
11
An OCaml Implementation of Binary

Sessions

Hernán Melgratti1,2 and Luca Padovani3

1Departamento de Computación, Universidad de Buenos Aires,
Argentina
2CONICET-Universidad de Buenos Aires, Instituto de Investigación en
Ciencias de la Computación (ICC), Buenos Aires, Argentina
3Dipartimento di Informatica, Università di Torino, Italy

Abstract

In this chapter we describe FuSe, a simple OCaml module that implements
binary sessions and enables a hybrid form of session type checking without
resorting to external tools or extensions of the programming language. The
approach combines static and dynamic checks: the former ones are performed
at compile time and concern the structure of communication protocols; the
latter ones are performed as the program executes and concern the linear
usage of session endpoints. We recall the minimum amount of theoretical
background for understanding the essential aspects of the approach (Sec-
tion 11.1) and then describe the API of the OCaml module throughout a
series of simple examples (Section 11.2). In the second half of the chapter we
detail the implementation of the module (Section 11.3) and discuss a more
complex and comprehensive example, also arguing about the effectiveness
of the hybrid approach with respect to the early detection of protocol vio-
lations (Section 11.4). We conclude with a survey of closely related work
(Section 11.5).

The source code of FuSe, which is partially described in this chapter
and can be used to compile and run all the examples given therein, can be
downloaded from the second author’s home page.
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244 An OCaml Implementation of Binary Sessions

11.1 An API for Sessions

We consider the following grammar of types and session types

t, s ::= bool | int | α | T | [li : ti]i∈I | · · ·
T, S ::= end | !t.T | ?t.T | &[li : Ti]i∈I | ⊕[li : Ti]i∈I | A | A

where types, ranged over by t and s, include basic types, type variables,
session types, disjoint sums, and possibly other (unspecified) types. Session
types, ranged over by T and S , comprise the usual constructs for denoting
depleted session endpoints, input/output operations, branches and choices, as
well as possibly dualized session type variables A, B, etc.

The dual of a session type T , written T , is obtained as usual by swapping
input and output operations and is defined by the following equations:

A = A
end = end

(?t.T ) = !t.T
(!t.T ) = ?t.T

&[li : Ti]i∈I = ⊕[li : Ti]i∈I

⊕[li : Ti]i∈I = &[li : Ti]i∈I

Following Gay and Vasconcelos [4], our aim is to incorporate binary
sessions into a (concurrent) functional language by implementing the API
shown in Table 11.1. The create function creates a new session and returns
a pair with its two peer endpoints with dual session types. The close function
is used to signal the fact that a session is completed and no more communica-
tions are supposed to occur in it. The send and receive functions are used
for sending and receiving a message, respectively: send sends a message
of type α over an endpoint of type !α.A and returns the same endpoint
with its type changed to A to reflect that the communication has occurred;
receive waits for a message of type α from an endpoint of type ?α.A and
returns a pair with the message and the same endpoint with its type changed
to A. The branch and select functions deal with sessions that may continue
along different paths of interaction, each path being associated with a label
li. Intuitively, select takes a label lk and an endpoint of type ⊕[li : Ai]i∈I

Table 11.1 Application programming interface for binary sessions

val create : unit → A × A
val close : end → unit
val send : α → !α.A → A
val receive : ?α.A → α × A
val select : (Ak → [li : Ai]i∈I) → ⊕[li : Ai]i∈I → Ak

val branch : &[li : Ai]i∈I → [li : Ai]i∈I
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where k ∈ I, sends the label over the endpoint and returns the endpoint with its
type changed to Ak, which is the continuation corresponding to the selected
label. The most convenient OCaml representation for labels is as functions
that inject an endpoint (say, of type Ak) into a disjoint sum [li : Ai]i∈I where
k ∈ I. This explains the type of select’s first argument. Dually, receive
waits for a label from an endpoint of type &[li : Ai]i∈I and returns the
continuation endpoint injected into a disjoint union.

We note a few more differences between the API we implement in this
chapter and the one described by Gay and Vasconcelos [4]. First of all, we
use parametric polymorphism to give session primitives their most general
type. Second, we have a single function create to initiate a new session
instead of a pair of accept/request functions to synchronize a service and
a client. Our choice is purely a matter of simplicity, the alternative API being
realizable on top of the one we present (the API implemented in the FuSe
distribution already provides for the accept/request functions, which we
will see at work in Section 11.4). Finally, our communication primitives are
synchronous in that output operations block until the corresponding receive
is performed. Again, this choice allows us to provide the simplest implemen-
tation of these primitives solely using functions from the standard OCaml
library. Asynchronous communication can be implemented by choosing a
suitable communication framework.

11.2 A Few Simple Examples

Before looking at the implementation of the communication primitives, we
illustrate the API at work on a series of simple examples. In doing so, we
assume that the API is defined in a module named Session. The following
code implements a client of an ‘‘echo’’ service, a service that waits for a
message and bounces it back to the client.

let echo_client ep x =

let ep = Session.send x ep in

let res, ep = Session.receive ep in

Session.close ep;

res

The parameter ep has type !α.?β.end and x has type α. The function
echo_client starts by sending the message x over the endpoint ep. The con-
struction let rebinds the name ep to the endpoint returned by the primitive
send, which now has type ?β.end. The endpoint is then used for receiving a
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message of type β from the service. Finally, echo_client closes the session
and returns the received message.

The service is implemented by the echo_service function below, which
uses the parameter ep of type ?α.!α.end to receive a message x and then
to sent it back to the client before closing the session.

let echo_service ep =

let x, ep = Session.receive ep in

let ep = Session.send x ep in

Session.close ep

There is an interesting asymmetry between (the types of) client and
service in that the message x sent by the service is the very same message it
receives, whereas the message res received by the client does not necessarily
have the same type as the message x it sends. Indeed, there is nothing
in echo_client suggesting that x and res are somewhat related. This
explains the reason why the session type of the endpoint used by the client
(!α.?β.end) is more general than that used by the service (?α.!α.end)
aside from the fact that the two session types describe protocols with com-
plementary actions. In particular, !α.?β.end is not dual of ?α.!α.end
according to the definition of duality given earlier: in order to connect client
and service, β must be unified with α. The code that connects echo_client
and echo_service through a session is shown below:

let _ =

let a, b = Session.create () in

let _ = Thread.create echo_service a in

print_endline (echo_client b "Hello, world!")

The code creates a new session, whose endpoints are bound to the names
a and b. Then, it activates a new thread that applies echo_service to the
endpoint a. Finally, it applies echo_client to the remaining endpoint b.

We now wish to generalize the echo service so that a client may decide
whether to use the service or to stop the interaction without using it. A service
that offers these two choices is illustrated below:

let opt_echo_service ep =

match Session.branch ep with

| �Msg ep → echo_service ep
| �End ep → Session.close ep

In this case the service uses the branch primitive to wait for a label
selected by the client. We use OCaml’s polymorphic variant tags (�Msg and
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�End in this case) as labels because they do not have to be declared explicitly,
unlike data constructors of plain algebraic data types. The initial type of ep is
now &[End : end, Msg : ?α.!α.end] and the value returned by branch has
type [End : end, Msg : ?α.!α.end]. In the Msg branch the service behaves
as before. In the End branch the service closes the session without performing
any further communication.

The following function realizes a possible client for opt_echo_service:

let opt_echo_client ep opt x =

if opt then

let ep = Session.select (fun x → �Msg x) ep
in echo_client ep x

else

let ep = Session.select (fun x → �End x) ep
in Session.close ep; x

This function has type ⊕[End : end, Msg : !α.?α.end] → bool →
α → α and its behavior depends on the boolean parameter opt: when opt
is true, the client selects the label Msg and then follows the same protocol
as echo_client; when opt is false, the client selects the label End and
then closes the session. Note that we have to η-expand the polymorphic
variant tags �Msg and �End so that their type matches that expected by
select. When the same label is used several times in the same program,
it is convenient to define the η-expansion once, for example as

let _Msg x = �Msg x
let _End x = �End x

Note also that the messages sent and received now have the same type in
the initial type of ep. This is because of the structure of opt_echo_client,
which returns either x or the message returned by the service.

A further elaboration of the echo service allows the client to send an
arbitrary number of messages before closing the session. In order to describe
this protocol we must extend the syntax of session types presented earlier
to permit recursive types. In practice, the representation of session types
we will choose in Section 11.3 allows us to describe recursive protocols by
piggybacking on OCaml’s support for equi-recursive types, which is enabled
by passing the -rectypes option to the compiler. The implementation of the
elaborated echo service is therefore a straightforward recursive function:

let rec rec_echo_service ep =

match Session.branch ep with
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| �Msg ep → let x, ep = Session.receive ep in
let ep = Session.send x ep in

rec_echo_service ep

| �End ep → Session.close ep
Note the recursive call rec_echo_service ep in the Msg branch, which

allows the server to accept again a choice from the client after replying back
to a request. The rec_echo_service function now expects an endpoint ep
of type rec A&[End : end, Msg : ?α.!α.A]where rec AT denotes the (equi-
recursive) session type T in which occurrences of A stand for the session type
itself.

The following client

let rec rec_echo_client ep =

function

| [] → let ep = Session.select _End ep in
Session.close ep; []

| x :: xs → let ep = Session.select _Msg ep in
let ep = Session.send x ep in

let y, ep = Session.receive ep in

y :: rec_echo_client ep xs

has type rec A⊕[End : end, Msg : !α.?β.A] → list α → β list and
repeatedly invokes the recursive echo service on each element of a list.

11.3 API Implementation

In order to implement the API presented and used in the previous sections
we have to make some choices regarding the OCaml representation of session
types and of session endpoints. In doing so we have to take into account the
fact that OCaml’s type system is not substructural and therefore is unable to
statically check that session endpoints are used linearly. In the rest of this
section we address these concerns and then detail the implementation of the
API in Table 11.1.

Representation of session types. FuSe relies on the encoding of session
types proposed by Dardha et al. [1] and further refined by Padovani [13]. The
basic idea is that a sequence of communications on a session endpoint can
be compiled as a sequence of one-shot communications on linear channels
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(channels used exactly once) where each exchanged message carries the
actual payload along with a continuation, namely a (fresh) channel on which
the subsequent communication takes place.

The image of the encoding thus relies on two types:

• a type 0 which is not inhabited, and
• a type 〈ρ,σ〉 which describes channels for receiving messages of type ρ

and sending messages of type σ. Both ρ and σ can be instantiated with
0 to indicate that no message is respectively received and/or sent.

The correspondence between session types T and types of the form 〈t, s〉
is given by the map �·� defined below

Encoding of session types
�end� = 〈0, 0〉
�?t.T� = 〈�t� × �T�, 0〉
�!t.T� = 〈0, �t� × �T�〉

�&[li : Ti]i∈I� = 〈[li : �Ti�]i∈I , 0〉
�⊕[li : Ti]i∈I� = 〈0, [li : �Ti�]i∈I〉

�A� = 〈ρA,σA〉
�A� = 〈σA, ρA〉

and extended homomorphically to all types. We assume that for each session
type variable A there exist two distinct type variables ρA and σA that are also
different from any other type variable α.

For example, the session type ?α.A is encoded as 〈α×〈ρA,σA〉, 0〉, which
describes a channel for receiving a message of type α×〈ρA,σA〉 consisting of
a component of type α (that is the actual payload of the communication) and a
component of type 〈ρA,σA〉 (that is the continuation channel on which the rest
of the communication takes place). There is a twist in the encoding of outputs
for the session type of the continuation is dualized. The reason for this is that
the type associated with the continuation channel in the encoding describes
the behavior of the receiver of the continuation rather than that of the sender.
As we will see, this twist provides us with a simple way of expressing duality
relations between session types, even when they are (partially) unknown. The
encodings of ⊕[li : Ti]i∈I and &[li : Ti]i∈I follow the same lines and make
use of polymorphic variant types to represent the selected or received choice.
As an example, the encoding of T = ⊕[End : end, Msg : !α.?β.end] is
computed as follows
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�T� = 〈0, [End : �end�, Msg : �?α.!β.end�]〉
= 〈0, [End : 〈0, 0〉, Msg : 〈α × �!β.end�, 0〉]〉
= 〈0, [End : 〈0, 0〉, Msg : 〈α × 〈0,β × �end�〉, 0〉]〉
= 〈0, [End : 〈0, 0〉, Msg : 〈α × 〈0,β × 〈0, 0〉〉, 0〉]〉

If instead we consider the session type T = &[End : end, Msg :
?α.!β.end], then we derive:

�T� = 〈[End : �end�, Msg : �?α.!β.end�], 0〉
= 〈[End : 〈0, 0〉, Msg : 〈α × �!β.end�, 0〉], 0〉
= 〈[End : 〈0, 0〉, Msg : 〈α × 〈0,β × �end�〉, 0〉], 0〉
= 〈[End : 〈0, 0〉, Msg : 〈α × 〈0,β × 〈0, 0〉〉, 0〉], 0〉

Remarkably we observe that the encoding of T can be obtained from that
of T by swapping the two components of the resulting channel types. This is
a general property:

Theorem 1 If �T� = 〈t, s〉, then �T� = 〈s, t〉.
An equivalent way of expressing this result is the following: if �T� =

〈t1, t2〉 and �S � = 〈s1, s2〉, then

T = S ⇐⇒ �T� = �S � ⇐⇒ t1 = s2 ∧ t2 = s1

meaning that the chosen encoding allows us to reduce session type duality
to type equality. This property holds also for unknown or partially known
session types. In particular, �A� = 〈ρA,σA〉 and �A� = 〈σA, ρA〉.

We end the discussion of session type representation with two remarks.
First, although the representation of session types chosen in FuSe is based on
the continuation-passing encoding of sessions into the linear π-calculus [1],
we will implement the communication primitives in FuSe so that only the
payload (or the labels) are actually exchanged. Therefore, the semantics of
FuSe communication primitives is consistent with that given in [4] and the
components corresponding to continuations in the above types are solely used
to relate the types of session endpoints as these are passed to, and returned
from, FuSe communication primitives. Second, the OCaml type system is
not substructural and there is no way to qualify types of the form 〈t, s〉 as
linear, which is a fundamental requirement for the type safety of the API. We
will overcome this limitation by means of a mechanism that detects linearity
violations at runtime. Similar mechanisms have been proposed by Tov and
Pucella [20] and by Hu and Yoshida [5].
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Table 11.2 OCaml interface of the API for binary sessions

module Session : sig

type 0
type (ρ,σ) st (* OCaml syntax for 〈ρ,σ〉 *)
val create : unit → (ρ,σ) st × (σ,ρ) st
val close : (0,0) st → unit
val send : α → (0,(α × (σ,ρ) st)) st → (ρ,σ) st
val receive : ((α × (ρ,σ) st),0) st → α × (ρ,σ) st
val select : ((σ,ρ) st → α) → (0,[>] as α) st → (ρ,σ) st
val branch : ([>] as α,0) st → α

end

Having chosen the representation of session types, we can see in
Table 11.2 the OCaml interface of the module that implements the binary
session API. In OCaml syntax, the type 〈t, s〉 is written (t,s) st. There is a
direct correspondence between the signatures of the functions in Table 11.2
and those shown in Table 11.1 so we only make a couple of remarks. First,
we extensively use Theorem 1 whenever we need to refer to a session type
and its dual. This can be seen in the signatures of create, send and select
where both (ρ,σ) st and (σ,ρ) st occur. Second, in the types of select
and branch the syntax [>] as α means that α can only be instantiated with
a polymorphic variant type. Without this constraint the signatures of select
and branch would be too general and the API unsafe: it would be possible
to receive a label sent with select, or to branch over a message sent
with send. Note that the constraint imposed by [>] as α extends to every
occurrence of α in the same signature.

By comparing Tables 11.1 and 11.2 it is clear that the encoding makes
session types difficult to read. This problem becomes more severe as the
protocols become more involved. The distribution of FuSe includes an aux-
iliary tool, called rosetta, that implements the inverse of the encoding to
pretty print encoded session types into their familiar notation. The tool can
be useful not only for documentation purposes but also to decipher the likely
obscure type error messages issued by OCaml. Hereafter, when presenting
session types inferred by OCaml, we will often show them as pretty printed
by rosetta for better clarity.

Representation of session endpoints. Session primitives can be easily
implemented on top of any framework providing channel-based communica-
tions. FuSe is based on the Eventmodule of OCaml’s standard library, which
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provides communication primitives in the style of Concurrent ML [16] and the
abstract type t Event.channel for representing channels carrying messages
of type t. It is convenient to wrap the Eventmodule so as to implement unsafe
communication channels, thus:

module UnsafeChannel : sig

type t

val create : unit → t
val send : α → t → unit
val receive : t → α

end = struct

type t = unit Event.channel

let create = Event.new_channel

let send x u = Event.sync

(Event.send u (Obj.magic x))

let receive u = Obj.magic

(Event.sync (Event.receive u))

end

We just need three operations on unsafe channels, create, send and
receive. The first one creates a new unsafe channel, which is simply an
Event channel for exchanging messages of type unit. The choice of unit
over any other OCaml type is immaterial: the messages exchanged over a
session can be of different types, hence the type parameter we choose here
is meaningless because we will perform unsafe cast at each communication.
These casts cannot interfere with the internals of the Event module because
t Event.channel is parametric on the type t of messages and therefore
the operations in Event cannot make any assumption on their content. The
implementation of send and receive on unsafe channels is a straight-
forward adaptation of the corresponding primitives of the Event module.
Observe that, consistently with the communication API of Concurrent ML,
Event.send and Event.receive do not perform communications them-
selves. Rather, they create communication events which occur only when
they are synchronized through the primitive Event.sync. The Obj.magic
function from the standard OCaml library has type α → β and performs the
necessary unsafe casts.

We now have all the ingredients for giving the concrete representation
of (encoded) session types. This representation is kept private to the FuSe
module so that the user can only manipulate session endpoint through the
provided API:
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type (α,β) st = { chan : UnsafeChannel.t;
mutable valid : bool }

A session type is represented as a record with two fields: the chan field
is a reference to the unsafe channel on which messages are exchanged; the
mutable valid field is a boolean flag that indicates whether the endpoint
can be safely used or not. Every operation that uses the endpoint first checks
whether the endpoint is valid. If this is the case, the valid flag of the endpoint
is reset to false so that any subsequent attempt to reuse the same endpoint
can be detected. Otherwise, an InvalidEndpoint exception is raised. It
is convenient to encapsulate this functionality in an auxiliary function use,
which is private to the module and whose implementation is shown below:

let use u = if u.valid then u.valid ← false
else raise InvalidEndpoint

In principle, checking that the valid field is true and resetting it to
false should be performed atomically, to account for the possibility that
several threads are attempting to use the same endpoint simultaneously. In
practice, since OCaml’s scheduler is not preemptive and use allocates no
memory, the execution of use is guaranteed to be performed atomically
in OCaml’s runtime environment. Different programming languages might
require a more robust handling of the validity flag [13].

Whenever an operation on a session endpoint completes and the session
endpoint is returned, its valid flag should be set to true again. Doing so on
the existing record, though, would be unsafe. Instead, a new record referring
to the very same unsafe channel must be created. Again it is convenient to
provide this functionality as a private, auxiliary function fresh:

let fresh u = { u with valid = true }

Implementation of communication primitives. A new session is initiatied
by creating a new unsafe channel ch and returning the two peer endpoints of
the session, which both refer to the same channel. The valid flag of each
peer is set to true, indicating that it can be safely used:

let create () = let ch = UnsafeChannel.create ()

in { chan = ch; valid = true },

{ chan = ch; valid = true }
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The implementation of close simply invalidates the endpoint. OCaml’s
garbage collector takes care of any further finalization that may be necessary
to clean up the corresponding unsafe channel:

let close = use

The send operation starts by checking that the endpoint is valid and,
in this case, invalidates it. Then, the message x is transmitted over the
underlying unsafe channel and a refreshed version of the endpoint is returned.
The receive operation is analogous, except that it returns a pair containing
the message received from the underlying unsafe channel and the refreshed
endpoint:

let send x u =

use u; UnsafeChannel.send x u.chan; fresh u

let receive u =

use u; (UnsafeChannel.receive u.chan, fresh u)

The select operation is behaviorally equivalent to send, since its pur-
pose is to transmit the selected label (which is its first argument) over the
channel. On the other hand the branch operation injects the refreshed session
endpoint with the function received from the channel:

let select = send

let branch u =

use u; UnsafeChannel.receive u.chan (fresh u)

We conclude this section showing the type inferred by OCaml for the
rec_echo_client defined in Section 11.1:

val rec_echo_client :

(0,[> �End of (0,0) st
| �Msg of (β × (0,γ × (0,α) st) st,0) st]
as α) st → β list → γ list

As expected, the type is rather difficult to understand. Part of this diffi-
culty is a consequence of the fact that the type expression t as α, which is
used in OCaml also to denote a recursive type, is placed in a position such that
t does not correspond to the encoding of a session type. It is only by unfolding
this recursive type that one recovers an image of the encoding function. The
same signature pretty printed by rosetta becomes

val rec_echo_client :

rec X.⊕[ End: end | Msg: !α.?β.X ] →
α list → β list

whose interpretation is straightforward.



11.4 Extended Example: The Bookshop 255

11.4 Extended Example: The Bookshop

In this section we develop a FuSe version of a known example from the
literature [4], where mother and child order books from an online book-
shop. The purpose of the programming exercise is threefold. First, we see
a usage instance of the accept and request primitives provided by FuSe
for establishing sessions over service channels. Second, we discuss a non-
trivial example in which the session types automatically inferred by OCaml
are at the same time more general and more precise than those given by
Gay and Vasconcelos [4]. This is made possible thanks to the support for
parametric polymorphism and subtyping in session types that FuSe inherits
for free from OCaml’s type system. Finally, we use the example to argue about
the effectiveness of the FuSe implementation of binary sessions in detecting
protocol violations, considering that FuSe combines both static and dynamic
checks.

Service channels in FuSe are provided by the module Service, whose
signature is shown below.

module Service : sig

type α t
val create : unit → α t
val accept : (ρ,σ) st t → (ρ,σ) st
val request : (ρ,σ) st t → (σ,ρ) st
val spawn : ((ρ,σ) st → unit) → (ρ,σ) st t

end

The type A Service.t describe a service channel that allows initiation of
sessions of type A. A session is created when two threads invoke accept
and request over the same service channel. In this case, accept returns a
session endpoint of type A and request returns its peer of type A.

The bookshop is modeled as a function that waits for session initiations on
the service channel showAccess and invokes shopLoop at each connection:

let shop shopAccess =

shopLoop (Service.accept shopAccess) []

A session initiated with the bookshop is handled by the function
shopLoop, which operates over the established session endpoint s and the
current list order of books in the shopping cart. The shopLoop function
is recursive and repeatedly offers the possibility of adding a new book by
selecting the Add label. When Checkout is selected instead, the bookshop
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waits for a credit card number and an address and sends back an estimated
delivery date computed by an unspecified deliveryOn function.

let rec shopLoop s order =

match Session.branch s with

| �Add s →
let book, s = Session.receive s in

shopLoop s (book :: order)

| �CheckOut s →
let card, s = Session.receive s in

let address, s = Session.receive s in

let s = Session.send (deliveryOn order) s in

Session.close s

The type inferred by OCaml for shopLoop is

val shopLoop :

rec X.&[ Add: ?α.X | CheckOut: ?β.?γ.!day.end ]
→ α list → unit

which is structurally the same given by Gay and Vasconcelos [4], except for
the type variables α, β and γ. Indeed, the body of shopLoop does not use the
received values book, card and address and therefore their type remains
generic.

We now model a mother process placing an order for two books, one
chosen by her and another selected by her son. In principle, the mother could
let the son select his own book by delegating the session with the bookshop
to him. However, the mother wants to be sure that her son will buy just one
book that is suitable for his age. To enforce these constraints, the mother
sends her son a voucher, that is a function providing a controlled interface
with the bookshop. Overall, the mother is modeled thus:

let mother card addr shopAccess sonAccess book =

let c = Service.request shopAccess in

let c = Session.select _Add c in

let c = Session.send book c in

let s = Service.request sonAccess in

let s = Session.send (voucher card addr c) s in

Session.close s

where the parameters card, addr and book stand for information about
payment, delivery address and mother’s book. In addition, shopAccess and
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sonAccess are the service channels for connecting with the bookshop and
the son, respectively. The mother establishes a session c with the bookshop
and adds book to the shopping cart. Afterwards, she initiates another session
s for sending the voucher to her son. The voucher is modeled by the function:

1 let voucher card address c book =

2 let c =

3 if isChildrensBook book then

4 let c = Session.select _Add c in

5 Session.send book c

6 else c

7 in

8 let c = Session.select _CheckOut c in

9 let c = Session.send card c in

10 let c = Session.send address c in

11 let day, c = Session.receive c in

12 Session.close c

where book is chosen by the son. If book is appropriate − something that is
checked by the unspecified function isChildrensBook − the book is added
to the shopping cart. Then, the order is completed and the connection with
the bookshop closed.

For voucher and mother OCaml infers the following types:

val voucher : α → β →
rec X.⊕[ Add: !γ.X | CheckOut: !α.!β.?δ.end ]
→ γ → unit
val mother : α → β →
&[ Add: ?γ.rec X.&[ Add: ?δ.X

| CheckOut: ?α.?β.!ε.end ]
] Service.t → ?(δ → unit).end Service.t → γ
→ unit

In contrast to the type of mother given by Gay and Vasconcelos [4], the
type inferred by OCaml makes it clear that mother always adds at least one
book to the shopping cart. The connection between mother and shopLoop is
still possible because the protocol followed by mother is more deterministic
than − or a supertype of [3] − the one she is supposed to follow.

To finish the exercise we model the son as the following function:

let son sonAccess book =

let s = Service.accept sonAccess in
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let f, s = Session.receive s in

f book;

Session.close s

where sonAccess is the service channel used for accepting requests from his
mother and book is the book he wishes to purchase. Note that the mother
sends a function (obtained as the partial application of voucher) which is
saturated by the son who provides the chosen book.

Overall, the code for connecting the three peers is shown below:

let _ =

let mCard = "0123 4567 7654 3210" in

let mAddr = "17 session type rd" in

let mBook = "Life of Ada Lovelace" in

let sBook = "1984" in

let shopAccess = Service.create () in

let sonAccess = Service.create () in

let _ = Thread.create shop shopAccess in

let _ = Thread.create (son sonAccess) sBook in

mother mCard mAddr shopAccess sonAccess mBook

It is not possible to qualify session endpoints as linear resources in
OCaml. This means that there are well-typed programs that, by using session
endpoints non-linearly, cause communication errors and/or protocol viola-
tions. In the rest of this section we use the example developed so far to do
some considerations concerning the effectiveness of the library in detecting
programming errors involving session endpoints. In particular we argue that,
despite the lack of linear qualification of session endpoints, OCaml’s type
system is still capable of detecting a fair number of linearity violations. In
the worst case, those violations that escape OCaml’s type checker are at least
detected at runtime with the mechanism we have put in place in Section 11.3.

We can simulate a linearity violation by replacing the session endpoint
bound by a let with _. For example, we can replace line 10 in the body of
voucher with

10 let _ = Session.send address c in

so that the very same endpoint c is used both for this send and also for the
subsequent receive. This linearity violation is detected by OCaml because
the type of a session endpoint used for an output is incompatible (i.e., not
unifiable) with that of an endpoint used for an input. Now suppose that we
replace line 8 in the same function with
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8 let _ = Session.select _CheckOut c in

so that the same endpoint c is used for both a select and the subsequent
send. Even if select and send are both output operations, the type of mes-
sages resulting from the encoding of a plain message output has a topmost ×
constructor which is incompatible with the polymorphic variant type resulting
from the encoding of a label selection. Therefore, also this linearity violation
is detected by OCaml’s type checker. In general, any linearity violation arising
from the use of different communication primitives is detected by OCaml.
Consider then line 9, and suppose that we replace it with

9 let _ = Session.send card c in

so that the same endpoint c is used for sending both card and address. In
this case the session endpoint is used for performing two plain outputs and
the sent messages have compabile (i.e., unifiable) types. Therefore, taken
in isolation, the voucher function would be well typed. In the context of
the whole program, however, OCaml detects a type error also in this case.
The point is that the faulty version of voucher now implements a different
protocol than before. In particular, it appears as if voucher sends just
one message after selecting CheckOut and before receiving the estimated
delivery date. On the contrary, the protocol of the bookshop as implemented
by shopLoop still expects to receive two messages before the delivery date is
sent back to the client. Therefore, the protocols of the bookshop and the one
inferred by the combination of mother and voucher are no longer dual to
each other and the session request performed by mother to the bookshop is
ill typed. For this problem to go undetected, there must be another linearity
violation in the body of shopLoop, in the place that corresponds exactly to
the point where the same violation occurs in voucher.

A simpler example of linearity violation that goes undetected by OCaml’s
type checker can be obtained by duplicating the f book application in the
body of the son function. This modification might correspond either to a
genuine programming error or to a malicious attempt of son to purchase
more than one book. The reason why this duplication results into a linearity
violation is that the closure corresponding to f contains the session endpoint
c from mother, so applying f twice results in two uses of the same c. This
error is detected by the type system of Gay and Vasconcelos [4] where the
function f has a linear arrow type. In FuSe, the program compiles correctly,
but the second application of f triggers the runtime mechanism that detects
linearity violations causing the InvalidEndpoint exception to be raised.
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11.5 Related Work

Several libraries of binary sessions have been proposed for different func-
tional programming languages. Most libraries for Haskell [6,12,15,17] use
a monad that encapsulates the endpoints of open sessions. Besides being
a necessity dictated by the lazyness of the language, the monad prevents
programmers from accessing session endpoints directly thus guaranteeing
that endpoint linearity is not violated. The monad also tracks the evolution
of the type of session endpoints automatically, not requiring the programmer
to rebind explicitly the same endpoint over and over again. However, the
monad has a cost in terms of either expressiveness, usability, or portability:
the monad defined by Neubauer and Thiemann [12] supports communication
on a single channel only and is therefore incapable of expressing session
interleaving or delegation. Pucella and Tov [15] propose a monad that stores
a stack of endpoints (or, better, of their capabilities) allowing for session
interleaving and delegation to some extent. The price for this generality is
that the programmer has to write explicit monadic actions to reach the chan-
nel/capability to be used within the monad; also for this reason delegation
is severely limited. Imai et al. [6] show how to avoid writing such explicit
actions relying on a form of type-level computations. Lindley and Morris [9]
describe another Haskell embedding of session types that provides first-class
channels. Linearity is enforced statically using higher-order abstract syntax.

A different approach is taken in Alms [19, 21], a general-purpose pro-
gramming language whose type system supports parametric polymorphism,
abstract and algebraic data types, and built-in affine types as well. Tov [19]
illustrates how to build a library of binary sessions on top of these features.
Because Alms’ type system is substructural, affine usage of session endpoints
is guaranteed statically by the fact that session types are qualified as affine.
Further embeddings of session types in other experimental and domain-
specific languages with substructural type systems have been described by
Mazurak and Zdancewic [10], Lindley and Morris [8], and Morris [11].

Scalas and Yoshida [18] propose a library of binary session for Scala
that is very related to our approach. As in FuSe, Scalas and Yoshida use a
runtime mechanism to compensate for the lack of affine/linear types in Scala
and work with the encoded representation of session types given by Dardha
et al. [1]. A notable difference is that Scala type system is nominal, so that
encoded session types are represented by Scala (case) classes which must
be either provided by the programmer or generated from the protocol. This
means that the protocol cannot be inferred automatically from the code and
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that the subtyping relation between session types is constrained by the (fixed)
subclassing relation between the classes that represent them.

The main source of inspiration for the representation of session types
in FuSe originates from the continuation-passing encoding of binary ses-
sions [1] and partially studied also in some earlier works [2, 7]. Our
representation of encoded session types allows session type duality to be
expressed solely in terms of type equality, whereas the representation chosen
by Dardha et al. [1] requires a residual albeit simple notion of duality for
the topmost channel type capability. Another difference is that we consider
the encoding at the type level only, not requiring the explicit exchange of
continuation channels for the implementation of communication primitives.
For these reasons, the soundness of the encoding [1] cannot be used directly
to argument about the soundness of FuSe’s typing discipline. Padovani [13]
formalizes FuSe’s approach to binary sessions along with the necessary
conditions under which the program does not raise exceptions. The same
paper also illustrates a simple monadic API built on top of the primitives
in Table 11.1 and investigates the overhead of the various approaches to
linearity.

In addition to the features described in this chapter, FuSe supports sequen-
tial composition of session types. This feature makes it possible to describe
with greater precision protocols whose set of (finite) traces is context-free as
opposed to regular [14,22]. As discussed by Thiemann and Vasconcelos [22],
these protocols arise naturally in the serialization of structured data types.
Currently, FuSe provides the first and only implementation of context-free
session type checking and inference.
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