
4
How to Verify Your Python Conversations

Rumyana Neykova and Nobuko Yoshida

Imperial College London, UK

Abstract

In large-scale distributed systems, each application is realised through inter-
actions among distributed components. To guarantee safe communication
(no deadlocks and communication mismatches) we need programming lan-
guages and tools that structure, manage, and policy-check these interactions.
Multiparty session types (MSPT), a typing discipline for structured inter-
actions between communicating processes, offers a promising approach.
To date, however, session types applications have been limited to static
verification, which is not always feasible and is often restrictive in terms
of programming API and specifying policies. This chapter investigates the
design and implementation of a runtime verification framework, ensuring
conformance between programs and specifications. Specifications are written
in Scribble, a protocol description language formally founded on MPST.
The central idea of the approach is a runtime monitor, which takes a
form of a communicating finite state machine, automatically generated from
Scribble specifications, and a communication runtime stipulating a message
format. We demonstrate Scribble-based runtime verification in manifold
ways. First, we present a Python library, facilitated with session primi-
tives and verification runtime. Second, we show examples from a large
cyber-infrastructure project for oceanography, which uses the library as a
communication medium. Third, we examine communication patterns, fea-
turing advanced Scribble primitives for verification of exception handling
behaviours.

77

78 How to Verify Your Python Conversations

4.1 Framework Overview

Figure 4.1 illustrates the methodology of our framework. The development
of a communication-oriented application starts with the specification of the
intended interactions (the choreography) as a global protocol using the Scrib-
ble protocol description language [9]. From a global protocol, the toolchain
mechanically generates (projects) a Scribble local protocol, represented as a
finite state machine (FSM), for each participant (abstracted as a role). As a
session is conducted at run-time, the monitor at each endpoint validates the
communication actions performed by the local endpoint, and the messages
that arrive from the other endpoints, against the transitions permitted by the
monitor’s FSM. Each monitor thus works to protect (1) the endpoint from
invalid actions by the network environment, and (2) the network from incor-
rectly implemented endpoints. Our runtime multiparty session types (MPST)
[6] framework is designed in this way to ensure, using the decentralised
monitoring of each local endpoint, that the session as a whole conforms to
the original global protocol [1], and that unsafe actions by a bad endpoint
cannot corrupt the protocol state of other compliant endpoints.

Figure 4.1 Scribble methodology from global specification to local runtime verification.

4.2 Scribble-Based Runtime Verification 79

Outline. We outline the structure of this chapter. Section 4.2 demonstrates
our runtime MPST framework through an example. We present a global-to-
local projection of Scribble protocols, endpoint implementations, and local
FSM generation. Section 4.3 demonstrates an API for conversation program-
ming in Python that supports standard socket-like operations, as well as
event-driven interface. The API decorates conversation messages with meta
information required by the monitors to perform runtime verification. Sec-
tion 4.4 discusses the monitor implementation, focusing on key architectural
requirements of our framework. Section 4.5 presents an extension of Scribble
with asynchronous session interrupts. This is a feature of MPST, giving a
general mechanism for handling nested, multiparty exception handling. We
present the extension of the Python API with a new construct for scopes,
endpoint implementations, and local FSM generation for monitoring. Sec-
tion 4.6 explains the correspondence between a theoretical model and our
implementation.

4.2 Scribble-Based Runtime Verification

This section illustrates the stages of our framework and its implementation
through a use case, emphasising the properties verified at each verification
stage. The presented use case is obtained from our industrial partners Ocean
Observatories Institute (OOI) [7] (use case UC.R2.13 ”Acquire Data From
Instrument”). The OOI is a project to establish a cyberinfrastructure for
the delivery, management and analysis of scientific data from a large net-
work of ocean sensor systems. Its architecture relies on the combination of
high-level protocol specifications of network services (expressed as Scribble
protocols [8]) and distributed runtime monitoring to regulate the behaviour of
third-party applications within the system. We have integrated our framework
into the Python-based runtime platform developed by OOI [7].

4.2.1 Verification Steps

Global Protocol Correctness. The first level of verification is when design-
ing a global protocol. A Scribble global protocol for the use case is listed in
Figure 4.2 (left). Scribble describes interactions between session participants
through message passing sequences, branches and recursion. Each message
has a label (an operator) and a payload. The Scribble protocol in Figure 4.2
starts by protocol declaration, which specifies the name of the protocol, Data

80 How to Verify Your Python Conversations

1 global protocol DataAcquisition(
2 role U, role A, role I) {
3 Request (string :info) from U to A;
4 Request (string :info) from A to I;
5 choice at I {
6 Supported() from I to A;
7 rec Poll {
8 Poll() from A to I;
9 choice at I {

10 Raw(data) from I to A
11 @{size(data) <= 512};
12 Formatted(data) from A to U;
13 continue Poll;
14 } or {
15 Stop() from I to A;
16 Stop() from A to U;}}
17 } or {
18 NotSupported from I to A;
19 Stop() from A to I;
20 Stop from A to U;}}

local protocol DataAcquisition
at A (role U, role A, role I)}

Request (string:info) from U;
Request (string:info) to I;
choice at I {

Supported() from I;
rec Poll {

Poll() to I;
choice at I {
Raw(data) from I
@{size(data) <= 512};
Formatted(data) to U;
continue Poll;
} or {
Stop() from I;
Stop() to U;}}

} or {
NotSupported from I;
Stop() to I;
Stop to U;}}

Figure 4.2 Global Protocol (left) and Local Protocol (right).

Acquisition, and its participating roles – a User (U), an Agent service (A)
and an Instrument (I). The overall scenario is as follows: U requests through
A to start streaming a list of resources from I (line 3–4). At line 5 I makes a
choice whether to continue the interaction or not. If I supports the requested
resource, I sends a message Supported and the communication continues by
A sending a Poll request to I. The raw resource data is sent from I to A, at A
the data is formatted and forwarded to U (line 10–12). Line 11 demonstrates
an assertion construct specifying that I is allowed to send data packages that
are less than 512MB.

The Scribble toolchain validates that a protocol is well-formed and thus
projectable for each role. For example, in each case of a choice construct, the
deciding party (e.g. at I) must correctly communicate the decision outcome
unambiguously to all other roles involved; a choice is badly-formed if the
actions of the deciding party would cause a race condition on the selected
case between the other roles, or if it is ambiguous to another role whether the
decision has already been made or is still pending.
Local protocol conformance. The second level of verification is performed
at runtime and ensures that each endpoint program conforms to the local
protocol structure. Local protocols specify the communication behaviour for
each conversation participant. Local protocols are mechanically projected
from a global protocol. A local protocol is essentially a view of the global
protocol from the perspective of one participant role. Projection works by
identifying the message exchanges where the participant is involved, and

4.2 Scribble-Based Runtime Verification 81

disregarding the rest, while preserving the overall interaction structure of the
global protocol.

From the local protocols, an FSM is generated. At runtime, the endpoint
program is validated against the FSM states. There are two main checks that
are performed. First, we verify that the type (a label and payloads) of each
message matches its specification (labels can be mapped directly to message
headers, or to method calls, class names or other relevant artefacts in the
program). Second, we verify that the flow of interactions is correct, i.e. inter-
action sequences, branches and recursions proceed as expected, respecting
the explicit dependencies (e.g. m1() from A to B; m2() from B to C;
imposes a causality at B, which is obliged to receive the messages from A

before sending a message to C).
Policy validation. The final level of verification enables the elaboration
of Scribble protocols using annotations (@{} in Figure 4.2). Annotations
function as API hooks to the verification framework: they are not verified
by the MPST monitor itself, but are, instead, delegated to a third-party
library. Our current implementation uses a Python library for evaluating
basic predicates (e.g. the size check in Figure 4.2). At runtime, the monitor
passes the annotated information, along with the FSM state information, to
the appropriate library to perform the additional checks or calculations. To
plug in an external validation engine, our toolchain API requires modules for
parsing and evaluating the annotation expressions specified in the protocol.

4.2.2 Monitoring Requirements

Positioning. In order to guarantee global safety, our monitoring framework
imposes complete mediation of communications: communication actions
should not have an effect unless the message is mediated by the monitor.
The tool implements this principal for outline monitor configurations, i.e. the
monitor is running as a separate application. Outline monitoring is realised
by dynamically modifying the application-level network configuration to
(asynchronously) route every message through a monitor. Our prototype is
built over an Advanced Message Queuing Protocol (AMQP) [1] transport.
An AMQP is a publish-subscribe middleware. An AMQP network consists
of a federation of distributed virtual routers (called brokers) and queues. A
monitor dispatcher is assigned to each network endpoint as a conversation
gateway. The dispatcher can create new routes and spawn new monitor
processes if needed, to ensure the scalability of this approach.

82 How to Verify Your Python Conversations

Message format. To monitor Scribble conversations, our toolchain relies
on a small amount of message meta data, referred to as Scribble header,
and embedded into the message payload. Messages are processed depending
on their kind, as recorded in the first field of the Scribble header. There
are two kinds of conversation messages: initialisation (exchanged when a
session is started, carrying information such as the protocol name and the
role of the monitored process) and in-session (carrying the message operation
and the sender/receiver roles). Initialisation messages are used for routing
reconfiguration, while in-session messages are the ones checked for protocol
conformance.
Principals and Conversation runtime. A principal (an application) imple-
ments a protocol behaviour using the Conversation API. The API is built on
top of a Conversation Runtime. The runtime provides a library for instan-
tiating, managing and programming Scribble protocols and serialising and
deserializing conversation messages. The library is implemented as a thin
wrapper over an existing transport library. The API provides primitives for
creating and joining a conversation, as well as primitives for sending and
receiving messages.

4.3 Conversation Programming in Python

The Python Conversation API is a message passing API, which offers a high-
level interface for safe conversation programming, mapping the interaction
primitives of session types to lower-level communication actions on concrete
transports. The API primitives are displayed in Figure 4.3. In summary, the
API provides functionality for (1) session initiation and joining, (2) basic
send/receive.
Conversation Initiation. A session is initiated using the create method.
It creates a fresh conversation id and the required AMQP objects (principal
exchange and queue), and sends an invitation for each role specified in the
protocol. Invitations are sent to principals.

Conversation API operation Purpose
create(protocol_name, config.yml) Initiate conversation, send invitations
join(self, role, principal_name) Accept invitation
send(role, op, payload) Send a message
recv(role) Receive message from role
recv_async(self, role, callback) Asynchronous receive

Figure 4.3 The core Python Conversation API operations.

4.3 Conversation Programming in Python 83

We use a configuration file to provide the mapping between roles and
principals. We give on the right an example of the configuration file (invita-
tion section) for the DataAcquisition protocol. Principal names direct the
routing of invitation message to the right endpoint. Each invitation carries a
role, a principal name and a name for a Scribble local specification file. An
invitation is accepted using the Conversation.join method. It establishes
an AMQP connection and, if one does not exist, creates an invitation queue
for receiving invitations.

invitations:
-role: U
principal name: bob
local capability: DataAcquisition.spr

-role: A
principal name: allice
local capability: DataAcquisition.spr

-role: I
principal name: carol
local capability: DataAcquisition.spr

We demonstrate the usage of the API in a Python implementation of the
local protocol projected for the Agent role. The local protocol is given in
Figure 4.2 (right). Figure 4.4 (left) gives the Agent role implementation. First,
the create method of the Conversation API initiates a new conversation
instance of the DataAcquisition protocol, and returns a token that is
used to join the conversation locally. The config.yml file specifies which
network principals will play which roles in this session and the runtime sends
invitation messages to each principal. The join method confirms that the
endpoint is joining the conversation as the principal alice playing role A.
Once the invitations are sent and accepted (via Conversation.join), the
conversation is established and the intended message exchange can proceed.
As a result of the initiation procedure, the runtime at every participant has a
mapping (conversation table) between each role and their AMQP addresses.
Conversation Message Passing. The API provides standard send/receive
primitives. Send is asynchronous, meaning that a basic send does not block
on the corresponding receive; however, the basic receive does block until the
message has been received. In addition, an asynchronous receive method,
called recv_async, is provided to support event-driven usage of the conver-
sation API. These asynchronous features map closely to those supported by

84 How to Verify Your Python Conversations

class ClientApp(BaseApp):
def start(self):

c = Conversation.create(
’DataAcquisition’, ’config.yml’)
c.join(’A’, ’alice’)

resource_request = c.recv(’U’)
c.send(’I’, resource_request)
req_result = c.recv(’I’)

if (req_result == ’Supported’):
c.send(’I’, ’Poll’)
op, data = c.recv(’I’)

while (op != ’Stop’):
formatted_data = format(data)
c.send(’U’, formatted_data)

c.send(’U’, stop)
else:

c.send([U, I], stop)
c.stop()

class ClientApp(BaseApp):
def start(self):

c = Conversation.create(
’DataAcquisition’, ’config.yml’)
c.join(’A’, ’alice’)
c.recv_async(’U’, on_request)

def on_request(self, conv, op, msg):
if (op == SUPPORTED):

conv.send(’I’, ’Poll’)
conv.recv_async(’I’, ’on_data’)

else: conv.send([I, U], ’Stop’)

def on_data(self, conv, op, payload):
if (op != ’Stop’):

formatted_data = format(payload)
c.send(’U’, formatted_data)

else:
conv.send(’U’, ’Stop’)
conv.stop()

Figure 4.4 Python program for A: synchronous implementation (left) and event-driven
implementation (right).

Pika1, a Python transport library used as an underlying transport library in
our implementations.

Each message signature in a Scribble specification contains an operation
and payloads (message arguments). The API does not mandate how the
operation field should be treated, allowing the flexibility to interpret the
operation name in various ways, e.g. as a plain message label, an RMI method
name, etc. We treat the operation name as a plain label.

Following its local protocol, the program for A receives a request from
U and forwards the message to I. The recv returns a tuple, (label, payload)
of the message. When the message does not have a payload, only the label
is returned (req_result = c.recv(’I’)). The recv method can also
take the source role as a single argument (c.recv(’I’)), or additionally
the label of the desired message (c.recv(’I’, ’Request’)). The send
method called on the conversation channel c takes, in this order, the des-
tination role, message operator and payload values as arguments. In our
example, the received payload resource_request is forwarded without
modifications to I. After A receives the reply from I, the program checks the
label value req_result using conditional statements, if (req_result==
’Supported’). If I replies with ’Supported’, A enters a loop, where it
continuously sends a ’Poll’ requests to I and after receiving the result from
I, formats the received data (format(data)) and resends the formatted
result to U.

1http://pika.readthedocs.org/

4.4 Monitor Implementation 85

Event-driven conversations. For asynchronous, non-blocking receives, the
Conversation API provides recv_async to be used in an event-driven style.
Figure 4.4 (right) shows an alternative implementation of the user role using
callbacks. The method recv_async accepts as arguments a callback to be
invoked when a message is received.

We first create a conversation variable similar to the synchronous imple-
mentation. After joining the conversation, A registers a callback to be invoked
when a message from U is received (on_request). The callback executions
are linked to the flow of the protocol by taking the conversation id as an
argument (e.g. conv). It also accepts as arguments the label for the message
(op) and the payload (msg). In the message handler for Request, the role
A forwards the received payload to I and registers a new message handler
for the next message. Although the event-driven API promotes a notably
different programming style, our framework monitors both implementations
in Figure 4.4 transparently without any modifications.

4.4 Monitor Implementation

Figure 4.5 depicts our outline monitor configuration. The interception mech-
anism is based on message forwarding. A principal has at least one queue
for consuming messages, although the number of queues can be tuned to

Figure 4.5 Configuration of distributed session monitors for an AMQP-based network.

86 How to Verify Your Python Conversations

use separate queues for invitations and roles. We outline a concrete scenario.
Principal Alice is authenticated and connected to her local broker.

1. Authentication creates a network access point for Alice (the Monitor
circle in Figure 4.5). The access point consists of a new conversation
monitor instance, monitor queues (monitor as a consumer), and an
exchange. Alice is only permitted to send messages to this exchange.

2. Alice initiates a new session (creates an exchange with id 1234 in
Figure 4.5) and dispatches an invitation to principal Bob. The invitation
is received and checked by Alice’s monitor and then dispatched on the
shared channel, from where it is rerouted to Bob’s Monitor.

3. Bob’s monitor checks the invitation, generates the local FSM and ses-
sion context for Bob and Bob’s role (for example client), and allocates a
session channel (with exchange: 1234 and routing keys matching Bob’s
role (1234.client.∗ and 1234. ∗ .client). The invitation is delivered to
Bob’s queue.

4. Any message sent by Alice (e.g. to Bob) in this session is similarly
passed by the monitor and validated. If valid, the message is forwarded
to the session channel to be routed. The receiver’s monitor will similarly
but independently validate the message.

Figure 4.6 depicts the main components and internal workflow of our
prototype monitor. The lower part relates to conversation initiation. The
invitation message carries (a reference to) the local protocol for the invitee
and the conversation id. We use a parser generator (ANTLR2) to produce,
from a Scribble local protocol, an abstract syntax tree with MPST constructs
as nodes. The tree is traversed to generate a finite state machine, represented
in Python as a hash table, where each entry has the shape:

(current state, transition) �→ (next state, assertion, var)

where transition is a quadruple (interaction type, label, sender, receiver),
interaction type is either send or receive and var is a variable binder for a
message payload. We number the states using a generator of natural numbers.
The FSM generation is based on the translation of local Scribble protocols to
FSMs, presented in [5].

The upper part of Figure 4.6 relates to in-conversation messages, which
carry the conversation id (matching an entry in the FSM hash table), sender
and receiver fields, and the message label and payload. This information

2http://www.antlr.org/

4.5 Monitoring Interruptible Systems 87

Figure 4.6 Monitor workflow for (1) invitation and (2) in-conversation messages.

allows the monitor to retrieve the corresponding FSM (by matching the
message signature to the FSM’s transition function). Assertions associated
to communication actions are evaluated by invoking a library for Python
predicate evaluation.

4.5 Monitoring Interruptible Systems

This section presents the implementation of a new construct for verifying
asynchronous multiparty session interrupts. Asynchronous session interrupts
express communication patterns in which the behaviour of the roles following
the default flow through a protocol segment may be overruled by one or more
other roles concurrently raising asynchronous interrupt messages. Extending
MPST with asynchronous interrupts is challenging because the inherent
communication race conditions that may arise conflict with the MPST safety
properties. Taking a continuous stream of messages from a producer to a
consumer as a simple example: if the consumer sends an interrupt message
to the producer to pause or end the stream, stream messages (those already in
transit or subsequently dispatched before the interrupt arrives at the producer)
may well continue arriving at the consumer for some time after the interrupt is
dispatched. This scenario is in contrast to the patterns permitted by standard
session types, where the safety properties guarantee that no message is ever
lost or redundant by virtue of disallowing all protocols with potential races.

88 How to Verify Your Python Conversations

This section introduces a novel approach based on reifying the concept
of scopes within a protocol at the runtime level when an instance of the
protocol is executed. A scope designates a sub-region of the protocol, derived
from its syntactic structure, on which certain communication actions, such
as interrupts, may act on the region as a whole. At run-time, every message
identifies the scope to which it belongs as part of its meta data. From this
information and by tracking the local progress in the protocol, the runtime
at each endpoint in the session is able to resolve discrepancies in a protocol
state by discarding incoming messages that have become irrelevant due to
an asynchronous interrupt. This mechanism is transparent to the user pro-
cess, and although performed independently by each distributed endpoint,
preserves global safety for the session.

We integrate the new interrupt construct in our framework for runtime
monitoring. The FSM generation is extended to support interruptible protocol
scopes. We treat interruptible scopes by generating nested FSM structures. In
the case of scopes that may be entered multiple times by recursive protocols,
we use dynamic FSM nesting (conceptually, a new sub-FSM is created each
time the scope is entered, and the sub-FSM is terminated once it reaches
its end state or when an interrupt message is received) corresponding to the
generation of fresh scope names in the syntactic model.

4.5.1 Use Case: Resource Access Control (RAC)

This section expands on how we extend Scribble to support the specification
and verification of asynchronous session interrupts, henceforth referred to as
just interrupts. Our running example is based on an OOI project use case,
which we have distilled to focus on session interrupts.

Figure 4.7 (left) gives an abridged version of a sequence diagram given in
the OOI documentation for the Resource Access Control (RAC) use case [8],
regarding access control of users to sensor devices in the OOI cyberinfras-
tucture for data acquisition. In the OOI setting, a User interacts with a sensor
device via its Agent proxy (which interacts with the device using a separate
protocol outside of this example). OOI Controller agents manage concerns
such as authentication of users and metering of service usage.

For brevity, we omit from the diagram some of the data types to be carried
in the messages and focus on the structure of the protocol. The depicted
interaction can be summarised as follows. The protocol starts at the top of the
left-hand diagram. User sends Controller a request message to use a sensor

4.5 Monitoring Interruptible Systems 89

U C A

req(int)
start

data

data(2)
.
.
.

.

.

.

(1)

U C A

pause

resume
(1)

stop

timeout timeout

(2)

1 global protocol RACProtocol(
2 role User as U,
3 role Controller as C, role Agent as A){
4 // U requests the device for some duration
5 req(duration :int) from U to C;
6 start () from C to A;
7 interruptible {// U, C and A in scope
8 rec X {
9 interruptible {// U and A in scope

10 rec Y {
11 data() from A to U;
12 continue Y;}
13 } with {// Interrupts A in Y
14 pause() by U;}
15 resume () from U to A;
16 continue X;
17 }
18 } with {// Interrupts A and C/U in X
19 stop() by U;// Before duration expired
20
21 timeout () by C;// Duration is up
22 }
23 }

Figure 4.7 Sequence diagram (left) and Scribble protocol (right) for the RAC use case.

for a certain amount of time (the int in parentheses), and Controller sends a
start to Agent. The protocol then enters a phase (denoted by the horizontal
line) that we label (1), in which Agent streams data messages (acquired from
the sensor) to User. The vertical dots signify that Agent produces the stream
of data freely under its own control, i.e. without application-level control from
User. User and Controller, however, have the option at any point in phase (1)
to move the protocol to the phase labelled (2), below.

Phase (2) comprises three alternatives, separated by dashed lines. In the
upper case, User interrupts the stream from Agent by sending Agent a pause
message. At some subsequent point, User sends a resume and the protocol
returns to phase (1). In the middle case, User interrupts the stream, sending
both Agent and Controller a stop message. This is the case where User
does not want any more sensor data, and ends the protocol for all three
participants. Finally, in the lower case, Controller interrupts the stream by
sending a timeout message to User and Agent. This is the case where,
from Controller’s view, the session has exceeded the requested duration, so
Controller interrupts the other two participants to end the protocol. Note this
diagram actually intends that stop (and timeout) can arise anytime after (1),

90 How to Verify Your Python Conversations

e.g. between pause and resume (a notational ambiguity that is compensated
by additional prose comments in the specification).

4.5.2 Interruptible Multiparty Session Types

Figure 4.7 (right) shows a Scribble protocol that formally captures the
structure of interaction in the Resource Access Control (RAC) use case and
demonstrates the uses of our extension for asynchronous interrupts. Besides
the formal foundations, we find the Scribble specification more explicit and
precise, particularly regarding the combination of compound constructs such
as choice and recursion, than the sequence diagram format, and provides
firmer implementation guidelines for the programmer.

The protocol starts with a header declaring the protocol name (given as
RACProtocol in Figure 4.7) and role names for the participants (three roles,
aliased in the scope of this protocol definition as U, C and A). Lines 5 and 6
straightforwardly correspond to the first two communications in the sequence
diagram, a User sends a request message, carrying an int payload, to the
Controller and then the Controller replies with a start() message and an
empty payload.

Then the intended communication in “phase” (1) and (2) in the diagram,
is clarified in Scribble as two nested interruptible statements. The outer
statement, on lines 7–22, corresponds to the options for User and Con-
troller to end the protocol by sending the stop and timeout interrupts. An
interruptibleconsists of a main body of protocol actions, here lines 8–
17, and a set of interrupt message signatures, lines 18–22. The statement
stipulates that each participant behaves by either (a) following the protocol
specified in the body until finished for their role, or (b) raising or detecting
a specified interrupt at any point during (a) and exiting the statement. Thus,
the outer interruptible states that U can interrupt the body (and end the
protocol) by a stop() message, and C by a timeout().

The body of the outer interruptible is a labelled recursion statement
with label X. The continue X; inside the recursion (line 16) causes the flow
of the protocol to return to the top of the recursion (line 8). This recursion
corresponds to the loop implied by the sequence diagram that allows User
to pause and resume repeatedly. Since the recursion body always leads to the
continue, Scribble protocols of this form state that the loop should be driven
indefinitely by one role, until one of the interrupts is raised by another role.
This communication pattern cannot be expressed in multiparty session types
without interruptible.

4.5 Monitoring Interruptible Systems 91

The body of the X-recursion is the inner interruptible, which cor-
responds to the option for User to pause the stream. The stream itself is
specified by the Y-recursion, in which A continuously sends data() messages
to U. The inner interruptible specifies that U may interrupt the Y-recursion
by a pause() message, which is followed by the resume() message from U

before the protocol returns to the top of the X-recursion.

4.5.3 Programming and Verification of Interruptible Systems

We extend the Python API, presented in Section 4.3, to provide functionality
for scope management for handling interrupt messages. We demonstrate
the usage of the construct through an implementation of the local protocol
projected for the User role. Figure 4.8 gives the local protocol and its
implementation.

Similarly to the previous example from Section 4.3, the implementation
starts by creating a conversation instance c of the Resource Access Control
protocol (Figure 4.7) using method create (line 6, left) and join. The
latter returns a conversation channel object for performing the subsequent
communication operations.
Interrupt handling. The implementation of the User program demonstrates
a way of handling conversation interrupts by combining conversation scopes

1 class UserApp(BaseApp):
2 user, controller, agent =
3 [’User’, ’Controller’, ’Agent’]
4 def start(self):
5 self.buffer = buffer(MAX_SIZE)
6 conv = Conversation.create(
7 ’RACProtocol’, ’config.yml’)
8 c = conv.join(user, ’alice’)
9 c.send(controller, ’req’, 3600)

10 with c.scope(’timeout’, ’stop’) as c_x:
11 while not self.should_stop():
12 with c_x.scope(’pause’) as c_y:
13 while not self.buffer.is_full():
14 data = c_y.recv(agent)
15 self.buffer.append(data)
16 c_y.send_interrupt(’pause’)
17 use_data(self.buffer)
18 self.buffer.clear()
19 c_x.send(agent, ’resume’)
20 c_x.send_interrupt(’stop’)
21 c.close()

local protocol RACProtocol
at U (role C, role A){
req(duration :int) to C;
interruptible {

rec X {
interruptible {

rec Y {
data() from A;
continue Y;
}

} with {
pause () by U;

}
resume () to A;
continue X;

}
} with {

stop() by U;
timeout () by C;

}
}

Figure 4.8 Python implementation (left) and Scribble local protocol (right) for the User role
for the global protocol from Figure 4.7.

92 How to Verify Your Python Conversations

with the Python with statement (an enhanced try-finally construct). We use
with to conveniently capture interruptible conversation flows and the nesting
of interruptible scopes, as well as automatic close of interrupted channels in
the standard manner, as follows. The API provides the c.scope() method,
as in line 10, to create and enter the scope of an interruptible Scribble
block (here, the outer interruptible of the RAC protocol). The timeout and
stop arguments associate these message signatures as interrupts with this
scope. The conversation channel c_x returned by scope is a wrapper of the
parent channel c that (1) records the current scope of every message sent in
its meta data, (2) ensures every send and receive operation is guarded by
a check on the local interrupt queue, and (3) tracks the nesting of scope
contexts through nested with statements. The interruptible scope of c x is
given by the enclosing with (lines 10–20); if, e.g., a timeout is received
within this scope, the control flow will exit the with block to line 21. The
inner with (lines 12–16), corresponding to the inner interruptible block,
is associated with the pause interrupt. When an interrupt, e.g. pause in
line 16, is thrown (send_interrupt) to the other conversation participants,
the local and receiver runtimes each raise an internal exception that is either
handled or propagated up, depending on the interrupts declared at the current
scope level, to direct the interrupted control flow accordingly. The delineation
of interruptible scopes by the global protocol, and its projection to each local
protocol, thus allows interrupted control flows to be coordinated between
distributed participants in a structured manner.

The scope wrapper channels are closed (using the Python construct with)
after throwing or handling an interrupt message. Since we assume asyn-
chronous communication, there is a delay from the time when an interrupt
mesasage is sent untill the time when the interrupt message is received by all
participants. Hence, the monitor reacts differently when checking message
sending (a check driven by the monitored participant) and message receive
(an action driven by a message arriving in the queue of the monitor); the
monitor discards the message in the latter case and marks the message
as wrong in the former case. More precisely, when a monitor receives a
message from a closed scope, it discards it as to accommodate for the
delay in receiving of an interrupt message. However, if a participant that is
monitoried attepts to send a message on a scope that is already closed (after
an interrupt message has been recieved or after the participant has thrown
interrupt himself) then the monitor flagges the interaction as an error. For
example, using c_x after a timeout is received (i.e. outside its parent scope)
will be flagged as an error. However, receiving messages on that scope will be

4.5 Monitoring Interruptible Systems 93

1 class UserApp(BaseApp):
2 def start(self):
3 self.buffer = buffer(MAX_SIZE)
4 conv = Conversation.create(
5 ’RACProtocol’, config.yml)
6 c = conv.join(user, ’alice’)
7 # request 1 hour access
8 c.send(controller, ’req’, 3600)
9 c_x = c.scope(’timeout’, ’stop’)

10 c_y = c_x.scope(’pause’)
11 c_y.recv_async(agent, recv_handler)
12
13 def recv_handler(self, c, op, payload):
14 with c:
15 if self.should_stop():
16 c.send_interrupt(’stop’)
17 elif self.buffer.is_full():
18 self.process_buffer(c, payload)
19 else:
20 self.buffer.append(payload)
21 c.recv_async(agent, recv_handler)
22
23 def process_buffer(self, c, payload):
24 with c:
25 c_x = c.send_interrupt(’pause’)
26 use_data(self.buffer, payload)
27 self.buffer.clear()
28 c_x.send(agent, ’resume’)
29 c_y = c_x.scope(’pause’)
30 c_y.recv_async(agent, recv_handler)

C!req(int)
new scope

A?data

A!pauseA!resume

{C, A }!stopC?timeout

Figure 4.9 Event-driven conversation implementation for the User role (left) and Nested
FSM generated from the User local protocol (right).

discarded and will not be dispatched to the application. In our example, the
User runtime discards data messages that arrive after pause is thrown. The
API can also make the discarded data available to the programmer through
secondary (non-monitored) operations.
Message handlers with scopes. As demonstrated in Section 4.3, our Python
API supports asynchronous receive through the primitive recv_async. The
construct is used to register a method that should be invoked on message
receive. To support event-driven programming with interrupts, we extend the
implementation presented in Section 4.3. The difference is in the semantics
of event handlers. More precisely, each event handler is associated with a
scope. Therefore, if an interrupt is received, but the protocol state is not in the
same scope as the scope written in the conversation header of the interrupt
message, the interrupt will be discarded.

Figure 4.9 (left) shows an alternative implementation of the User role
using callbacks. We first enter the nested conversation scopes according to
the potential interrupt messages (lines 9 and 10). The callback method is
then registered using the recv_async operation (line 11). The callback
executions are linked to the flow of the protocol by taking the scoped channel

94 How to Verify Your Python Conversations

as an argument (e.g. c on line 13). Note that if the stop and pause interrupts
were not declared for these scopes, line 16 and line 25 would be considered
invalid by the monitor. When the buffer is full (line 17), the user sends
the pause interrupt. After raising an interrupt, the current scope becomes
obsolete and the channel object for the parent scope is returned. After the
data is processed and the buffer is cleared, the resume message is sent
(line 28) and a fresh scope is created and again registered for receiving data
events (line 29). Our framework monitors both this implementation and that
in Figure 4.8 transparently without any modifications.

4.5.4 Monitoring Interrupts

FSM generation for interruptible local protocols makes use of nested FSMs.
Each interruptible induces a nested FSM given by the main interruptible
block, as illustrated in Figure 4.9 (right) for the User local protocol. The
monitor internally augments the nested FSM with a scope id, derived from
the signature of the interruptible block, and an interrupt table, which records
the interrupt message signatures that may be thrown or received in this
scope. Interrupt messages are marked via the same meta data field used to
designate invitation and in-conversation messages, and are validated in a
similar way except that they are checked against the interrupt table. However,
if an interrupt arrives that does not have a match in the interrupt table
of the immediate FSM(s), the check searches upwards through the parent
FSMs; the interrupt is invalid if it cannot be matched after reaching the
outermost FSM.

4.6 Formal Foundations of MPST-Based
Runtime Verification

In this section, we explain the correspondence between a theoretical model
for MPST-based monitoring and the implementation, presented in this chap-
ter. Our implementation is formalised in a theory for MPST-based verification
of networks, first proposed in [3], and later extended in [1], and in [2].
The interrupt extension is formalised in [4]. [3] only gives an overview
of the desired properties, and requires all local processes to be dynami-
cally verified through the protections of system monitors, while [1] presents
a framework for semantically precise decentralised run-time verification,
supporting statically and dynamically verified components. In addition, the

4.6 Formal Foundations of MPST-Based Runtime Verification 95

routing mechanism of AMPQ networks is explicitly presented in [1], while
in [3] it is implicit.

A delicate technical difference between the theory and the implementa-
tion lies in handling of out-of-order delivery of messages when messages
are sent from different senders to the same receiver. Asynchrony poses a
challenge in the treatment of out-of-order asynchronous message monitoring,
and thus, to prevent false positive results, in the theoretical model, a type-
level permutations of actions is required, e.g a monitor checks messages up
to permutations. The use of global queues and local permutations is inefficient
in practice, and thus we have implemented the theoretical model of a global
queue as different physical queues. Specifically, we introduce a queue per
pair of roles, which ensures messages from the same receivers are delivered
in order and are not mixed with messages from other roles. This model is
semantically equivalent to a model of a global indexed queue, permitting
permutation of messages.

Next we explain the correspondence between the asynchronous π-
calculus with fine-grained primitives for session initiation and our Python
API.Also in [1] specifications are given as local types. Instead of using local
types, for efficient checking, we use communicating finite state machines
(CFSMs) generated from local Scribble protocols, which are equivalent to
local types, as has been shown in [5].
Processes. Our Python API embodies the primitives of the asynchronous
π-calculus with fine grained primitives for session initiation, presented in
[1]. The correspondence is given in Figure 4.10. Note that the API does
not stipulate the use of a recursion and a conditional, which appear in the
syntax of session π-calculus, since these constructs are handled by native
Python constructs. The create method, which, we remind, creates a fresh
conversation id and the required AMQP objects (principal exchanges and
queues), and sends an invitation for each role specified in the protocol,
corresponds to the action a〈s[r] : T 〉, which sends on the shared channel a, an

Conversation API operation Purpose
create(protocol_name, config.yml) a〈s[r] : T 〉
join(self, role, principal_name) a(y[r] : T).P
send(role, op, payload) k[r1, r2]!l〈e〉
recv(role) k[r1, r2]?{li(xi).Pi}i∈I

recv_async(self, role, callback) –
Figure 4.10 The core Python Conversation API operations and their session π-calulus
counterparts.

96 How to Verify Your Python Conversations

invitation to join the fresh conversation s as the role of r with a specification
T . In the implementation, this information is codified in the message header,
which as we have explained contains the new session id (abstracted as s),
the name of the local Scribble protocol (i.e. T) and the role (i.e. r). The
invitation action a(y[r] : T).P models session join. As a result of join
new queues and a routing bindings are created. For example, when Bob

joins a conversation with id of 1234 as the role of client, as shown in
Figure 4.5, an AMQP binding 1234.client.∗ is created, which ensures that
all messages to the role of a client are delivered to Bob. The reduction rule
for a(y[r] : T).P , in the semantics in [1], reflects this behaviour by adding a
record in the routing table. The primitive for sending a message k[r1, r2]!l〈e〉
corresponds to the API call send, and results in sending a message of type
s[r1, t2]!l〈e〉, which in the implementation is codified in the message header,
consisting of session id s, sender r1, receiver r2, label l and a payload e.
Properties of monitored networks. Finally, we give an overview of the
properties of monitored networks as presented in [1]. Due to the correspon-
dence explained above, these properties are preserved in the context of the
monitor implementation, presented in this chapter.
Local safety states that a monitored process respects its local protocol, i.e.

that dynamic verification by monitoring is sound.
Local transparency states that a monitored process has equivalent

behaviour to an unmonitored but well-behaved process, e.g. statically
verified against the same local protocol.

Global safety states that a system satisfies the global protocol, provided that
each participant behaves as if monitored.

Global transparency states that a fully monitored network has equivalent
behaviour to an unmonitored but well-behaved network, i.e. in which all
local processes are well-behaved against the same local protocols.

Session fidelity states that, as all message flows of a network satisfy
global specifications, whenever the network changes because some local
processes take actions, all message flows continue to satisfy global
specifications.

4.7 Concluding Remarks

We have presented a runtime verification framework for Python programs
based on Scribble protocols. We discuss the core design elements of the
implemention of a conversation-based API in a dynamically typed language,

References 97

Python. Through a runtime layer of protocol management Scribble protocols
are loaded and translated to CFSMs such that during a program execu-
tion, messages emitted by the program are checked against a corresponding
CFSM. We also introduce a construct for expressing exception-like pat-
terns in Scribble, which syntactically splits the protocol into sub-regions,
allowing certain messaging to act on the regions as a whole and thus per-
mitting controllable races, traditionally disallowed by the theory of session
types.

Acknowledgements We thank the anonymous reviewers for their insight-
ful comments, which helped us to improve the article. This work is
partially supported by EPSRC projects EP/K034413/1, EP/K011715/1,
EP/L00058X/1, EP/N027833/1 and EP/N028201/1; by EU FP7 612985
(UP-SCALE).

References

[1] Laura Bocchi, Tzu-Chun Chen, Romain Demangeon, Kohei Honda, and
Nobuko Yoshida. Monitoring networks through multiparty session types.
In FMOODS, volume 7892 of LNCS, pages 50–65, 2013.

[2] Tzu-Chun Chen. Theories for Session-based Governance for Large-scale
Distributed Systems. PhD thesis, Queen Mary, University of London,
2013.

[3] Tzu-Chun Chen, Laura Bocchi, Pierre-Malo Deniélou, Kohei Honda, and
Nobuko Yoshida. Asynchronous distributed monitoring for multiparty
session enforcement. In TGC’11, volume 7173 of LNCS, pages 25–45,
2012.

[4] Romain Demangeon, Kohei Honda, Raymond Hu, Rumyana Neykova,
and Nobuko Yoshida. Practical interruptible conversations: Distributed
dynamic verication with multiparty session types and python. FMSD,
pages 1–29, 2015.

[5] Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty session types
meet communicating automata. In ESOP, volume 7211 of LNCS, pages
194–213. Springer, 2012.

[6] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty Asyn-
chronous Session Types. Journal of the ACM, 63, 2016.

98 How to Verify Your Python Conversations

[7] Ocean Observatories Initiative. http://www.oceanobservator
ies.org/

[8] OOIExamples. http://confluence.oceanobservatories.
org/display/CIDev/Identify+required+Scribble+
extensions+for+advanced+scenarios+of+R3+COI

[9] Scribble project home page. http://www.scribble.org

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

