the dual
specification. For example, the above specification becomes:

simple (send :: (forall x y . x -> y -> s x y))

(recv :: (forall x y . x -> y -> r x y)) =

recv intW (recv intW (send boolW EPS))

This function specialisations to the dual behaviour of the server via (simple

RECV MSG SEND MSG) and the client (simple SEND MSG RECV MSG).
A recursive session type (μβ.γ) is represented as a fixed-point, via REC,

of a parametric data type representing γ. For Example 1, the body of the
server’s recursive type &{eq :?Z.?Z.!B.α, nil : end} can be represented by
the following data type, which also uses ALT:

data Exm s r a =

MkExm (ALT (r Label (r Int (r Int (s Bool a)))) (r Label EPS))

where data Label = Eq | Nil. The full specification is constructed as:

exampleSpec (send :: (forall x y . x -> y -> s x y))

(recv :: (forall x y . x -> y -> r x y)) = a0

where a0 = REC (MkExm (ALT

(recv Eq (recv intW (recv intW (send boolW a0))))

(recv Nil EPS)))

A computation at one end-point of a channel is represented by the Session

data type which is indexed by the session type representation and internally
wraps the IO monad. The main communication primitives produce values of
Session:

class SEND st message nextst | st message -> nextst where

send :: message -> Session nextst () -> Session st ()

class RECEIVE st cont | st -> cont where

receive :: cont -> Session st ()

close :: Session NULL () -> Session EPS ()
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The SEND class provides sending values of type message given a continuation
session with specification nextst, returning a computation with specification
st. The functional dependency st message -> nextst enforces that the
instantiation of st and message uniquely determines nextst. An instance
SEND (SEND MSG m b) m b specialises send to:

send :: m -> Session b () -> Session (SEND_MSG m b) ()

The RECEIVE class abstracts receiving, taking a general continuation and
returning a computation with communication specified by st. For RECV MSG

and ALT, the receive method is specialised at the types:

receive :: (m -> Session x ()) -> Session (RECV_MSG m x) ()

receive :: (RECV s m, RECV s’ m’) => ALT m m’ -> Session (ALT s s’) ()

with RECV shorthand for RECEIVE. The Example 1 server can be defined:

exampleServer socket = do

(h, _ ,_) <- accept socket

let session = receive (ALT (\Eq -> recvNum1) (\Nil -> finish))

recvNum1 = receive (\x -> recvNum2 x)

recvNum2 x = receive (\y -> sendEq x y)

sendEq x y = send (x == y) session

finish = close (io $ putStrLn "Fin.")

str <- hGetContents h

run session (exampleSpec SEND_MSG RECV_MSG) str h

The communication pattern of session (line 3), encoded by its type, must
match that of the specification exampleSpec SEND MSG RECV MSG as enforced
by the run deconstructor which expects a computation of type Session st

a and a corresponding specification value of type st. Any deviation from
the specification is a static type error. Since computations are wrapped in
the indexed Session type, they can only be executed via run and thus are
always subject to this linearity check. This contrasts with the simple approach
in Section 10.2 where actions on channels produce computations in the
(unindexed) IO monad, which allowed arbitrary repetition of actions within
the specified behaviour.

10.3.3 Multi-Channel Linearity; Pucella and Tov [13]

Pucella and Tov improve on the previous approach, providing multi-channel
session types with recursion and some higher-order support, though not full
delegation. Similarly to Neubauer-Thiemann, the basic structure of session
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types is represented by several data types: binary type constructors :!: and
:?: for send and receive and Eps for a closed session. Offering and selecting
of choices are represented by binary type constructors :&: and :+:, which
differs to Neubauer-Thiemann who coalesce these dual perspectives into ALT.
Duality is defined as a relation via a type class with a functional dependency
enforcing bijectivity:

class Dual r s | r -> s, s -> r

instance Dual r s => Dual (a :!: r) (a :?: s)

instance Dual r s => Dual (a :?: r) (a :!: s)

instance Dual Eps Eps

instance (Dual r1 s1, Dual r2 s2) => Dual (r1 :+: r2) (s1 :&: s2)

instance (Dual r1 s1, Dual r2 s2) => Dual (r1 :&: r2) (s1 :+: s2)

instance Dual r s => Dual (Rec r) (Rec s)

instance Dual (Var v) (Var v)

Recursive session types use a De Bruijn encoding where Rec r introduces
a new recursive binder over r and Var n is the De Bruijn index of the nth

binder where n has a unary encoding (e.g., Z, S Z, etc.).
Communication is provided by channels Channel c (which we abbreviate

to Chan c) where the type variable c represents the name of the channel. The
session type of a channel c is then a capability provided by the data type Cap

c e s which associates session type s to channel c with an environment e of
recursive variables paired with session types.

A parameterised monad [1] is used to capture the session types of the
free channels in a computation. Parameterised monads generalise monads to
type constructors indexed by a pair of types akin to pre- and post-conditions.
Its operations are represented via the class:

class ParameterisedMonad (m :: k -> k -> * -> *) where

(>>=) :: m p q a -> (a -> m q r b) -> m p r b

return :: a -> m p p a

The “bind” operation >>= for sequential composition has type indices repre-
senting sequential composition of Hoare triples: a computation with post-
condition q can be composed with a computation with pre-condition q.
Relatedly, a pure value of type a can be lifted into a trivial computation which
preserves any pre-condition p in its post-condition.

One of the original examples of parameterised monads is for encoding
first-order single-channel session-typed computations [1]. This is expanded
upon by Pucella and Tov to multi-channels. They provide a parameterised
monad Session, indexed by stacks of session type capabilities associated
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to channels. Pre-conditions are the channel capabilities at the start of a
computation, and post-conditions are the remaining channel capabilities after
computation.

Stacks are constructed out of tuples where () is the empty stack. For
example, (Chan c e s, (Chan c’ e’ s’, ())) is a stack of two capa-
bilities for channels c and c’. The core communication primitives then
manipulate the capability at the top of the stack:

send :: Chan c -> a -> Session (Cap c e (a :!: s), x) (Cap c e s, x) ()

recv :: Chan c -> Session (Cap c e (a :?: s), x) (Cap c e s, x) a

For example, sending a value of type a on channel c requires the capability a

:!: s at the top of the stack for c in the pre-condition, which becomes s in
the post condition. Branching follows a similar scheme.

Recursive behaviour is mediated by combinators which provide the
unrolling of a recursive session type (enter) and referencing a bound
De-Bruijn-indexed recursive variable via zero and suc:

enter :: Chan c -> Session (Cap c e (Rec s), x) (Cap c (s, e) s, x) ()

zero :: Chan c -> Session (Cap c (s,e) (Var Z), x) (Cap c (s,e) s, x) ()

suc :: Session (Cap t (r, e) (Var (S v)), x) (Cap t e (Var v), x) ()

Thus, entering a recursive sessions type adds the body of the type onto the
top of De-Bruijn environment stack; zero peeks the session type from the top
of the stack and suc pops and decrements the variable. The original paper has
a slightly different but equivalent formulation for suc– the above is provided
by the online implementation.

Example 1 can then be implemented as follows:
server c = do

enter c

loop

where loop = offer c

(do x <- recv c

y <- recv c

send c (x == y)

zero c

loop)

(close c)

client c = do

enter c

sel1 c

send c 42

send c 53

x <- recv c

io $ putStrLn $ "Got: " ++ show x

zero c

sel2 c

close c

The types of both can be inferred. For example, the type of server is:

server :: Eq a => Chan t -> Session

(Cap t e (Rec ((a :?: (a :?: (Bool :!: Var Z))) :&: Eps)), x) x ()
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Dual endpoints of a channel are created by functions accept and request

capturing the notion of shared channels [18], called a rendezvous here:

accept :: Rendezvous r ->

(forall t. Chan t -> Session (Cap t () r, x) y a) -> Session x y a

request :: Dual r r’ => Rendezvous r ->

(forall t. Chan t -> Session (Cap t () r’, x) y a) -> Session x y a

Thus, for our example, the server and client processes can be composed by
the following code which statically enforces duality through request:

example = runSession $ do rv <- io newRendezvous

forkSession (request rv client)

accept rv server

with forkSession :: Session x () () -> Session x () () enforcing a closed
final state for the forked subcomputation (line 2). Whilst the above code is
fairly idiomatic Haskell (modulo the management of recursion variables),
the example has only one channel. In the context of multiple channels, the
capability of a channel may not be at the top of the session environment stack,
thus context manipulating combinators must be used to rearrange the stack:

swap :: Session (r, (s, x)) (s, (r, x)) ()

dig :: Session x x’ a -> Session (s, x) (s, x’) a

where swap is akin to exchange and dig moves down one place in the stack.
Thus, multi-channel code requires the user to understand the type-level stack
representation and to manipulate it explicitly. Multi-channel code is there-
fore non-idiomatic, in the sense that we can’t just use Haskell variables on
their own.

Example 2 cannot be captured as channels cannot be passed. Pucella
and Tov provide a way to send and receive capabilities, however there is no
primitive for sending channels along with an associated capability. Imai et al.
describe a way to build this on top of Pucella and Tov’s approach with an
existentially quantified channel name, however this is still limited by the lack
of a new channel constructor. Instead, channel delegation could be emulated
with global shared channels for every delegation but this shifts away from the
message-passing paradigm.

In their paper, Pucella and Tov use the ixdo notation which copies exactly
the style of the do notation for monads, but which is desugared by a pre-
processor into the operations of the parameterised monad. In modern GHC,
this can be replaced with the RebindableSyntax extension which desugars
the standard do notation using any functions in scope named (>>=) and
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return, regardless of their type. The operations of a parameterised monad
can therefore usurp the regular monad operations. Thus, the non-idiomatic
pre-processed ixdo notation can be replaced with idiomatic do notation. The
same applies to the work of Sackman and Eisenbach (Section 10.3.4) and
Imai et al. (Section 10.3.5) who also use parameterised monads. Similarly,
GHC’s rebindable syntax is reused by Orchard and Yoshida with graded
monads (Section 10.3.6).

10.3.4 An Alternate Approach; Sackman and Eisenbach [15]

In their unpublished manuscript, Sackman and Eisenbach provide an imple-
mentation also using a parameterised monad but with quite a different
formulation to Pucella and Tov. The encoding of session environments is
instead through type-level finite maps from channel names (as types) to
session types. This requires significantly more type-level machinery (imple-
mented mostly using classes with functional dependencies), resulting in much
more complicated types than Pucella-Tov. However, they provide a parame-
terised monad SessionType for constructing session-type witnesses at the
value level (similarly to Neubauer-Thiemann) which is much easier to read
and write than the corresponding type-level representation. Session-based
computations are then constructed through another parameterised monad
called SessionChain.

Sackman-Eisenbach represent session types by type-level lists (via con-
structors Cons and Nil) of actions given by parametric data types Send,
Recv, Select, Offer, Jump, and (non parametric) End similar to the other
representations. For Example 2, the recursive session type of the server can
be constructed via value-level terms as:

(serverSpec, a) = makeSessionType $ do

a <- newLabel

let eq = do {recv intW; recv intW; recvSession (send boolW); jump a}

a .= offer (eq ~|~ end ~|~ BLNil)

return a

This uses the SessionTypeparameterised monad indexed by TypeState types
which have further indices managing labels and representing session types.
The makeSessionType function returns a pair of a value capturing the speci-
fication serverSpec and the component of the type labelled by a. Labels are
used to associate types to channels and for recursive types, where newLabel

generates a fresh label bound to a. The third line associates to a the expected
session behaviour: a choice is offered where offer takes a list of behaviours
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constructed by ~|~ (cons) and BLNil (nil). As in Neubauer-Thiemann, intW
and boolW are value witnesses of types. The recursive step is via jump on label
a. The type of send illustrates the SessionType parameterised monad:

send :: (TyList f, TyList fs) => t -> SessionType

(TypeState n d u (Cons (lab, f) fs))

(TypeState n d u (Cons (lab, (Cons (Send (Normal, t)) f)) fs)) ()

The final parameter to TypeState provides a type-level list of labelled ses-
sion types (themselves lists). In the post-condition, the session type f from
the head of the list in the pre-condition has Send consed onto the front,
parameterised by (Normal, t) indicating the value type t.

The session-type building primitives have computation building counter-
parts (whose names are prefixed with s, e.g. ssend) returning computations
in the SessionChain parameterised monad. We elide the details, but show the
implementation of the server from Example 2:

server = do

cid <- fork serverChan dual (cons (serverSpec, notDual) nil) client

c <- createSession serverSpec dual cid

withChannel c (soffer ((do

x <- srecv

y <- srecv

recvChannel c (\d ->

withChannel d (do { ssend (x == y); sjump })))

~||~ (return ()) ~||~ OfferImplsNil))

The session type specification serverSpec is linked to computation to enforce
linearity via fork. Above, client refers to the client code which is forked
and given a channel whose behaviour is dual to that created locally by
createSession, specified by serverSpec. The sjump primitive provides the
recursive behaviour but has no target which is implicitly provided by the
specification. The withChannelprimitive “focuses” the computation on a par-
ticular channel such that the communication primitives are not parameterised
by channels, similar to Neubauer-Thiemann. This has some advantage over
Pucella-Tov, which required manual session-context manipulation, though
channel variables still cannot be used directly here. Combined with the
complicated type encoding, we therefore characterise this approach as the
least idiomatic.

It should be noted that since the appearance of their manuscript, the
type checking of functional dependencies in GHC has become more strict
(particularly with the additional Coverage Condition [16, Def. 7]). At the time
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of writing, the latest available online implementation of Sackman-Eisenbach
fails to type check in multiple places due to the coverage conditions added
later to GHC. It is not immediately clear how to remedy this due to their
reliance on functional dependencies which do not obey the new coverage
condition.

10.3.5 Multi-Channels with Inference; Imai et al. [5]

Imai, Yuen, and Agusa directly extend the Pucella-Tov approach, providing
type inference, delegation, and solving the deficiencies with accessing multi-
ple channels. They replace the positional, stack-based approach for multiple
channels with a De Bruijn index encoding which is handled implicitly at the
type level. For example, send has type

send :: (Pickup ss n (Send v a), Update ss n a ss’, IsEnded ss F)

=> Channel t n -> v -> Session t ss ss’ ()

Computations are modelled by the parameterised monad Session as before,
but now pre- and post-condition indices ss and ss’ are type-level lists
of session types, rather than a labelled stack. Whilst these structures are
isomorphic, the way session types are accessed within the list representation
differs considerably.

A channel Channel t n has a type-level natural number n representing
the position of the channel’s session type in the list. The constraint Pickup
above specifies that at the nth position in ss is the session type Send v a. The
constraint Update then states that ss’ is the list of session types produced
by replacing the nth position in ss with the session type a. The rest of the
communication primitives follow a similar scheme to the above, generalising
Pucella-Tov primitives to work with the De Bruijn indices instead of just the
capability at the top of the stack.

A fresh channel can be created by the following combinator:

new :: SList ss l => Session t ss (ss:>Bot) (Channel t l)

where l is the length of the list ss as defined by the constraint SList, and
thus is a fresh variable for the computation.

Using this library leads to highly idiomatic Haskell code, with no
additional combinators required for managing the context of session-typed
channels. Both examples can be implemented, with code similar to that
shown for Pucella-Tov in Section 10.3.3. The one downside of this approach
however is that the types, whilst they can be inferred (which is one of the aims
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of their work), are complex and difficult to read, let alone write. Relatedly,
the type errors can be difficult to understand due to the additional type-level
mechanisms for managing the contexts.

10.3.6 Session Types via Effect Types; Orchard and Yoshida [11]

Orchard and Yoshida studied the connection between effect systems and
session types. One part of the work showed the encoding of a session-
typed π-calculus into a parallel variant of PCF with a general, parameterised
effect system. This formal encoding was then combined with an approach for
embedding effect systems in Haskell [10] to provide a new implementation
of session-typed channels in Haskell. The implementation supports multiple
channels in an idiomatic style, delegation, and a restricted form of recursion
(affine recursion only).

The embedding of general effect systems in Haskell types is provided
by a graded monad structure, which generalises monads to type constructors
indexed by a type-representation of effect information. This “effect type” has
the additional structure of a monoid, encoded using type families. The graded
monad structure in Haskell is defined:

class Effect (m :: ef -> * -> *) where

type Unit m :: ef

type Plus m (f :: ef) (g :: ef) :: ef

return :: a -> m (Unit m) a

(>>=) :: m f a -> (a -> m g b) -> m (Plus m f g) b

Thus a value of type m f a denotes a computation with effects described by
the type index f of kind ef. The return operation lifts a value to a trivially
effectful computation, marked with the type Unit m. The “bind” operation
(>>=) provides the sequential composition of effectful computations, with
effect information composed by the type-level binary function Plus m. The
session type embedding is provided by a graded monad structure for the data
type Process:

data Process (s :: [Map Name Session]) a = Process (IO a)

Type indices s are finite maps of the form ’[c :-> s, d :-> t, ...] map-
ping channel names c, d to session types s, t. The Session kind is given by
a data type (representing a standard grammar of session types) promoted by
the data kinds extension of GHC to the kind-level.

The Plus type operation of the Process graded monad takes the union of
two finite maps and sequentially composes the session types of any channels
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that appear in both of the finite maps. This relies on the closed type family
feature of GHC to define type-level functions that can match on their types,
e.g., to compare types for equality.

The core send and received primitives then have the following types:

send :: Chan c -> t -> Process ’[c :-> t :! End] ()

recv :: Chan c -> Process ’[c :-> t :? End] t

In each, the type-index on Process gives a singleton finite map from the
channel name c to the session type. We elide the rest of the combinators.
Duality is enforced when a pair of channel endpoints is created by new:

new :: (Duality env c) => ((Chan (Ch c), Chan (Op c)) -> Process env t)

-> Process ((env :\ (Op c)) :\ (Ch c)) t

where :\ removes a channel’s session type from the environment.
A non-recursive implementation of Example 2 can be defined:

server (c :: (Chan (Op "c"))) =

do l <- recv c

case l of

L -> subL $ do

x <- recv c

y <- recv c

k <- chRecv c

k (\d -> send d (x == y))

R -> subR $ subEnd c (return ())

client (c :: (Chan (Ch "c"))) = do

send c L

subL’ c $ do

send c 42

send c 53

new (\(d :: (Chan (Ch "d")), d’) ->

do chSend c d

x <- recv d’

print $ "Got: " ++ show x)

which are composed by new (\(c, c’) -> client c ‘par‘ server c’).
One advantage of this approach is that most types are easy to write by

hand, with a succinct understandable presentation in terms of the finite maps
from channel names to session types. Furthermore, the use of multiple chan-
nels is idiomatic, using Haskell’s normal variables. The major disadvantage
of this approach is that the user must give their own explicit type-level names
to the channels, e.g., type signatures like Chan (Ch "c") above. For simple
examples this is not a burden, but manually managing uniqueness of variables
does not scale well.

Furthermore, the approach is brittle due to complex type-level represen-
tation and manipulations of finite maps. For example, GHC has difficulty
reasoning about the type-level union operation (used as Plus) when applied
to types involving some polymorphism.
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10.3.7 GV in Haskell; Lindley and Morris [8]

GV is a session-typed linear functional calculus, proposed by [17], based
on the work of Gay and Vasconcelos [3], and adapted further by Lindley
and Morris [6]. The GV presented by Lindley and Morris aims at re-use
of standard components, defined as an extension of the linear λ-calculus
with session-typed communication primitives. This provides a basis for their
Haskell implementation by reusing an embedding of the linear λ-calculus
into Haskell due to Polakow [12]. Polakow’s embedding provides a “tagless
final” encoding of the linear-λ calculus (LLC), meaning that terms of LLC are
represented by functions of a type class, whose interpretation/implementation
can be varied based on the underlying type. Furthermore, the embedding uses
higher-order abstract syntax (HOAS) i.e., binders in LLC are represented by
Haskell binders.

To represent the linear types notion of context consumption, contexts
are split in two with judgments of the form: ΔI \ΔO � e : A with input
context ΔI and output context ΔO which remains after computing e and
thus after some parts of ΔI have been consumed. Contexts come equipped
with the notion of a “hole” (written �) denoting a variable that has been
consumed. For example, a linear variable use is typed by Δ, x : A,Δ′ \Δ,�,
Δ′ � x : A.

The embedding of this linear type system uses natural numbers to rep-
resent variables in judgements. Judgements are represented by types repr

:: Nat -> [Maybe Nat] -> [Maybe Nat] -> * -> *. Thus, the LLC term
representation is a type indexed by four pieces of information: a natural
number denoting a fresh name for a new variable, the input context (a list
of Maybe Nat where Just n is a variable and Nothing denotes �), the output
context, and the term type.

The core of the embedding for the linear function space fragment, is then
given by the LLC class, parameterised by a repr type:

class LLC (repr :: Nat -> [Maybe Nat] -> [Maybe Nat] -> * -> *) where

llam :: (LVar repr v a -> repr (S v) (Just v ’: i) (Box ’: o) b)

-> repr v i o (a -<> b)

(^) :: reprv v i h (a -<> b) -> repr v h o a -> prepr v i o b

where LVar represents linear variables, defined as the type forall v i o .

(Consume x i o) => repr v i o a describing that using a variable leads to
its consumption for all input and output contexts i and o.
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The session primitives of GV are added atop the LLC embedding via
another tagless final encoding (we elide the primitives for branching):

class GV (ch :: * -> *) repr where

send :: DualS s => repr v i h t -> repr v h o (ch (t <!> s))

-> repr v i o (ch s)

recv :: DualS s => repr v i o (ch (t <?> s)) -> repr v i o (t * ch s)

wait :: repr v i o (ch EndIn) -> repr v i o One

fork :: DualS s => repr v i o (ch s -<> ch EndOut)

-> repr v i o (ch (Dual s))

The types involve duality as both a predicate (type constraint) DualS and as a
type-level function Dual.

The approach does not provide recursive sessions so we implement a non-
recursive version of Example 1 as:

server = llam $ \c ->

recv c ‘bind‘ (llp $ \x c ->

recv c ‘bind‘ (llp $ \y c ->

send (const (==) $$$ x $$$ y) c))

example = fork server ‘bind‘ client

client = llam $ \c ->

send (const 42) c ‘bind‘ (llam $ \c ->

send (const 53) c ‘bind‘ (llam $ \c ->

recv c ‘bind‘ (llp $ \r c ->

wait c ‘bind‘ (llz $ ret r))))

This approach cleanly separates the notion of linearity from the channel
capabilities of session types. The main downside is that application, λ-
abstraction, and composition of terms must be mediated by the combinators
of the LLC embedding. Therefore, the approach does not support idiomatic
Haskell programming.

10.4 Future Direction and Open Problems

The table at the beginning of Section 10.3 (p. 226) indicates that there
is no one implementation that provides all desirable features: a session-
typed library for communication-safe concurrency with linearity, delegation,
multiple-channels, recursion, idiomatic Haskell code, and the ability to eas-
ily give session type specifications by hand. Furthermore, none correctly
implements duality with respect to recursion (Section 10.3.1).

So far there appears to be a trade-off between these different features.
Pucella and Tov provide an idiomatic system with relatively simple types,
but require the manual management of the capability stack. The work of Imai
et al. provides a highly idiomatic system, but the types are hard to manipulate
and understand. Orchard and Yoshida provide types that are easy to write,
but at the cost of forcing the user to manually manage fresh channel names.
Lindley and Morris handle variables idiomatically, but require additional
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combinators for application, λ-abstraction and term composition. Sackman
and Eisenbach provide session types which are easily specified by-hand with
a value witness, but with non-idiomatic code and hard to manipulate types.

One possible solution is to adapt the approach of Orchard and Yoshida
with a way to generate fresh channel names at the type-level automatically
via a GHC type checker plugin (see, e.g., [4]). Alternatively, existential names
can be used for fresh names. However, the implementation of type-level finite
maps relies on giving an arbitrary ordering to channel names (for the sake of
normalisation) which is not possible for existential names. In which case,
a type-checker plugin could provide built-in support for finite maps more
naturally, rather than using the current (awkward) approach of Orchard and
Yoshida.

We have examined the six major session type implementations for Haskell
in this chapter. All of them provide static linear checks, leveraging Haskell’s
flexible type system, but all have some deficiencies; finding a perfectly
balanced system remains an open problem.
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