
12
Lightweight Functional Session Types

Sam Lindley and J. Garrett Morris

University of Edinburgh, Edinburgh, UK

Abstract

Row types provide an account of extensibility that combines well with para-
metric polymorphism and type inference. We discuss the integration of row
types and session types in a concurrent functional programming language,
and how row types can be used to describe extensibility in session-typed
communication.

12.1 Introduction

In prior work, we have developed a core linear λ -calculus with session types
called GV [13]. GV is inspired by a functional language with session types
developed by Gay and Vasconcelos [7], which we term LAST (for Linear
Asynchronous Session Types), and by the propositions-as-types correspon-
dence between session types and linear logic first introduced by Caires and
Pfenning [4] and later adapted to the classical setting by Wadler [23]. We have
given direct proofs of deadlock freedom, determinism, and termination for
GV. We have also given semantics-preserving translations between GV and
Wadler’s process calculus CP, showing a strong connection between GV’s
small-step operational semantics and cut elimination in classical linear logic.

In this article, we demonstrate that we can build practical languages
based on the primitives and properties of GV. We introduce a language, FST,
that extends GV with polymorphism, row types, and subkinding, integrating
linear and unlimited data types. FST, while more expressive, is still deadlock-
free, deterministic, and terminating. We consider several extensions of FST.
Recursion and recursive session types support the definition of long-running
services and repeated behavior. Adding recursion and recursive session types
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results in a system that is no longer terminating, but is still deadlock free and
deterministic. Access points support a more flexible mechanism for session
initiation. Adding access points results in a system that is not deadlock-free,
deterministic, or terminating, but that still satisfies subject reduction and a
weak form of progress.

Outline. The article proceeds as follows. Section 12.2 presents some exam-
ples illustrating FST and its extensions. Section 12.3 gives a formal account of
FST, a linear variant of System F, incorporating polymorphism, row-typing,
subkinding, and session types.

Section 12.4 explores extensions of FST with recursion, recursive types,
and access points, and demonstrates the expressivity of access points with
encodings of state cells, nondeterministic choice, and recursion.

Section 12.5 describes a practical implementation of FST in Links, a
functional language for web programming, and discusses our adaptation of
the existing Links syntax and type inference mechanisms to support linearity
and session types.

Section 12.6 concludes.
In this version of the article, we focus on the FST type system, and omit

the formal semantics and statements of correctness. An extended version
including the formal semantics and correctness proofs is available online [15].

12.2 A First Look

Before giving a formal account of the syntax and type system of FST, we
present some simple examples of programming in FST. We use a desktop
calculator as a running example. Despite its simplicity, it will motivate the
features of FST.

A One-Shot Calculator Server. We begin with a process that implements a
calculator server. We specify it as a function of one channel, c, on which it
will communicate with a user of the calculator.

calc c = offer c {Add c→ let 〈x,c〉= receive c in
let 〈y,c〉= receive c in
send 〈x+ y,c〉

Neg c→ let 〈x,c〉= receive c in
send 〈−x,c〉}

On receiving a channel c, the function calc offers a choice of two behaviors,
labeled Add and Neg on c. In the Add case, it then expects to read two values
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from c and send their sum along c. The Neg case is similar. The session type
of channel c encodes these interactions, so the type of calc is

calc : �{Add : ?Int.?Int.!Int.End,Neg : ?Int.!Int.End}→ End

where the session type !T.S denotes sending a value of type T followed by
behavior S, ?T.S denotes reading a value of type T followed by behavior S,
and �{� : S, . . . , �n : Sn} denotes offering an n-ary choice, with the behavior
of the ith branch given by Si.

Next, we consider a client for the calculator server:

user1 c = let c = select Add c in let 〈x,c〉= receive (send 〈19,send 〈23,c〉〉) in x

Like calc, the user1 function is passed the channel on which it communicates
with the calculator. It begins by selecting the Add behavior, which is compat-
ible with the choice offered by calc. Its subsequent behavior is unsurprising.
We could give the channel a type dual to that provided by the calculator:

user1 :⊕{Add : !Int.!Int.?Int.End,Neg : !Int.?Int.End}→ Int

However, this type overspecifies the behavior of user1 as the Neg branch is
unused in the definition of user1. In FST, we can use row polymorphism to
abstract over the irrelevant labels in a choice, as follows:

user1 : ∀ρ .⊕{Add : !Int.!Int.?Int.End;ρ}→ Int

This type specifies that the argument to user1 may be instantiated to any
session type that offers a choice of Add with a suitable behavior along
with arbitrary other choices. FST includes explicit type abstractions and type
annotations on bound variables; we omit both in the examples in order to
improve readability. Our concrete implementation of FST in Links, is able
to reconstruct omitted types and type abstractions using a fairly standard
Hindley-Milner-style type inference algorithm.

We can plug the calculator server and the user together as follows

let c = fork calc in user1 c

yielding the number 42. The fork primitive creates a new child process and a
channel through which it can communicate with its parent process.

Recursive Session Types. The one-shot calculator server allows only one
operation to be performed before the communication is exhausted. If we
add support for recursive session types, then we can define a calculator that
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allows an arbitrary number of operations to be performed. In order to make
the example more interesting, we define a calculator server with a memory.

calcrec : Int→ (rec σ .�{Add : ?Int.?Int.!Int.σ ,
Neg : ?Int.!Int.σ ,
M+ : ?Int.σ ,
MR : !Int.σ
Stop : End})→ End

calcrec m c = offer c {Add c → let 〈x,c〉= receive c in
let 〈y,c〉= receive c in
calcrec m (send 〈x+ y,c〉)

Neg c → let 〈x,c〉= receive c in
calcrec m (send 〈−x,c〉)

M+ c → let 〈x,c〉= receive c in calcrec (m+ x) c
MR c → let c = send 〈m,c〉 in calcrec m c}
Stop c→ c}

The idea is that selecting M+ adds a number to that currently stored in
memory and MR reads the current value of the memory. A user must now
explicitly select Stop in order to terminate communication with the server.

user2 : ∀ρρ ′.⊕{Add : !Int.!Int.?Int.⊕{Stop : End;ρ};ρ ′} → Int
user2 c = let 〈x,c〉= receive (send 〈19,send 〈23,select Add c〉〉) in

select Stop c;x

With the row variables instantiated appropriately, we can plug user2 and the
recursive calculator together

let c = fork calcrec 0 in user2 c

again yielding 42.
The examples we have seen so far could be implemented using subtyping

instead of row polymorphism. We now consider a function that cannot be
implemented with subtyping. Suppose we wish to abstract over the memory
add operation. We define a function that can be used to communicate with
any calculator server that supports M+ and arbitrary other operations.

mAdd : ∀ρ .Int→ (rec σ .⊕{M+ : !Int.σ ;ρ})→ (rec σ .⊕{M+ : !Int.σ ;ρ})
mAdd n c = send 〈n,select M+ c〉

The key feature of this function is that the row variable ρ appears both con-
travariantly (inside the second argument) and covariantly (inside the return
type) in the type of mAdd. Thus, in a system with subtyping but without row
typing, one would have to explicitly instantiate ρ , ruling out an extensible
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calculator server implementation. Let us use mAdd to define a client that
invokes multiple calculator operations.

user3 :
∀ρρ ′ρ ′′.
⊕{M+ : !Int.⊕{M+ : !Int.⊕{MR : ?Int.⊕{Stop : End;ρ};ρ ′};ρ ′′}} → Int

user3 c = let c = select MR (mAdd 19 (mAdd 23 c)) in
let 〈x,c〉= receive c in
select Stop c;x

We can plug user3 and the recursive calculator together as before

let c = fork calcrec 0 in user3 c

again yielding 42.

Access Points. A key limitation of the examples we have seen so far is that
they allow only one user to connect to a calculator server at a time. Access
points provide a more flexible mechanism for session initiation than the fork
primitive. Intuitively, we can think of access points as providing a matchmak-
ing service for processes. Processes may either accept or request connections
at a given access point; accepting and requesting processes are paired non-
deterministically. We now adapt our calculator server to synchronize on an
access point instead of a fixed channel:

calcAP : ∀α.Int→ AP (�{Add : ?Int.?Int.!Int.End,
Neg : ?Int.!Int.End,
M+ : ?Int.End,
MR : !Int.End})→ α

calcAP m a = let c = accept a in
offer c {
Add c→let 〈x,c〉= receive c in

let 〈y,c〉= receive c in
let c = send 〈x+ y,c〉 in calcAP m a

Neg c→let 〈x,c〉= receive c in
let c = send 〈−x,c〉 in calcAP m a

M+ c→ let 〈x,c〉= receive c in calcAP (m+ x) a
MR c→ let c = send 〈m,c〉 in calcAP m a}

Unlike calcrec, this calculator server never stops; rather, it will persist until the
access point is no longer accessible by any client code, at which point it may
be garbage collected. As calcrec never returns, it is polymorphic in its return
type. In general, an access point a has type AP S for some session type S. The
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expression accept a returns an end point of type S and request a returns an
end point of type S.

We can connect our original user to calcAP. We use the new operator to
create a fresh access point and the spawn operator to create child threads
(without any shared channels).

let a = new in spawn (λ 〈〉.calcAP 0 a);user1 (request a)

The result of evaluation is again 42. More interestingly, we can connect
multiple clients to the same server concurrently.

let a = new in
let mAdd n a = send 〈n,select M+ (request a)〉 in
let mRecall a = let 〈x,c〉= receive (select M+ (request a)) in
spawn (λ 〈〉.calcAP 0 a);
spawn (λ 〈〉.mAdd 19 (request a));
spawn (λ 〈〉.mAdd 23 (request a));
mRecall a

The result of evaluating this code is non-deterministic. Depending on the
scheduler it may yield 0, 19, 23, or 42.

12.3 The Core Language

The calculus we present in this section, FST (F with Session Types), is a call-
by-value linear variant of System F with subkinding, row types, and session
types. It combines a variant of GV, our session-typed linear λ -calculus [13],
with the row typing and subkinding of our previous core language for
Links [11], and the similar approach to subkinding for linearity of Mazurak
et al’s lightweight linear types [17].

As our focus is programming with session types rather than their log-
ical connections, we make some simplifications compared to our earlier
work [13]. Specifically, we have a single unlimited self-dual type of closed
channels, and we omit the operation for linking channels together.

12.3.1 Syntax

To avoid duplication and keep the concurrent semantics of FST simple, we
strive to implement as much as possible in the functional core of FST, and
limit the session typing constructs to the essentials. The only session type
constructors are for output, input, and closed channels, and no special typing
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rules are needed for the primitives, which are specified as constants. Other
features such as choice and selection can be straightforwardly encoded using
features of the functional core.

Types. The syntax of types and kinds is given in Figure 12.1. The function
type A→Y B takes an argument of type A and returns a value of type B and
has linearity Y . (We write A→ B as an abbreviation for A→• B.) The record
type 〈R〉 has fields given by the labels of row R. The variant type [R] admits
tagged values given by the labels of row R. The polymorphic type ∀αK(Y,Z).A
is parameterized over the type variable α of kind K(Y,Z).

The input type ?A.S receives an input of type A and proceeds as the
session type S. Dually, the output type !A.S sends an output of type A and
proceeds as the session type S. The type End terminates a session; it is its
own dual. We let σ range over session type variables and the dual of session
type variable σ is σ .

Row Types. Records and variants are defined in terms of row types. Intu-
itively, a row type represents a mapping from labels to ordinary types. In
fact, rows also track absent labels, which are, for instance, needed to type
polymorphic record extension (a record can only be extended with labels that
are not already present). A row type includes a list of distinct labels, each of
which is annotated with a presence type. The presence type indicates whether
the label is present with type A (Pre(A)), absent (Abs), or polymorphic in its
presence (θ ).

Row types are either closed or open. A closed row type ends in ·. An
open row type ends in a row variable ρ or its dual ρ; the latter are only
meaningful for session-kinded rows. The mapping from labels to ordinary
types represented by a closed row type is defined only on the labels that are

Ordinary Types A,B ::= A→Y B
| 〈R〉 | [R]
| ∀αK(Y,Z).A | α | α
| S

Session Types S ::= !A.S | ?A.S
| End | σ | σ

Row Types R ::= · | � : P;R | ρ | ρ
Presence Types P ::= Abs | Pre(A) | θ | θ
Types T ::= A | R | P

Labels �
Label Sets L ::= {�1, . . . , �k}
Kinds J ::= K(Y,Z)
Primary Kinds K ::= Type

| RowL

| Presence
Linearity Y ::= • | ◦
Restriction Z ::= π | �
Type Variables α,σ ,ρ,θ

Figure 12.1 Syntax of types and kinds.
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explicitly listed in the row type, and cannot be extended. In contrast, the row
variable in an open row type can be instantiated in order to extend the row
type with additional labels. As usual, we identify rows up to reordering of
labels.

�1 : P1;�2 : P2;R = �2 : P2;�1 : P1;R

Furthermore, absent labels in closed rows are redundant:

� : Abs;�1 : P1, . . . ;�n : Pn; ·= �1 : P1, . . . ;�n : Pn; ·

Duality. The syntactic duality operation on type variables extends to a
semantic duality operation on session types and is lifted homomorphically
to session row types, and session presence types:

?A.S = !A.S
!A.S = ?A.S
End = End

α = α

· = ·
� : P;R = � : P;R

ρ = ρ

Abs = Abs

Pre(S) = Pre(S)

θ = θ

Kinds. Types are classified by kinds. Ordinary types have kind Type. Row
types R have kind RowL where L is a set of labels not allowed in R. Presence
types have kind Presence.

The three primary kinds are refined with a simple subkinding discipline,
similar to the system described in our previous work on Links [11] and the
system of Mazurak et al. on lightweight linear types [17]. A primary kind
K is parameterized by a linearity Y and a restriction Z. The linearity can be
either unlimited (•) or linear (◦). The restriction can be session typed (π) or
unconstrained (�). The interpretation of these parameters on row and presence
kinds is pointwise on the ordinary types contained within the row or presence
types inhabiting those kinds. For instance, the kind RowL (◦,π) is inhabited
by row types of linear session type and the kind Presence(•,�) by presence
types of unlimited unconstrained ordinary types.

By convention we use α for ordinary type variables or for type variables
of unspecified kind, ρ for type variables of row kind, and θ for type variables
of presence kind. We sometimes omit the primary kind, either inferring it
from context or assuming a default of Type. For instance, we write α•,�
instead of αType(•,�).

Subkinding. The two sources of subkinding are the linearity and restriction
parameters.
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	 • ≤ ◦ 	 π ≤ �

	 Y ≤ Y ′ 	 Z ≤ Z′

	 K(Y,Z)≤ K(Y ′,Z′)

Our notion of linearity corresponds to usage, not alias freedom. Thus, any
unlimited type can be used linearly, but not vice versa.

Kind and Type Environments.

Kind Environments Δ ::= · | Δ,α : K(Y,Z)
Type Environments Γ ::= · | Γ,x : A

Kind environments map type variables to kinds. Type environments map term
variables to types.

Terms. The syntax of terms and values is given in Figure 12.2. We let x range
over term variables and c range over constants. Lambda abstractions λYxA.M
are annotated with linearity Y . Type abstractions ΛαJ.V are annotated with
kind J. Note that the body of a type abstraction is restricted to be a syntactic
value in the spirit of the ML value restriction (in order to avoid problems
with polymorphic linearity and with polymorphic session types). Records
are introduced with the unit record 〈〉 and record extension 〈�= M;N〉
constructs. They are eliminated with the binding forms let 〈〉 ← M in N
and let 〈�= x;y〉 ← M in N, the latter of which binds the value labeled by
� to x and the remainder of the record to y. Conventional projections M.�

Terms L,M,N ::= x | c
| λYxA.M | L M
| ΛαJ .V |M T
| 〈〉 | 〈�= M;N〉
| let 〈〉 ←M in N
| let 〈�= x;y〉 ←M in N
| (� M)R | case L {� x→M;y→ N}
| case⊥ L

Values V,W ::= x
| λYxA.M
| ΛαK(Y,Z).V
| 〈〉 | 〈�=V ;W 〉
| (� V )R

Constants c ::= send | receive | fork

Figure 12.2 Syntax of terms and values.
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are definable using this form, but note that because projection discards the
remainder of the record, its applicability to records with linear components
is limited. Variants are introduced with the injection � M and eliminated with
case L {� x→ M;y→ N}. Hypothetical empty variants are eliminated with
case⊥ L.

Concurrency. The concurrency features of FST are provided by special
constants. The term send 〈V,W 〉 sends V along channel W , returning the
updated channel. The term receive W receives a value along channel W , and
returns a pair of the value and the updated channel. The term fork (λx.M)
returns one end of a channel and forks a new process M in which x is bound
to the other end of the channel.

Notation. We use the following abbreviations:

let x = M in N
def
= (λ x.N) M

M;N
def
= let x = M in N, x fresh

� : A
def
= � : Pre(A)

〈A1, . . . ,Ak〉 def
= 〈1 : A1; . . . ;k : Ak; ·〉

#»

�
def
= �1, . . . , �k

#     »

� : P
def
= �1 : P1, . . . , �k : Pk

We interpret n-ary record and case extension at the type and term levels in the
standard way. For instance

〈 #     »

� : P;R〉 def
= 〈�1 : P1;〈. . . ;〈�n : Pn;R〉 . . .〉〉

and
case L {·} def

= case⊥ L

case L {z→ N} def
= let z = L in N

case L {� x→ N; χ} def
= case L {� x→ N;z→ case z {χ}}

where we let χ range over sequences of cases:

χ ::= · | z→ N | � x→ N; χ

We write fv(M) for the free variables of M. We write ftv(T ) for the free
type variables of a type T and ftv(Γ) for the free type variables of type
environment Γ. We write dom(Γ) for the domain of type environment Γ.

12.3.2 Typing and Kinding Judgments

The kinding rules are given in Figure 12.3. The kinding judgment Δ 	 A :
K(Y,Z) states that in kind environment Δ, the type A has kind K(Y,Z). Type
variables in the kind environment are well-kinded. The rules for forming
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Δ 	 T : K(Y,Z)

FUNCTION
Δ 	 A : Type(Y,�) Δ 	 B : Type(Y ′,�)

Δ 	 A→Y ′′ B : Type(Y ′′,�)

FORALL
Δ,α : K(•,Z) 	 A : Type(Y,�)

Δ 	 ∀αK(Y ′,Z).A : Type(Y,�)

RECORD
Δ 	 R : Row /0(Y,�)

Δ 	 〈R〉 : Type(Y,�)

VARIANT
Δ 	 R : Row /0(Y,�)

Δ 	 [R] : Type(Y,�)

INPUT
Δ 	 A : Type(Y,�)
Δ 	 S : Type(Y ′,π)

Δ 	 ?A.S : Type(◦,π)

OUTPUT
Δ 	 A : Type(Y,�)
Δ 	 S : Type(Y ′,π)

Δ 	 !A.S : Type(◦,π)
END

Δ 	 End : Type(•,π)

EMPTYROW

Δ 	 · : RowL (Y,Z)

EXTENDROW
Δ 	 P : Presence(Y,Z) Δ 	 R : RowL{�}(Y,Z)

Δ 	 (� : P;R) : RowL (Y,Z)

ABSENT

Δ 	 Abs : Presence(Y,Z)

PRESENT
Δ 	 A : Type(Y,Z)

Δ 	 Pre(A) : Presence(Y,Z)

TYVAR
α : K(Y,Z) ∈ Δ
Δ 	 α : K(Y,Z)

DUALTYVAR
α : K(Y,π) ∈ Δ
Δ 	 α : K(Y,π)

UPCAST
	 J ≤ J′ Δ 	 T : J

Δ 	 T : J′

Figure 12.3 Kinding rules.

function, record, variant, universally quantified, and presence types follow
the syntactic structure of types. Because of the subkinding relation, a record
is linear if any of its fields are linear, and similarly for variants. Recall that
RowL is the kind of row types whose labels cannot appear in L . (To be clear,
this constraint applies equally to absent and present labels; it is a constraint
on the form of row types. In contrast, � : Abs in a row type is a constraint on
terms.) An empty row has kind RowL (Y,Z) for any label set L , linearity Y ,
and restriction Z. The use of disjoint union in the EXTENDROW rule ensures
that row types have distinct labels. A row type can only be used to build a
record or variant if it has kind Row /0; this constraint ensures that any absent
labels in an open row type are mentioned explicitly.

In Figure 12.4 we define two auxiliary judgments that for use in the
typing rules. The linearity judgment Δ 	 Γ : Y is the pointwise extension
of the kinding judgment restricted to the linearity component of the kind. It
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Δ 	 Γ : Y

L-EMPTY

Δ 	 · : Y

L-EXTEND
Δ 	 Γ : Y Δ 	 A : K(Y,Z)

Δ 	 (Γ,x : A) : Y

Δ 	 Γ = Γ1 +Γ2

C-EMPTY

Δ 	 ·= ·+ ·

C-•
Δ 	 A : Type(•,�) Δ 	 Γ = Γ1 +Γ2

Δ 	 Γ,x : A = (Γ1,x : A)+(Γ2,x : A)

C-◦-LEFT
Δ 	 A : Type(◦,�) Δ 	 Γ = Γ1 +Γ2

Δ 	 Γ,x : A = (Γ1,x : A)+Γ2

C-◦-RIGHT
Δ 	 A : Type(◦,�) Δ 	 Γ = Γ1 +Γ2

Δ 	 Γ,x : A = Γ1 +(Γ2,x : A)

Figure 12.4 Linearity of contexts and context splitting.

states that in kind environment Δ, each type in environment Γ has linearity Y .
The type environment splitting judgment Δ 	 Γ = Γ1 +Γ2 states that in kind
environment Δ, the type environment Γ can be split into type environments
Γ1 and Γ2. Contraction of unlimited types is built into this judgment.

The typing rules are given in Figure 12.5. The typing judgment Δ;Γ 	M :
A states that in kind environment Δ and type environment Γ, the term M has
type A. We assume that Γ and A are well-kinded with respect to Δ. If Δ and Γ
are empty (that is, M is a closed term), then we will often omit them, writing
	M : A for ·; · 	M : A.

We assume a signature Σ mapping constants to their types. The definition
of Σ on the basic concurrency primitives is given in Figure 12.6.

The EXTEND rule is strict in the sense that it requires a label to be absent
from a record before the record can be extended with the label. The CASE

rule refines the type of the value being matched so that in the type of the
variable bound by the default branch, the non-matched label is absent.

Selection and Choice. Traditional accounts of session types include types
for selection and choice. Following our previous work [13], inspired by
Kobayashi [8], we encode selection and choice using variant types.

⊕{R} def
= ![R].End

�{R} def
= ?[R].End

select � M
def
= fork (λ x.send 〈� x,M〉)

offer L {χ} def
= let 〈x,z〉= receive L in case x {χ}
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Δ;Γ 	M : A

VAR
Δ 	 Γ : •

Δ;Γ,x : A 	 x : A

CONST
Σ(c) = A

Δ; · 	 c : A

LINLAM
Δ;Γ,x : A 	M : B

Δ;Γ 	 λ ◦xA.M : A→◦ B

UNLLAM
Δ 	 Γ : •
Δ;Γ,x : A 	M : B

Δ;Γ 	 λ •xA.M : A→• B

APP
Δ;Γ1 	 L : A→Y B
Δ;Γ2 	M : A

Δ;Γ1 +Γ2 	 L M : B

POLYLAM
Δ,α :: K(•,Z);Γ 	V : A α /∈ ftv(Γ)

Δ;Γ 	 ΛαK(Y,Z).V : ∀αK(Y,Z).A

POLYAPP
Δ;Γ 	M : ∀αK(Y,Z).A
Δ 	 T :: K(Y,Z)

Δ;Γ 	M T : A[α := T ]

UNIT
Δ 	 Γ : •

Δ;Γ 	 〈〉 : 〈〉

LETUNIT
Δ;Γ1 	M : 〈〉 Δ;Γ2 	 N : B

Δ;Γ1 +Γ2 	 let 〈〉 ←M in N : B

CASEZERO
Δ;Γ 	 L : []

Δ;Γ 	 case⊥L : B

EXTEND
Δ;Γ1 	M : A
Δ;Γ2 	 N : 〈� : Abs;R〉

Δ;Γ1 +Γ2 	 〈�= M;N〉 : 〈� : Pre(A);R〉

LETRECORD
Δ;Γ1 	M : 〈� : Pre(A);R〉
Δ;Γ2,x : A,y : 〈R〉 	 N : B

Δ;Γ1 +Γ2 	 let 〈�= x;y〉 ←M in N : B

INJECT
Δ;Γ 	M : A

Δ;Γ 	 (� M)R : [� : Pre(A);R]

CASE
Δ;Γ1 	 L : [� : Pre(A);R]
Δ;Γ2,x : A 	M : B
Δ;Γ2,y : [� : Abs;R] 	 N : B

Δ;Γ1 +Γ2 	 case L {� x→M;y→ N} : B

Figure 12.5 Typing rules.

Σ(send) = ∀α◦,�.∀σ◦,π .〈α, !α.σ〉 →• σ
Σ(receive) = ∀α◦,�.∀σ◦,π .?α.σ →• 〈α,σ〉

Σ(fork) = ∀σ◦,π .∀α•,�.(σ →◦ α)→• σ

Figure 12.6 Type schemas for constants.

The encoding of select uses fork in order to generate a fresh channel of
the continuation type. In the implementation of Links we support selec-
tion and choice in the source language. This is primarily for programming
convenience. One might imagine desugaring these using the rules above,
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and then potentially rediscovering them in the back-end for performance
reasons.

Semantics. In the extended version of this article [15] we give an asyn-
chronous small-step operational semantics for FST. Following Gay and
Vasconcelos [7], whose calculus we call LAST (for Linear Asynchronous
Session Types), we factor the semantics into functional and concurrent
reduction relations, and introduce explicit buffers to provide asynchrony.
For the functional fragment of the language, we give a standard left-to-
right call-by-value semantics. The semantics of the concurrent portion of the
language is given by a reduction relation on configurations of process and
buffers. This semantics differs from our previous work on GV [13] in that
is relies on explicit buffers, allowing asynchrony between the sending and
receiving of a message, and it uses standard β -reduction instead of weak
explicit substitutions [10]. FST, like GV but unlike LAST, is deadlock-free,
deterministic, and terminating.

12.4 Extensions

FST can be straightforwardly extended with additional features.
If we add a fixed point constant, then we lose termination, but deadlock

freedom and determinism continue to hold. Another standard extension sup-
ported by Links is recursive types. While care is needed in defining the dual
of a recursive session type, the treatment is otherwise quite standard. Negative
recursive types allow a fixed point combinator to be defined, so again we lose
termination, but deadlock freedom and determinism continue to hold.

The price we pay for the strong properties we obtain is that our model
of concurrency is rather weak. For instance, it gives us no way of imple-
menting a server with any notion of shared state. Drawing on LAST (and
previous work on session-typed π-calculi), Links supports access points,
which provide a much more expressive model of concurrency at the cost of
introducing deadlock. Nevertheless, it is often possible to locally restrict code
to a deadlock-free subset of Links.

12.4.1 Recursion

The grammar of session types we have presented so far is rather limited; for
example, it cannot express repeated behavior. As illustrated in Section 12.2,
we can use recursive session types to define a calculator that supports multiple
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calculations. In order to support this kind of example, we can straightfor-
wardly extend FST with equi-recursive types. We add a kinding rule for
recursive types and identify each recursive type with its unrolling.

REC
Δ,α : Type(Y,Z) 	 A : Type(Y,Z)

Δ 	 rec αY,Z.A : Type(Y,Z)
rec αY,Z.A = A[rec αY,Z.A/α]

It is well-known [2, 3] that recursive types complicate the definition of
duality, particularly when the recursion variable appears as a carried type
(that is, as A in ?A.S or !A.S). For example, consider the simple recursive
session type rec σ ◦,π .?σ .σ . The dual of this type is not rec σ ◦,π .!σ .σ , as one
would obtain by taking the dual of the body of the recursive type directly, but
is rec σ ◦,π .!σ .σ instead.

Bernardi and Hennessy [2] point out that even existing definitions that
correctly handle the above instance of recursion variables appearing inside
a carried type often fail for other examples. The underlying difficulty arises
from attempting to define duality in a setting in which the duality operator
may not be applied to atomic type variables. Bernardi and Hennessy show
that is is possible to give a correct definition in such a setting, but we prefer
the more compositional definition that arises naturally when one admits duals
of atomic type variables [16] (something that we want anyway as our calculus
is polymorphic).

rec σX ,π.S = rec σX ,π.(S[σ/σ ])

Having added recursive types, one can of course encode a fixed point combi-
nator. Alternatively, we can add a fixed point constant to FST, even without
recursive types:

Σ(fix) = ∀α•,�.∀β •,�.((α →• β )→• (α →• β ))→• (α →• β )

Of course, these extensions allows us to write nonterminating programs, but it
is straightforward to show that subject reduction, progress, deadlock freedom,
and determinism continue to hold.

12.4.2 Access Points

In order to extend FST with access points, we replace the constant fork with
four new constants:

Σ(spawn) = ∀α•,�.(〈〉 →◦ α)→• 〈〉
Σ(new) = ∀σ◦,π .〈〉 →• AP σ

Σ(accept) = ∀σ◦,π .AP σ →• σ
Σ(request) = ∀σ◦,π .AP σ →• σ
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A process M is spawned with spawn M, where M is a thunk that returns an
arbitrary unlimited value; we can define spawn in terms of fork and vice
versa:

spawn M
def
= (λ xEnd.〈〉)(fork (λ xEnd.M 〈〉))

fork M
def
= let z = new 〈〉 in spawn (λ x.M (accept z));request z

Session-typed channels are created through access points. A fresh access
point of type AP S is created with new. Given an access point L of type AP S
we can create a new server channel (accept L), of session type S, or client
channel (request L), of session type S. Processes can accept and request
an arbitrary number of times on any given access point. Access points are
synchronous in the sense that each accept will block until it is paired up with
a corresponding request and vice-versa.

Adding access points exposes the difference between asynchronous and
synchronous semantics. Here is an example of a term that reduces to a
value under an asynchronous semantics, but deadlocks under a synchronous
semantics.

let z = new 〈〉 in
let z′ = new 〈〉 in
spawn (λ 〈〉.let x = accept z in

let y = accept z′ in send 〈0,x〉; let 〈v,y〉= receive y in v);
let x = request z′ in
let y = request z in send 〈0,x〉; let 〈v,y〉= receive y in v

Under an asynchronous semantics, both sends happen followed by both
receives, and the term reduces to the value 0. Under a synchronous semantics
both sends are blocked and the term is deadlocked.

Shared State. With access points we can implement shared state cells.

State A = AP (!A.End)

newCell : ∀α•,�.〈〉 → State α
newCell v = let x = new 〈〉 in spawn (λ 〈〉.send 〈v,accept x〉);x

put : ∀α•,�.State α→ α→ 〈〉
put x v = let 〈 , 〉= receive (request x) in spawn (λ 〈〉.send 〈v,accept x〉);〈〉
get : ∀α•,�.State α → α
get x = let 〈v, 〉= receive (request x) in spawn (λ 〈〉.send 〈v,accept x〉);v
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Nondeterminism. We can straightforwardly encode nondeterministic
choice by using an access point to generate a nondeterministic boolean value.
Suppose that we have Δ;Γ 	M : T and Δ;Γ 	 N : T . The following term will
nondeterministically choose between terms M and N:

let z = new 〈〉 in
spawn (λ 〈〉.send 〈True,accept z〉);
spawn (λ 〈〉.send 〈False,accept z〉);
let 〈x, 〉= receive (request z) in
case x {True→M;False→ N}

One process is left waiting on accept z. However, as z cannot escape, this
process can be safely garbage collected.

Recursion. Recursion can in fact be encoded using access points. We have
already seen that access points are expressive enough to simulate higher-
order state. We can now use Landin’s knot (back-patching) [9] to implement
recursion. For instance, the following term loops forever:

let x = newCell〈〉→〈〉 (λ 〈〉.〈〉) in put 〈x,λ 〈〉.get x 〈〉〉;get x 〈〉

12.5 Links with Session Types

Version 0.6 of the Links web programming language includes an extension
based on FST. It is available online from the Links website:

http://links-lang.org/

Links is a functional programming language for the web. From a single
source program, Links generates code to run on all three tiers of a web
application: the browser, the server, and the database. Links is a call-by-value
language with support for ML-style type inference (extended with support
for first-class polymorphism similar to that of provided by the impredicative
polymorphism extension of GHC [22]). It incorporates a row-type system
that is used for records, variants, and effects, and provides equi-recursive
types. Subkinding is used to distinguish base types from other types. This
is important for enforcing the constraint that generated SQL queries must
return a list of records whose fields are of base type [11].

In order to keep the presentation uniform and self-contained we use the
concrete syntax of FST throughout rather than that of Links. However, all
of the examples presented in this article can be written directly in Links with
essentially the same abstract syntax, modulo the fact that Links uses Hindley-
Milner style type inference.
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12.5.1 Design Choices

Before implementing session types for Links we considered a number of
design choices. Linearity is central to our description of session types. Most
existing functional languages (including vanilla Links) do not provide native
support for linear types. We considered three broad approaches:

1. encode linearity using existing features of the programming language
(as in Pucella and Tov’s Haskell encoding of session types [19] or our
Haskell encoding of session types [14])

2. stratify the language so that the linear fragment of the language is
separated out from the host language (as in Toninho et al’s work [20])

3. bake linearity into the type system of the whole language (as in
LAST [7])

The appeal of the first approach is that it does not require any new
language features, assuming the starting point is a language with a sufficiently
rich type system—for example, one that is able to conveniently encode
parameterized monads [1], or parameterized higher-order abstract syntax [5].
The second approach is somewhere in between. It allows a linear language
to be embedded in an existing host language without disrupting the host
language. The third approach requires linearity to pervade the whole type
system, but opens up interesting possibilities for code reuse, for instance
through polymorphism over linearity [24] or through subkinding [17].

Given that we are in the business of developing our own programming
language, we decided to pursue the third option. We wanted to include the
full expressivity of our language in the linear fragment, so we did not see
a significant benefit in stratification, and we wanted to explore possibilities
for code-reuse offered by baking linearity into the type system. We were also
presented with another choice regarding how to accommodate code reuse.
Given that Links already supported subkinding [11] we elected to adopt the
linear subkinding approach of Mazurak et al. [17].

An advantage of the LAST (and FST) approach to session typing is that
channels are first class and hence support compositional programming. This
is in contrast to the parameterized monad approach and approaches based
on process calculi, in which channels are just names. For example, in FST
with recursive types we can define broadcasting a value to a whole list of
channels:

broadcast : ∀α•,�σ◦,π .α→ LinList (!α.σ)→ LinList σ
broadcast v xs = linMap (λ x.send 〈v,x〉) xs
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where LinList A is a linear list data type and linMap is the map operation over
linear lists:

LinList A = rec α◦,�.[Nil;Cons : 〈A,α〉]
linMap : ∀α◦,�β (◦,�).(α → β )→ LinList α → LinList β
linMap f xs = case xs {Nil → Nil

Cons 〈x,xs〉 → Cons 〈 f x, linMap f xs〉}
An attendant drawback to having first-class channels is that one must

explicitly rebind channels after each operation. This is in contrast to the
parameterized monad approach and approaches based on process calculi,
which implicitly rebind channels after each communication. In order to
mitigate the need to explicitly rebind channels, we introduce process cal-
culus style syntactic sugar inspired by previous work on the correspondence
between classical linear logic and functional sessions [12, 13, 23]. To ease the
job of writing a parser, we explicitly delimit process calculus style syntactic
sugar with special brackets �−�.

�x(y).Q�
def
= let 〈x,y〉= receive x in �Q�

�x[M].Q�
def
= let x = send〈M,x〉 in �Q�

�� x.Q�
def
= let x = select � x in �Q�

�offer x {�i→ Qi}i �
def
= offer x {�i(x)→ �Qi �}i

�{M}�
def
= M

We let Q range over process calculus style terms. The desugaring of input,
output, selection, and branching is direct. The {−} brackets allow values to
be returned from the tail of a process calculus expression. As an example, we
can more concisely rewrite the one-shot calculator server of Section 12.2 as
follows:

sugarCalc= λ c.� offer c {Add→c(x).c(y).c[x+ y].{〈〉}
Neg→c(x).c[−x].{〈〉}} �

In general, the syntactic sugar allows us to take advantage of a process-
calculus style for communication-heavy sequences of code, but switch back
to a functional style for compositional programming.

12.5.2 Type Reconstruction

Vanilla Links provides type inference, as in many other typed functional
languages. However, as a consequence of the typing of application, the types
of higher-order functions in FST are not uniquely determined by their uses.
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As an example, consider the application operator in FST, implemented by the
following term:

Λα•,�1 ,α•,�2 .λY1 f α1→Y2 α2 .λY3xα1 . f x

This term is well-typed for arbitrary choices of Y1 and Y2, and any choice
of Y3 more constraining than Y2, giving six distinct well-typed instantiations
in all.

There are several ways we might hope to restore complete type inference,
but they each come with significant additional complexity. We could intro-
duce bounded quantification over linearities, combining the approaches of
Tov and Pucella [21] and Walker [24]; in addition to introducing new forms of
quantification, the implications of the resulting system for type inference have
not been studied. Another approach was recently proposed by Morris [18].
His approach captures all the variations of the term above in a single term,
and provides complete type inference. However, it relies on qualified types,
an alternative source of complexity. In Links, we prefer unlimited function
types τ →• τ ′ to linear function types τ →◦ τ ′ when inferring the types of
functions. The programmer is always free to override this choice by explicitly
providing types. This approach preserves the simplicity of the language and
of type reconstruction, but at the cost of some completeness.

12.6 Conclusion and Future Work

We have presented an account of lightweight functional session types, extend-
ing a core session-typed linear λ -calculus [13] with: the row typing of the
core language for Links [11], the subkinding for linearity of Mazurak et al.’s
lightweight linear types [17], and the asynchrony and access points of Gay
and Vasconcelos’s linear type theory for asynchronous session types [7].

There is a significant gap between variants of FST with and without
access points. We would like to investigate abstractions that add some of
the expressive power of access points, but are better behaved. In particular,
it would be interesting to explore richer type systems for enforcing deadlock
and race freedom, while allowing some amount of stateful concurrency. More
immediately, it would also be natural to exploit the existing effect type system
of Links to statically enforce desirable properties, for instance, by associating
the use of access points with a particular effect type.
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