13

Distributed Programming Using Java APIs
Generated from Session Types

Raymond Hu

Imperial College London, UK

Abstract

This is a tutorial on using Scribble [9], a toolchain based on multiparty
session types [1, 4], for distributed programming in Java. The methodology
is based on the generation of protocol-specific Endpoint APIs from Scribble
specifications [6]. We start with a brief recap of TCP network program-
ming using standard Java APIs, and their limitations with regards to safety
assurances. The main tutorial content is an overview of the key stages of
the Scribble toolchain, from global protocol specification, through Endpoint
API generation, to Java endpoint implementation, with examples. We discuss
the hybrid form of session safety promoted by the Endpoint API generation
approach. We then consider Scribble specifications and implementations
of HTTP as a real-world use case. Finally, we demonstrate some further
Scribble features that leverage Endpoint API generation to safely support
more advanced communication patterns.

13.1 Background: Distributed Programming in Java

The two core facilities for TCP-based network programming in Java (and
other languages) are the socket APIs and Java Remote Method Invocation
(RMI). The socket APIs allow the programmer to work directly with TCP
connections, and are the basis over which many higher-level networking
facilities are built. Java RMI is the Java adaptation of remote procedure call
(RPC) functionality; with regards to this discussion, RMI is representative

287

288 Distributed Programming Using Java APIs Generated from Session Types

of the corresponding facilities in other languages or platform-independent
frameworks, e.g., RESTful Web services.

Running example: Math Service. As a running Hello World example, we
specify and implement a two-party network service for basic arithmetic oper-
ations. For the purposes of this tutorial, we are not concerned with the most
realistic development of such a service, but rather that this simple example
features core constructs of protocol design, such as message sequencing,
alternative cases and repeated sequences.

Figure 13.1 depicts the Math Service protocol as a UML sequence dia-
gram [8, §17]. For some number of repetitions (Loop), the client ¢ sends to
the server S a val message with an Integer payload; ¢ then selects between
the two alternatives (alt), to send an Add or a Mult message carrying a second
Integer. S respectively replies with a Sum or a Prod message carrying the result.
Finally, ¢ sends a Bye message, with no payload, ending the session.

13.1.1 TCP Sockets

Sockets are supported in the standard Java API by the java.net and
java.nio.channels packages. Figure 13.2 gives a client implementation using
Math Service for a factorial calculation via the java.net.Socket API. For
simplicity, we assume serializable Java classes for each of the message types
(e.g., Add), with a field val for the Integer payload, and use standard Java
object serialization via java.io.ObjectOutput/InputStream.

loop Val(Integer)

alt Add(Integer)

Sum(Integer)

Mult (Integer)

Prod(Integer)

Figure 13.1 Sequence diagram for the Math Service protocol.

13.1 Background: Distributed Programming in Java 289

try (Socket s = new Socket("localhost", 8888);
ObjectOutputStream os = new ObjectOutputStream(s.getOutputStream());
ObjectInputStream is = new ObjectInputStream(s.getInputStream())) {
int i = 5, res = i; // Calculate 5!
while (i > 1) {
os.writeObject(new Val(i)); os.writeObject(new Add(-1)); os.flush();
i = ((Sum) is.readObject()).val;
os.writeObject(new Val(res)); os.writeObject(new Mult(i)); os.flush();
res = ((Prod) is.readObject()).val;
}
os.writeObject(new Bye()); os.flush();
}

Figure 13.2 A factorial calculation using Math Service via the java.net.Socket APIL

© 0 N U A W N e

e T
N o~ O

From a networking perspective, TCP sockets offer a high-level abstrac-
tion in the sense of reliable and ordered message delivery. From an applica-
tion perspective, however, the raw communication interface of a TCP channel
is simply a pair of unidirectional bit streams—essentially a communications
machine code, in contrast to the support for high-level data types in “local”
computations.

Working directly with standard socket APIs thus affords almost no safety
assurances with regards to the correctness of protocol implementations. The
key kinds of application-level protocol errors are:

Communication mismatches when the sent message is not one of those
expected by the receiver (also called a reception error). E.g., if ¢ were
to commence a session with an Add message: assuming an implemen-
tation of s in the style of Figure 13.2, this would likely manifest as a
ClassCastException on the object returned by the readObject in S. Note,
the dual error of the receiver applying an incorrect cast are equally
possible.

Deadlock in situations where some set of participants are all blocked on
mutually dependent input actions. E.g., if ¢ were to call readObject after
sending val, but before sending Add or Mult; while s is (correctly) waiting
for one of the latter.

Orphan messages if the receiver terminates without reading an incoming
message. In practice, an orphan error often manifests as, e.g., an
EOFException, since TCP uses a termination handshake. E.g., if s skips
the receive of Bye before ¢ has sent it, leading ¢ to attempt the write on a
closed connection.

290 Distributed Programming Using Java APIs Generated from Session Types

13.1.2 Java RMI

RMI is a natural approach towards addressing the mismatch between high-
level, typed Java programming and low-level networking interfaces. Dis-
tributed computations can be (partially) abstracted away as regular method
invocations, while benefiting from static typing of each call and its commu-
nicated arguments and return value.

The Math Service protocol may be fitted to a remote interface as in
Figure 13.4(a), essentially by decomposing the protocol into separate call-
return fragments; and Figure 13.3 re-implements the factorial calculation as
a client of this interface. Individual remote calls are now statically typed
with respect to their arguments and return. Unfortunately, RMI programs in
general remain subject to the same potential protocol errors illustrated for
the previous sockets example (although their concrete manifestations may
differ). The typed RMI interface does not prevent, for example, a bad client
from calling Add before val.

Disadvantages of call-return based protocol decomposition are further
illustrated by the (minimal) implementation of the remote interface in
Figure 13.4(b), which suffices to serve a single client but is completely
inadequate in the presence of concurrent clients. Basic RMI programs lose
the notion of an explicit session-oriented abstraction in the code (cf., the
threading of session control flow in Figure 13.2 wrt. the socket/stream
variable usages), which complicates the correlation and management of
application-level session flows across the separate methods.

13.2 Scribble Endpoint APl Generation: Toolchain
Overview

Using the Math Service running example, we demonstrate the stages of
the Scribble toolchain, from global protocol specification, through Endpoint

RMIMath mathS = (RMIMath) registry.lookup("MathService");

int i = 5, res = 1i;

while (i > 1) { mathS.Val(i); i = mathS.Add(i - 1);
mathS.Val(res); res = mathS.Mult(i); 1}

mathS.bye();

Figure 13.3 Factorial calculation as a client of the remote interface in Figure 13.4(a).

13.2 Scribble Endpoint API Generation: Toolchain Overview 291

interface RMIMath class RMIMathS implements RMIMath {
extends Remote { private int x;
void Val(Integer x) .. ; public void Val(Integer x)
void Bye() throws .. ; { this.x = x; }
Integer Add(Integer y) .. ; public void Bye() throws .. { }
Integer Mult(Integer y) .. ; public Integer Add(Integer y)
} { return this.x + y; }
public Integer Mult(Integer y)
{ return this.x * y; }

Figure 13.4 A remote Math Service: (a) interface, and (b) implementation.

API generation, to Java endpoint implementation. The source code of the
toolchain [10] and tutorial examples [5] are available online.

13.2.1 Global Protocol Specification

The tool takes as its primary input a textual description of the source protocol
or choreography from a global perspective. Figure 13.5 is a Scribble global
protocol for the Math Service running example.

A payload format type declaration (line 1) gives an alias (Int) to data type
definitions from external languages (java.lang.Integer) used for message
formatting. The protocol signature (line 2) declares the name of the global
protocol (MathSvc) and the abstraction of each participant as a named role (C
and).

Message passing is written, e.g., Val(Int) from C to S. A message sig-
nature (Val(Int)) declares an operator name (Val) as an abstract message

1 type <java> "java.lang.Integer" from "rt.jar" as Int;
2 global protocol MathSvc(role C, role S) {

3 choice at C { Val(Int) from C to S;

4 choice at C { Add(Int) from C to S;

5 Sum(Int) from S to C; }
6 or { Mult(Int) from C to S;

7 Prod(Int) from S to C; }
8 do MathSvc(C, S); }

9 or { Bye() from C to S; }

Figure 13.5 Scribble global protocol for Math Service in Figure 13.1.

292 Distributed Programming Using Java APIs Generated from Session Types

identifier (which may be, e.g., a header field value in the concrete message
format), and some number of payload types (a single Int). Message passing is
output-asynchronous: dispatching the message is non-blocking for the sender
(c), but the message input is blocking for the receiver (s). A located choice
(e.g., choice at C) states the subject role (¢) for which selecting one of the
cases (the or-separated blocks) to follow is a mutually exclusive internal
choice. This decision is an external choice to all other roles involved in each
block, and must be appropriately coordinated by explicit messages. A do
statament enacts the specified (sub)protocol, including recursive definitions
(e.g., line 8).

The body of the MathSvc protocol may be equivalently written in a similar
syntax to standard recursive session types:

rec X { choice at C { Val(Int) from C to S; ... continue X; }
or { Bye() from C to S; } }

Protocol validation. The tool validates the well-formedness of global proto-
cols. We do not discuss the details of this topic in this tutorial, but summarise
a few elements. Firstly, the source protocol is subject to a range of syntactic
checks. Besides basic details, such as bound role names and recursion vari-
ables, the key conditions are role enabling, consistent external choice subjects
and reachability. Role enabling is a consistency check on the (transitive)
propagation of choice messages originating from a choice subject to the other
roles involved in the choice. The following is a very simple example of bad
role enabling:

choice at C { Val(Int) from S to C; ... } or { Bye() from C to S; }

Since the choice is at ¢, s should not perform any output before it is enabled,
i.e, by receiving a message that directs it into the correct choice case. The
second of the above conditions requires that every message of an external
choice be communicated from the same role.

Reachability of protocol states is imposed on a per-role basis, i.e, on
projections; Scribble protocols are also checked to be tail recursive per
role. These rule out some basic syntactic inconsistencies (e.g., sequential
composition after a non-terminating recursion), and support the later FSM
translation step (see below).

Together, the syntactic conditions support the main validation step based
on explicit checking of safety errors (and progress violations), such as recep-
tion errors and deadlocks (outlined in § 13.1, on a bounded model of the

13.2 Scribble Endpoint API Generation: Toolchain Overview 293

protocol. For example, (wrongly) replacing Bye by val will be found by the
explicit error checking to be invalid.

choice at C { Val(Int) from C to S; ... } or { Val(Int) from C to S; }

The ambiguous (non-deterministic) receipt of the decision message by s from
¢ (i.e., a message identified by val in both cases—Scribble does not introduce
any implicit meta data or communications) may lead to various deadlock and
orphan message errors, depending on the different permutations of ¢ and s
proceeding in the two cases. E.g., if ¢ proceeds in the right case and s in
the left, then s will be stuck (in the “...”) waiting for an Add/Mult (or will
encounter a broken connection error).

Endpoint FSM generation. The next key step is the generation of an
Endpoint Finite State Machine (EFSM) for each role in the protocol. We use
the term EFSM for the particular class of multiparty communicating FSMs
given by Scribble’s syntax and validation. The construction is based on and
extends the syntactic projection of global types to local types [4], followed by
a translation to an EFSM, building on a correspondence between local types
and communicating FSMs [2, 7]. The nodes of an EFSM represent the states
in the localised view of the protocol for the target role, and the transitions are
the communication actions performed by the role between states. The EFSM
for every role of a valid global protocol is defined.

Figure 13.6 depicts the (dual) EFSMs for ¢ and s in MathSvc. The initial
states are numbered 1. The notation, e.g., S!Val(Int) means output of message
val(Int) to s; 7 dually denotes input. The recursive definition of this protocol
manifests as the cycles returning to state 1.

S!'Add(Int) S!Mult(Int e C?Add(Int) C?Mult(Int e

Figure 13.6 Endpoint FSMs for C and S in MathSvc (Figure 13.5).

294 Distributed Programming Using Java APIs Generated from Session Types

13.2.2 Endpoint API Generation

For a given role of a valid global protocol, the toolchain generates an
Endpoint API for implementing that role based on its EFSM. The current
implementation generates Java APIs, but the principle may be applied or
adapted to many statically-typed languages.

There are two main components of a generated Endpoint API, the Ses-
sion API and the State Channel API. The generated APIs make use of a
few protocol-independent base classes that are part of the Scribble runtime
library: Role, Op, Session, MPSTEndpoint and Buf; the first three are abstract
classes. These shall be explained below.

Session API. The frontend class of the Session API, which we refer to as the
Session Class, is a generated final subclass of the base Session class with the
same name as the source protocol, e.g., MathSvc. It has two main purposes.
One is to house the family of protocol-specific constants for type-directed
session programming in Java, generated as follows.

A session type based protocol specification features various kinds of
names, such as role names and message labels. A session type system
typically requires these names to be present in the processes to drive the
type checking (e.g., [4, 1]). For the present Java setting, the Session API is
generated to reify these abstract names as singleton types following a basic
(eagerly initialised) singleton pattern. For each role or message operator name
n in the source protocol, we generate:

o A final Java class named n that extends the appropriate base class (Role
or Op). The n class has a single private constructor, and a public static
final field of type n and with name 7, initialised to a singleton instance
of this class.

o In the Session Class, a public static final field of type n and with name
n, initialised to the constant declared in the corresponding n class.

For example, for role ¢ of MathSvc, the subclass ¢ of Role is generated to
declare the singleton constant public static final C C = new C();. The MathSvc
class is generated to collect these various constants together, including the
field public static final C ¢ = C.C;.

The Session API comprises the Session Class with the singleton type
classes. The other main purpose of the Session Class is for session initiation
in endpoint implementations, as explained below.

13.2 Scribble Endpoint API Generation: Toolchain Overview 295

An implementation of ¢ via Endpoint API generation. At this point, we
give, in Figure 13.7, a first version of the factorial calculation using the
Endpoint API generated by the Scribble tool for ¢ in MathSve.

The code can be read similarly to the socket code in §13.1.1; e.g., s1 is
a session channel variable. A difference from the earlier socket code is that
the Scribble API is generated as a fluent interface, allowing consecutive 1/O
operations to be chained (e.g., line 11). We refer to and explain this code
through the following subsections.

Session initiation. Lines 3—-6 in Figure 13.7 is a typical preamble for a
(client) endpoint implementation using a Scribble-generated API. We start
by creating a new MathSvc session by instantiating the Session Class. The
session object, sess, is used to create a new session endpoint object of type
MPSTEndpoint<MathSvc, C>, parameterised on the type of the session and the
endpoint role. The ¢ parameter in this type is the singleton type in the Session
API; and the ¢ argument in the constructor call is the single value of this type.

The third argument required by the MPSTEndpoint constructor is
an implementation of the ScribMessageFormatter interface, that is responsible
for the underlying serialization and deserialization of individual messages
in this session. For this example, we use the default ObjectStreamFormatter
provided by the Scribble runtime library based on the standard Java serializa-
tion protocol (messages communicated by this formatter must implement the
Serializable interface).

1 int facto(int n) throws Exception { // Pre: n >= 1

2 Buf<Integer> i = new Buf<>(n), res = new Buf<>(i.val);

3 MathSvc sess = new MathSvc();

4 try (MPSTEndpoint<MathSvc, C> ep =

5 new MPSTEndpoint<>(sess, C, new ObjectStreamFormatter())) {
6 ep.connect (S, SocketChannelEndpoint::new, "localhost", 8888);

7 MathSvc_C_1 s1 = new MathSvc_C_1(ep);

8 while (i.val > 1)

9 sl = subl(sl, i) // subl on line 15

10 // State transitions: 1 -> 2 -> 4 -> 1 (see Fig.1.6)

11 .send(S, Val, res.val).send(S, Mult, i.val).receive(S, Prod, res);
12 sl.send(S, Bye); // 1 -> EndSocket

13 return res.val;

14}

15 MathSvc_C_1 subl(MathSvc_C_1 s1, Buf<Integer> b) throws ... {

16 // State transitions: 1 -> 2 -> 3 -> 1 (see Fig.1.6)
17 return sl.send(S, Val, b.val).send(S, Add, -1).receive(S, Sum, b);
18)

Figure 13.7 Factorial calculation using the Endpoint API generated for C.

296 Distributed Programming Using Java APIs Generated from Session Types

Before proceeding to the main body of a protocol implementation, the
MPSTEndpoint Object is used to set up the session topology via connection
establishment actions with the appropriate peer endpoints. On line 6, the
MPSTEndpoint is used to perform the client-side connect to S. The second
argument is a reference to the constructor of SocketChannelEndpoint in the
Scribble runtime library, which embodies a standard TCP socket; alternatives
include HTTP and shared memory endpoints. The connection setup phase is
concluded when the MPSTEndpoint is passed as a constructor argument to the
initial state channel constructor, MathSve_C_1, expained next.

The MPSTEndpoint implements the Java AutoCloseable interface and should
be handled using a try-with-resources, as on line 4; the encapsulated network
resources are implicitly closed when control flow exits the try statement.

State Channel API. The State Channel API is generated to capture the
protocol-specific behaviour of a role in the source global protocol, as
represented by its EFSM, via the static typing facilities of Java.

e Each state in the EFSM is reified as a Java class for a state-specific
session channel, thus conferring a distinct Java type to channels at each
state in a protocol. We refer to instances of these generated channel
classes as state channels.

e The I/O operations (methods) supported by a channel class are the
transitions permitted by the corresponding EFSM state.

e The return type of each generated I/O operation is the channel type
for the successor state following the corresponding transition from the
current state. Performing an I/O operation on a state channel returns a
new instance of the successor channel type.

By default, the API generation uses a simple state enumeration (e.g., Fig-
ure 13.6) for the generated channel class names; e.g., MathSvc_C_1 for the
initial state channel. More meaningful names for states may be specified
by the user as annotations in the Scribble source. The terminal state of an
EFSM, if any, is generated as an EndSocket class that supports no further I/O
operations. The channel class for the initial state is the only class with a public
constructor, taking an MPSTEndpoint parameterised on the appropriate Session
Class and role types; all other state channels are instantiated internally by the
generated API operations.

Figure 13.8 summarises the generated channel classes and their main I/O
operations for ¢ in MathSve. E.g., a state channel of type MathSvc_C_1 supports
methods for sending val and Bye to S; these send methods are overloaded via

13.2 Scribble Endpoint API Generation: Toolchain Overview 297

Gen. class Session operation methods

MathSvc_C_1 MathSvc_C_2 send(S role, Val op, Integer payl)
EndSocket send(S role, Bye op)

MathSvc_C_2 MathSvc_C_3 send(S role, Add op, Integer payl)
MathSvc_C_4 send(S role, Mult op, Integer payl)

MathSvc_C_3 MathSvc_C_1 receive(S role, Sum op, Buf<? super Integer> payl)
MathSvc_C_4 MathSvc_C_1 receive(S role, Prod op, Buf<? super Integer> payl)

Figure 13.8 State Channel API generated for C in MathSvc (Figure 13.5).

the parameters for the destination role and message operator (the singleton
types of the Session API), as well as the message payloads. Sending a val
returns a MathSve_C_2 channel, i.e., the state of sending an Add or Mult; whereas
a sending a Bye returns an EndSocket.

For unary input states, i.e., an EFSM state with a single input transition,
the generated receive method, e.g., for Sum in MathSve_C_3, takes Buf arguments
parameterised according to the expected payload type(s), if any. Buf<T> is
a simple generic one-slot buffer provided by the Scribble runtime library,
whose value is held in a public val field. The receive method is generated to
write the payload(s) of the received message to the respective Buf arguments.

In Figure 13.7, lines 7-14 use the State Channel API for ¢ to perform
the factorial calculation. Starting from the instance of MathSvc_C_1, assigned
to s1, the implementation proceeds by performing one I/O operation on
each current state channel to obtain the next. The fluent API permits con-
venient chaining of I/O operations, e.g., line 17 in subl starts from state
1, and proceeds through states 2 and 3 (by sending val and Add messages),
before returning to 1 (by receiving the sum). The endpoint implementation is
complete upon reaching EndSocket.

Attempting any I/O action that is not permitted by the current protocol
state, as designated by the target state channel, will be caught by Java type
checking. For example (from the Eclipse IDE):

s1 = subd(sl, 1)//.send(5, Val, b.val) -- did not send the Val
.send(5, Mult, i.val).receive(S, Prod, b);

£ The method send(5, Val, Integer) in the type MathService_C_1 is not applicable for the arguments (5, Mult,
Integer)

13.2.3 Hybrid Session Verification

As demonstrated above, Scribble-generated Endpoint APIs leverage standard,
static Java type checking to verify protocol conformance, provided every state
channel returned by an API operation is used exactly once up to the end of

298 Distributed Programming Using Java APIs Generated from Session Types

the session. This is the implicit usage contract of a Scribble-generated API,
to respect EFSM semantics in terms of following state transitions linearly up
to the terminal state.

Much research has been conducted towards static analyses for such
resource usage properties: to this end, it may be possible to combine these
with API generation tools to recover fully static safety guarantees in cer-
tain contexts. However, designing such analyses for mainstream engineering
languages, such as Java and C#, in full generality is a significant challenge,
and often based on additional language extensions or imposing various
conservative restrictions.

As a practical compromise, the Endpoint API generation of Scribble
promotes a hybrid approach to session verification. The idea is simply to
complement the static type checking of session I/O on state channels with
run-time checks that each state channel is indeed used exactly once in a
session execution.

Run-time checking of linear state channel usage. The checks on linear
state channel usage are inlined into the State Channel API operations by the
API generation. There are two cases by which state channel linearity may be
violated.

Repeat use. Every state channel instance maintains a boolean state value
indicating whether it has been used, i.e., a session 1/O oper-
ation has been performed on the channel. The API generation
guards each I/O operation with a run-time check on this boolean.
If the channel has already been used, a LinearityException iS
raised.

Unused. All state channels of a session instance share a boolean state value
indicating whether the session is complete for the local endpoint. The
API is generated to set this flag when a terminal operation, i.e. an 1/O
action leading to the terminal EFSM state, is performed. If control flow
leaves the enclosing try statement of the associated MPSTEndpoint, the
Scribble runtime checks this flag via the implicit close method of the
AutoCloseable interface. If the session is incomplete, an exception is
raised.

It is not possible for the completion flag to be set if any state chan-
nel remains unused on leaving the try statement of an MPSTEndpoint. IDEs

13.2 Scribble Endpoint API Generation: Toolchain Overview 299

(e.g., Eclipse) support compile-time warnings in certain situations where
AutoClose-able resources are not appropriately handled by a try.

Hybrid session safety. Together, a statically typed Endpoint API with run-
time state channel linearity checking offers the following properties.

1. If a session endpoint implementation respects state channel linearity,
then the generated API statically ensures freedom from the application
errors outlined in § 13.1 (i.e., communication safety, e.g., [4, error-
freedom]) when composed with conformant endpoints for the other roles
in the protocol.

2. Regardless of state channel linearity, any statically well-typed endpoint
implementation will never perform a message passing action that does
not conform to the protocol.

These properties follow from the fact that the only way to violate the EFSM of
the API, generated from a validated protocol, is to violate state channel linear-
ity, in which case the API raises an exception without actually performing the
offending I/O action. This hybrid form of session verification thus guarantees
the absence of protocol violation errors during session execution up to pre-
mature termination, which is always a possibility in practice due to program
errors outside of the immediate session code, or other failures, such as broken
connections.

When following the endpoint implementation pattern promoted by a
generated API, by associating session code to the MPSTEndpoint-try, the Java
I0Exception Of, e.g., a broken connection will direct control flow out of the
try, safely (w.r.t. session typing) avoiding further I/O actions in the failed
session. Finer-grained treatment of session failures is a direction of ongoing
development for Scribble (and MPST).

13.2.4 Additional Math Service Endpoint Examples

A first implementation of s. Figure 13.9 summarises the State Channel API
generated for s in MathSve. Unlike ¢, the EFSM for s features non-unary input
states, which correspond at the process implementation level to the branch
primitive of formal session calculi (e.g., [1]). Java does not directly support a
corresponding language construct, but API generation enables some different
options.

One option, demonstrated here, is designed for standard Java switch pat-
terns. For each branch state, a branch-specific enun is generated to enumerate

300 Distributed Programming Using Java APIs Generated from Session Types

Generated class Session operation methods

MathSvc_S_1 MathSvc_S_1_Cases branch(C role)

MathSvc_S_1_Cases MathSvc_S_2 receive(Val op, Buf<? super Integer> payl)
EndSocket receive(Bye op)

MathSvc_S_2 MathSvc_S_2_Cases branch(C role)

MathSvc_S_2_Cases MathSvc_S_3 receive(Add op, Buf<? super Integer> payl)
MathSvc_S_4 receive(Mult op, Buf<? super Integer> payl)

MathSvc_S_3 MathSvc_S_1 send(C role, Sum op, Integer payl)

MathSvc_S_4 MathSvc_S_1 send(C role, Prod op, Integer payl)

1 try (ScribServerSocket ss = new SocketChannelServer(8888)) { // TCP

2 while (true) { // Persistent server

3 MathSvc sess = new MathSvc();

4 try (MPSTEndpoint<MathSvc, S> ep

5 = new MPSTEndpoint<>(sess, S, new ObjectStreamFormatter())) {

6

7

8

9

ep.accept(ss, O);

Buf<Integer> bl = new Buf<>(), b2 = new Buf<>();
MathSvc_S_1 sl = new MathSvc_S_1(ep);

Loop: while (true) {

10 MathSvc_S_1_Cases cl1 = sl.branch(C);

11 switch (cl.op) {

12 case Bye: cl.receive(Bye); break Loop;

13 case Val:

14 MathSvc_S_2_Cases c2 = cl.receive(Val, bl).branch(C);

15 switch (c2.o0p) {

16 case Add: sl = c2.receive(Add, b2)

17 .send(C, Sum, bl.val + b2.val); break;
18 case Mult: sl = c2.receive(Mult, b2)

19 .send(C, Prod, bl.val * b2.val); break;
20 }r}rr}

Figure 13.9 State Channel API generated for S in MathSvc; and an implementation of S
using the generated APIL.

the cases of the choice according to the source protocol. E.g., for the initial
state of S: enum MathSve_S_1_Enum { Val, Bye }.

The channel class itself (Figure 13.9), MathSvc_S_1, is generated with a
single branch operation. This method blocks until a message is received,
returning a new instance of the generated MathSvc_S_1_Cases class, which holds
the enum value corresponding to the received message in a final op field.
Unfortunately, since the static type of the Cases object reflects the range of
possible cases, the API requires the user to manually call the corresponding
receive method of the Cases object, essentially as a form of cast to obtain the

appropriately typed state channel.

13.3 Real-World Case Study: HTTP (GET) 301

Lines 11-20 in Figure 13.9 implement a switch on the op enum of
MathSvc_S_1_Cases. The Java compiler is able to statically determine whether
all enum cases are exhaustively handled. In each of the two cases (Bye and
val), the corresponding receive-cast is called on the Cases object to obtain
the successor state channel of that (input) transition. Leveraging the hybrid
verification approach, the generated API includes an implicit run-time check
that the correct cast method is used following a branch; calling an incorrect
method raises an exception.

§ 13.4 discusses an alternative API generation that allows session
branches to checked by Java typing without additional run-time checks.

Alternative c factorial implementation. Following is an implementation of
a factorial calculation using the ¢ endpoint of MathSvc in a recursive method,
illustrating the use of the State Channel API in an alternative programming
style.

MathSvec_C_1 facto(MathSvc_C_1 s1, Buf<Integer> b) throws ... {
if (b.val == 1) return sl; // Pre: b.wal >= 1
Buf<Integer> tmp = new Buf<>(b.val);
return facto(subl(sl, tmp), tmp) // subl from Fig.13.7
.send(S, Val, b.val).send(S, Mult, tmp.val).receive(S, Prod, b);
}

Besides conformance to the protocol itself, the state channel parameter and
return types help to ensure that the appropriate I/O transitions are performed
through the protocol states in order to enact the recursive method call
correctly.

13.3 Real-World Case Study: HTTP (GET)

In this section, we apply the Scribble API generation methodology to a real-
world protocol, HTTP/1.1 [3]. For the purposes of this tutorial, we limit this
case study to the GET method of HTTP, and treat a minimal number of
message fields required for interoperability with existing real-world clients
and servers. The following implementations have been tested against Apache
(as currently deployed by the dept. of computing, Imperial College London)
and Firefox 5.0.1.

A key point illustrated by this experiment on using session types in prac-
tice is the interplay between data types (message structure) and session types
(interaction structure) in a complete protocol specification. In particular, that

302 Distributed Programming Using Java APIs Generated from Session Types

aspects of the former can be refactored into the latter, while fully preserving
protocol interoperability, to take advantage of the safety properties offered by
Scribble-generated APIs in endpoint implementations.

13.3.1 HTTP in Scribble: First Version

HTTP is well-known as a client-server request-response protocol, typically
conducted over TCP. Despite its superficial simplicity, i.e., a sequential
exchange of just two messages between two parties, the standards documen-
tation for HTTP spans several hundred pages, as is often the case for Internet
applications and other real-world protocols.

Global protocol. As a first version, we simply express the high-level notion
of an HTTP request-response as follows:

.../Req.java" as Req;
sig <java> "...server.Resp" from ".../Resp.java" as Resp;
global protocol Http(role C, role S) {

Req from C to S;

Resp from S to C;
}

sig <java> "...client.Req" from

A small difference from the Scribble examples seen so far are the sig
declarations for custom message formatting. Unlike type declarations, which
pertain specifically to payload types, sig is used to work with host language-
specific (e.g., <java>) routines for arbitrary message formatting; e.g., Req. java
contains Java routines, provided as part of this protocol specification, for
performing the serialization and deserialization between Java Req objects and
the actual ASCII strings that constitute concrete HTTP requests on the wire.

Client implementation. For such a simple specification, we omit the
EFSMs and Endpoint APIs for each role, and directly give client code using
the generated API (omitting the usual preamble):

Buf<Resp> b = new Buf<>();

Http_C_1 s1 = new Http_C_1(client); // client: MPSTEndpoint<Http, C>
sl.send(S, new Req("/index.html", "1.1", host)).receive(S, Resp, b);

The generated API prevents errors such as attempting to receive Resp
before sending Req or sending multiple Reqs. However, one may naturally
wonder if this is “all there is” to a correct HTTP client implementation—
where is the complexity that is carefully detailed in the RFC specification?

13.3 Real-World Case Study: HTTP (GET) 303

The answer lies in the message formatting code that we have conveniently
abstracted as the Req and Res message classes. A basic HTTP session does
exchange only two messages, but these messages are richly structured,
involving branching, optional and recursive structures. In short, this first
version assumes the correctness of the Req and Resp classes (written by the
protocol author, or obtained using other parsing/formatting utilites) as part of
the protocol specification.

13.3.2 HTTP in Scribble: Revised
As defined in RFC 7230 [3] (§ 3 onwards), the message grammar is:

HTTP-message = start-line *(header-field CRLF) CRLF [message-body]

start-line = request-line / status-line
request-line = method SP request-target SP HTTP-version CRLF
header-field = field-name ":" OWS field-value OWS

. // CRLF=carriage return line feed; SP=space; OWS=optional white space

Intuitively, the act of sending a HTTP request may be equivalently understood
as sending a request-line, followed by sending zero or more header-fields ter-
minated by CRLF, and so on. Following this intuition, we can refactor much of
this structure from the data side of the specification to the session types side,
giving a Scribble description that captures the target protocol specification
in more explicit detail than previously. Consequently, the generated API will
promote the Java endpoint to respect this finer-grained protocol structure by
static typing, as opposed to assuming the correctness of the supplied message
classes.

We are able to refine the Scribble for HTTP/TCP in this way because
any application-level notion of “message” identified in the specification is
ultimately broken down and communicated via the TCP bit streams, in a
manner that is transparent to the other party (client or server). This approach
may thus be leveraged for any application protocol conducted over a transport
with such characteristics.

Global protocol. Figure 13.10 is an extract of a revised Scribble specifi-
cation of HTTP. The monolithic request and response messages have been
decomposed into smaller constituents; e.g., RequestL and Host respectively
denote the request-line and host-field in a request. For the most part, the
Java code for formatting each message fragment as an HTTP ASCII string
is reduced to a simple print instruction with compliant white spacing built in

304 Distributed Programming Using Java APIs Generated from Session Types

1 sig <java> "...client.RequestLine" from ".../RequestLine.java" as RequestL;
2 sig <java> "...client.Host" from ".../Host.java" as Host;

3 sig <java> "...Body" from ".../Body.java" as Body;

4 sig <java> "...client.UserAgent" from ".../UserAgent.java" as UserA;

5 sig <java> "...server.HttpVersion" from ".../HttpVersion.java" as HttpV;

6 sig <java> "...server._200" from ".../_200.java" as 200;

7 sig <java> "...server._404" from ".../_404.java" as 404;

8

9

global protocol Http(role C, role S) {
do Request(C, S);
do Response(C, S);
}
aux global protocol Request(role C, role S) {
RequestL from C to S; // GET /index.html HTTP/1.1
rec X {
choice at C { Host from C to S; continue X; } // host: www.doc.ic.ac.uk
or { UserA from C to S; continue X; }// User-Agent: Mozilla..
or ...
or { Body from C to S; }
} } // (auz bypasses walidating these "subprotocols" as "root" protos)
aux global protocol Response(role C, role S) {
HttpV from S to C; // HTTP/1.1
23 choice at S { 200 from S to C; } // 200 OK
24 or { 404 from S to C; } // 404 Not Found
25
26}

I T S S S O R T
N = O © ®» N O Ok W N~ O

Figure 13.10 Extract from the revised specification of HTTP in Scribble.

(e.g, crLFs). The structure by which these constituents should be composed
to reform whole messages is now expressed in the Request and Response
subprotocols.

Client implementation. Taking the revised Scribble HTTP, Endpoint API
generation proceeds as usual, generating the EFSMs for each role to give
the structure of the State Channel API. Lines 2-3 in Figure 13.11 is an
almost minimal implementation of a correctly formatted request according
to the Request subprotocol. The typed API ensures the initial, mandatory
RequestLine; then amongst the recursive choice cases we opt to send only
the Host field, before concluding the request by an empty Body. A complete
client implementation is given by: doResponse (doRequest (s1)).

Besides limiting to a subset of the protocol, this revision is by no means
a complete specification of HTTP in terms of capturing the entire message
grammar in full detail; the fidelity of the Scribble specification may be pushed

13.4 Further Endpoint API Generation Features 305

Http_C_3 doRequest (Http_C_1 s1) throws Exception {

1
2 return sl.send(S, new RequestLine("/index.html", "1.1"))

3 .send (S, new Host("www.host.com")).send(S, new Body(""));
4 %

5 EndSocket doResponse (Http_C_3 s3) throws Exception {

6 Http_C_4_Cases cases = s3.async(S, HttpV, new Buf<>()).branch(S);
7 switch (cases.op) {

8 case _200:

9 case _404:

= 3
(-

S

Figure 13.11 Extract from an implementation of a HTTP client via API generation.

further, perhaps towards a “character-perfect” specification, via suitably fine-
grained message decomposition.

13.4 Further Endpoint APl Generation Features

Branch-specific callback interfaces. Scribble also generates a callback-
based API for branch states, which does not require additional run-time
checks (cf. §13.2.4). For each branch state, a handler interface is gen-
erated with a callback variant of receive for each choice case; e.g.,
MathSvc_S_1 Handler in Figure 13.12. Apart from the operator and payloads,
each method takes the continuation state channel as a parameter; the return
type is void. Java typing ensures that a (concrete) implementation of this
interface implicitly covers all cases of the branch. Finally, a variant of branch
is generated in the parent channel class (e.g., MathSvc_S_1) that takes an
instance of the corresponding handler interface, with return void. As before,
this branch blocks until a message is received; the API then delegates the
handling of the message to the appropriate callback method of the supplied
handler object.

Figure 13.12 gives a class that implements the handler interfaces of
both branch states for S. Assuming an MPSTEndpoint<MathSvc, S> serv, this
handler class may be used in an event-driven implementation of S by: new
MathSvc_S_1(serv) .branch(C, new MathSHandler ()).

State-specific futures for unary inputs. For unary input states, Scribble
additionally generates state-specific input futures as an alternative mechanism

306 Distributed Programming Using Java APIs Generated from Session Types

Generated class Session operation methods (additional to Fig. 1.9)

MathSvc_S_1 void branch(C role, MathSvc_S_1_Handler h)

MathSvc_S_1_Handler void receive(MathSvc_S_2 s, Val op, Buf<Integer> payl)
void receive(EndSocket s, Bye op)
MathSvc_S_2 void branch(C role, MathSvc_S_2_Handler h)

MathSvc_S_2_Handler void receive(MathSvc_S_3 s, Add op, Buf<Integer> payl)
void receive(MathSvc_S_4 s, Mult op, Buf<Integer> payl)

1 class MathSHandler implements MathSvc_S_1_Handler, MathSvc_S_2_Handler {
2 private Buf<Integer> bi;

3 public void receive(MathSvc_S_2 s2, Val op, Buf<Integer> bl) .. {

4 this.bl = bil;

5 s2.branch(C, this);

6 }

7 public void receive(EndSocket end, Bye op) throws ... { }

8 public void receive(MathSvc_S_3 s3, Add op, Buf<Integer> b2) throws ..

9 { s3.send(C, Sum, this.bl.val + b2.val).branch(C, this); }

10 public void receive(MathSvc_S_4 s4, Mult op, Buf<Integer> b2) throws ..
11 { s4.send(C, Prod, this.bl.val * b2.val).branch(C, this); }

12}

Figure 13.12 Additional branch callback interfaces generated for S in MathSvc; and a
corresponding implementation of S.

to the basic receive. For example, in the revised Scribble specification of
HTTP (Figure 13.11), the channel class Http.C_3 corresponds to the state
where ¢ should receive the HTTP version element (Httpv) of the response
status-line (Line 14 in Figure 13.10). For this state, Scribble generates the
class Http_C_3_Future. Its key elements are input-specific fields for the mes-
sage type (msg) or payloads (e.g., pay1l) to be received, and a sync method to
force the future. For the Http_C_3 channel class itself, the following variant of
receive is generated:

Http_C_4 async(S role, HttpV op, Buf<Http_C_3_Future> fut)
Unlike a basic receive, calling async returns immediately with a new instance
of Http_C_3_Future in the supplied Buf.

Calling sync first implicitly forces all pending prior futures, in order, for
the same peer role. It then blocks the caller until the expected message is
received, and writes the values to the generated fields of the future. This
safely preserves the FIFO messaging semantics between each pair of roles
in a session, so that endpoint implementations using generated futures retain
the same safety properties as using only blocking receives. Repeat forcing of
an input future has no effect.

An example usage of async was given in Figure 13.11 (line 6). There,
the async is used to safely affect a non-blocking input action (the client is

References 307

not interested in blocking on awaiting just the HttpV portion of the response).
Since the HttpV future is never explicitly forced — unlike state channels, input-
futures are not linear objects — async also affects a user-level form of affine
input action, in the sense that the user never reads this message. Finally, async
enables postponing input actions until later in a session, for safe user-level
permutation of session 1/O actions.

References

[1] M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, and L. Padovani. Global
progress for dynamically interleaved multiparty sessions. Mathematical
Structures in Computer Science, 760:1-65, 2015.

[2] P.-M. Deniélou and N. Yoshida. Multiparty session types meet commu-
nicating automata. In ESOP ’12, volume 7211 of LNCS, pages 194-213.
Springer, 2012.

[3] R. Fielding, Y. Lafon, M. Nottingham, and J. Reschke.
IETF RFCs 7230-7235 Hypertext Transfer Protocol 1.1.
https://tools.ietf.org/html/rfc7230

[4] K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous
session types. In POPL ’08, pages 273-284. ACM, 2008.

[5] R. Hu. Demo files for this BETTY tutorial chapter. https://
github.com/scribble/scribble-java/tree/master/modules/
demos/scrib/bettybook

[6] R. Hu and N. Yoshida. Hybrid session verification through endpoint
API generation. In FASE ’16, volume 9633 of LNCS, pages 401-418.
Springer, 2016.

[7] J. Lange, E. Tuosto, and N. Yoshida. From communicating mach-
ines to graphical choreographies. In POPL ’15, pages 221-232. ACM
Press, 2015.

[8] OMG UML 2.5 specification. http://www.omng.org/spec/UML/2.5

[9] Scribble homepage. http://www.scribble.org

[10] Scribble GitHub repository. https://github.com/scribble/scri
bble-java

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

