10

Open Semantic Meta-model
as a Cornerstone for the Design and
Simulation of CPS-based Factories

Jan Wehrstedt!, Diego Rovere?, Paolo Pedrazzoli’, Giovanni dal Maso?,
Torben Meyer?, Veronika Brandstetter!, Michele Ciavotta®,
Marco Macchi® and Elisa Negri®

ISIEMENS, Germany

2TTS srl, Ttaly

3Scuola Universitaria Professionale della Svizzera Italiana (SUPSI),
The Institute of Systems and Technologies for Sustainable Production
(ISTEPS), Galleria 2, Via Cantonale 2C, CH-6928 Manno, Switzerland
4*VOLKSWAGEN, Germany

SUniversita degli Studi di Milano-Bicocca, Italy

6Politecnico di Milano, Milan, Italy

E-mail: janchristoph.wehrstedt @siemens.com; rovere @ttsnetwork.com;
pedrazzoli @ttsnetwork.com; dalmaso @ttsnetwork.com;

torben.meyer @volkswagen.de; veronika.brandstetter @siemens.com;
michele.ciavotta@unimib.it; marco.macchi@polimi.it; elisa.negri@polimi.it

A key enabler towards the fourth industrial revolution is the ability to
maintain the digital information all along the factory life cycle, despite
changes in purpose and tools, allowing data to be enriched and used as needed
for that specific phase (digital continuity). Indeed, a fundamental issue is the
lack of common modelling languages, and rigorous semantics for describing
interactions — physical and computational — across heterogeneous tools and
systems, towards effective simulation. This chapter describes the definition
of a semantic meta-model meant to describe the functional characteristics of
a CPS, which are relevant from its design and simulation for its integration
and coordination in an industrial production environment.

285

286 Open Semantic Meta-model as a Cornerstone for the Design and Simulation

Actually, digital continuity needs to be empowered by a standardized,
open semantic meta-model capable of fully describing the properties and
functional characteristics of the CPS simulation models, as a key element
to empower multidisciplinary simulation tools. The hereby described meta-
model is able to provide a cross-tool representation of the different specific
simulation models defining both static information (3D models, kinemat-
ics chains, multi-body physics skeletons, etc.) and behavioural information
(observable properties, inverse kinematics processors, motion-low computa-
tion functions, resource consumption logics, etc.).

10.1 Introduction

In order to empower simulation methodologies and multidisciplinary tools
for the design, engineering and management of CPS-based (Cyber Physical
Systems) factories, we need to target the implementation of actual digital
continuity, defined as the ability to maintain digital information all along the
factory life cycle, despite changes in purpose and tools.

A Semantic Data Model for CPS representation is the foundation to
achieve digital continuity, because it provides a unified description of the
CPS-based simulation models that different simulation tools can rely on
to operate.

Cyber Physical Systems are engineered systems that offer close interac-
tion between cyber and physical components. CPS are defined as the systems
that offer integrations of computation, networking, and physical processes,
or in other words, as the systems where physical and software components are
deeply intertwined, each operating on different spatial and temporal scales,
exhibiting multiple and distinct behavioural modalities, and interacting with
each other in a myriad of ways that change with context [2, 3]. From this
definition, it is clear that the number and complexity of features that a CPS
data model has to represent are very high, even if limited to the simulation
field. Moreover, many of the aspects that concur to define a CPS for simula-
tion (3D models, kinematics structures, dynamic behaviours, etc.) have been
already investigated and formalized by many well-established data models
that are, or can be considered, to all extents data exchange standards.

For these reasons, the goal of an effective CPS Semantic Data Model is
providing a gluing infrastructure that refers existing interoperability standards
and integrates them into a single extensible CPS definition. This approach
reduces the burden on the simulation software applications to access the new
data structures because they mainly add a meta-information level whereas
data for specific purposes is still available in standard formats.

10.2 Adoption of AutomationML Standard 287

AutomationML [1] is a standard technology that is based on this “Inte-
gration philosophy” and defines the semantics of many elements of the
manufacturing systems so that it is suitable to be adopted as the foundation
of our CPS Semantic Data Model.

10.2 Adoption of AutomationML Standard

The meta-data model needs basis on which data is saved and processed. The
goal of AutomationML is to interconnect engineering tools in their different
disciplines, e.g. mechanical plant engineering, electrical design, process engi-
neering, process control engineering, HMI development, PLC programming,
robot programming, etc. It is a standard focused on data exchange in the
domain of automation engineering, defined in four whitepapers that focus
each on one of the following aspects:

1. Architecture and general requirements;
2. Role class libraries;

3. Geometry and kinematics;

4. Logic.

The data exchange format defined in these documents is the Automation
Markup Language (AML), an XML schema-based data format and has
been developed in order to support the data exchange in a heterogeneous
engineering tools landscape for the production.

Engineering information is stored following the Object-Oriented
Paradigm, and physical and logical plant components are modelled as data
objects encapsulating different aspects. An object may consist of other sub-
objects and may itself be part of a larger composition or aggregation. Typical
objects in plant automation comprise information on topology, geometry,
kinematics and logic, whereas logic comprises sequencing, behaviour and
control. Therefore, an important focus in the data exchange in engineering
is the exchange of object-oriented data structures, geometry, kinematics
and logic.

AML combines existing industry data formats that are designed for the
storage and exchange of different aspects of engineering information. These
data formats are used on an “as-is”’ basis within their own specifications and
are not branched for AML needs. The core of AML is the top-level data
format CAEX that connects the different data formats (e.g. COLLADA for
geometries or PLCOPEN-XML for logic). Therefore, AML has an inherent

288 Open Semantic Meta-model as a Cornerstone for the Design and Simulation

distributed document architecture. The goals and basic concepts of Automa-
tionML are well aligned with our objectives, and it can be used as the base
of the semantic meta data model; nonetheless, it is mainly a specification
for data exchange only and it falls short when it comes to describe some
operational aspects of simulation. For these reasons, we decided to extend
AML aiming at targeting a more integrated connection between real/digital
CPS and simulation tools.

10.3 Meta Data Model Reference

This chapter documents the Meta Data Model developed. It is organized into
eight sections that correspond to the eight main semantic areas in which the
data model is organized:

1. Base Model (§10.3.1): documents low-level utility classes that are used
for the definition of high-level classes of the other sections.

2. Assets and Behaviours (§10.3.2): documents, classes and concepts
related to the possibility of using external data sources to define
additional resource models.

3. Prototypes Model (§10.3.3): introduces the concepts of resource pro-
totypes and resource instances that are at the basis of the model
reuse paradigm and documents the classes defining the resource model
prototypes.

4. Resources Model (§10.3.4): documents all the classes related to repre-
sentation of intelligent and passive resources constituting the model of a
manufacturing plant.

5. Device Model (§10.3.5): documents all the classes related to the rep-
resentation of the data connection with the physical devices, including
the definition of all the relevant I/O signals that are exchanged with the
digital counterpart.

6. Project Model (§10.3.6): documents all the classes that represent com-
plex multi-disciplinary simulation projects and that enable simulation
tools to share plant models and results.

7. Product Routing Model (§10.3.7): documents all the classes related to
the definition of a discrete product, of the manufacturing processes and
of the production plans that should be used for plant simulation.

8. Security Model (§10.3.8): documents the classes that are related to the
access control and that define the authentication and authorization levels
needed to work on a certain resource.

10.3 Meta Data Model Reference 289

Each section is introduced with a diagram view (based on UML Class
Diagram) that contains only the classes composing that specific data model
area and their relationships with the main classes belonging to the other data
model areas. Therefore, it is possible to find the same class representation
(e.g. Property class) in many different diagrams, but each class is documented
only once in the proper semantic section.

10.3.1 Base Model

This section documents some low-level and general-purpose classes that are
shared by other higher-level models described in the following sections.
In particular, the classes related to the possibility of modelling generic,
simple and composite properties of plant resources are documented
(Figure 10.1).

10.3.1.1 Property

Property is an abstract class derived by IdentifiedElement and represents
runtime properties of every resource and prototype. These properties are
relevant information that can be dynamically assigned and read by the
simulation tools.

10.3.1.2 CompositeProperty

CompositeProperty is a class derived by Property and represents a composi-
tion of different properties of every resource and prototype. This composition
is modelled to create a list of simple properties of the resource, or even a
multilevel structure of CompositeProperty instances. Figure 10.2 shows a
possible application of the base model classes to represent properties, meta
information and documentation of a sample CPS. A resource (in this case,
CPS4) can have many properties instances associated to it and these proper-
ties can be simple (as ToolLength, EnergyConsumption and TempCPS4) or
composite that allow creating structured properties (CurrProd).

10.3.2 Assets and Behaviours

The goal of the CPS Semantic Data Model is providing a gluing infrastructure
that refers existing interoperability standards and integrates them into a single
extensible CPS definition. For this reason, the implemented model includes
the mechanisms to reference external data sources (Figure 10.3).

290 Open Semantic Meta-model as a Cornerstone for the Design and Simulation

+ description : string

IdentifiedElement =<
+id: string P¢
+ name : string Pg
PropertyReference [T
+references
§—<1> Property CompositeProperty
<t
+ property
+ constraints -
PropertyConstraimt [le———————<> u 1
: 1 T I
NumberProperty StringProperty & FrameProperty
ExternalDocumentation& + unit : string pPg + value : string r¢ + x : float
+y : foat
+ 2z : foat
+rx : float
+ 1y : foat
+ externalDocumentation * 1z : foat
IntProperty FloatProperty &
+ value : integer rg + value : foat P¢
Metalinfo
+ vendor : string
+ version : integer
+ lastUpdated : long
1 + sourceTool : string
Documentation Vector3 = + creation - long

Figure 10.1 Class diagram of the base classes.

10.3.2.1 ExternalReference

ExternalReference is abstract and extends IdentifiedElement. This class
represents a generic reference to a data source that is external to the
Meta Data Model (e.g. a file stored on the Central Support Infrastructure
(CSI, see Chapter 13)). The external source can contain any kind of binary

10.3 Meta Data Model Reference 291

¥ Metainfo CPS4 : Metainfo ToolLength : FloatProperty
vendor : string = MMachines name : string = ToolLength
version :integer=4 unit: string = mm
creation : long = 1490284888 value :float=50.0 @ NumProdMin : IntProperty
lastUpdated : long = 1490284... - -
sourceTool : string = DDDSim... value :integer =3
= EnergyConsumption : =
&) >
FloatProperty
4 unit: string = kWh
\r';“rfe: by :;tnzg 1-OAEf:'lergyCons = CurEenthrodn:
=1 i - i
= CPs4:CPS StringProperty

id : string
name : string = ProdID
value : string = P00472

id : string = c5a10e2c-d087-4...
digitalOnly : boolean = true
name : string = Milling1 TempCP$4 : FloatProperty =
=| name : string = Temperature
unit: string =°C

value :float= 124

TempPROD:
5] p

FloatProperty
Doc_CPS4 : Documentation S¢) currgrod. — name : string = Temperat...
— : CompositeProperty unit : string = *C/IFIK
description : string = Sample ... value : float= 97

=

Figure 10.2 Object diagram of the base model.

data in proprietary or interoperable format, depending on the type of resource.
Using external references allows avoiding re-defining data models and per-
sistency formats for all the possible technical aspects related to a certain
resource. The approach that has been adopted is like AutomationML one,
where additional data is stored in external files using already existing
standards (e.g. COLLADA for 3D models or PLCopen for PLC code).

10.3.2.2 Asset

Asset is an extension of ExternalResource. This class represents a reference
to an external relevant model expressed according to interoperable standard
or binary format that behavioural models want to use. An important feature
that the CPS data model should support is the possibility to create links
between runtime properties and properties defined inside assets and between
properties defined by two different assets. Assets can be considered static data
of the CPS because they represent self-contained models (e.g. 3D Models)
that should be slowly changing.

10.3.2.3 Behaviour

Behaviour is an extension of ExternalResource. This class represents a refer-
ence to runnable behavioural models that implement: (i) functionalities and
operative logics of the physical systems and (ii) raw data stream aggregation

292 Open Semantic Meta-model as a Cornerstone for the Design and Simulation

IdentifiedElement

Asset
ExternalReference <l—r
+type : string Behaviour =<
+ format : string
+ un : string F —

A =
ExternalDocumentation
+ amlinterface | 4

ExternalDataConnector &

Figure 10.3 Class diagram for assets and behaviours.

and processing functions. Simulation Tools should be able to use directly the
former to improve reliability of simulations, whereas the latter should run
inside the CSI to update the runtime properties of the CPS model.

10.3.3 Prototypes Model

This section is meant to describe the classes and concepts related to the
definition of prototype resources that can be defined once and reused many
times to create different plant models.

10.3.3.1 Prototypes and instances

One of the most exploited features of manufacturing plants is the fact that
they are mostly composed of standard “off-the-shelf” components (machine
tools, robots, etc.) that are composed in a modular way. Thanks to this and
with a good organization of modules, in fact, it is possible to speed up the
simulation set up, reusing as much as possible already developed models. For
this reason, usually simulation software tools adopt a mechanism based on
the definition of libraries of models that can be applied to assemble a full
plant layout.

10.3 Meta Data Model Reference 293

Prototype A : ResourcePrototype Res A1 : Resource
resourcePrototype

-

resourcePrototype |
Res A2 : Resource

Figure 10.4 Prototype-resource object diagram.

The data model aims at natively supporting the same efficient re-use
approach implementing the classes to describe “ready to use” resources,
called “prototypes” and “instances” of such elements that are the actual
resources composing plants. The relationship that exists between prototypes
and instances is the same that in OOP exists between a class and an object
(instance) of that class.

A prototype is a Resource model that is complete from a digital point
of view, but it is still not applied in any plant model. It contains all the
relevant information, assets and behaviours that simulation tools may want
to use and, ideally, device manufacturers should directly provide Prototypes
of their products ready to be assembled into production line models.

As shown in Figure 10.4, a Resource instance is a ResourcePrototype that
has become a well-identified, specific resource of the manufacturing plant.
Each instance shares with its originating Prototype the initial definition, but
during life cycle, its model can diverge from the initial one because properties
and even models change. Therefore, a single ResourcePrototype can be used
to instantiate many specific resources that share the same original model.

10.3.3.2 Prototypes and instances aggregation patterns

An important aspect that Meta Data Model defines is the one related to the
composition of resources into higher-level resources. This concept is at the
basis of the creation of a hierarchy of resources within a plant and it is
an intrinsic way of organizing the description of a manufacturing system.
Nevertheless, depending on each specific discipline, there are many ways
resource instances (and therefore CPSs) can be grouped in a hierarchical
structure. For example, spatial relationships define the topological hierar-
chy of a system, but from a safety grouping or electrical perspective, the
same resources should be organized into different hierarchies (e.g. in the

294 Open Semantic Meta-model as a Cornerstone for the Design and Simulation

9 ElectricConnections : Asset i@ Painting_Cell1 :
type : string = text/xml \’;‘ Resource
format : string = ecl@ass [
~— | Level 2
— —]
\}g Robot1 : CPS =] Robot2 : CPS £9 SecurityFence : Resource
} name : string = R1_cell1 name : string = R2_cell2 name : string = security_fence_cell1
1
Level 1
\g ElectricModel1 : Asset t4ElectricModel2 : Asset
i type : string = text/xml type : string = text/xml
| format : string = ecl@ass format : string = ecl@ass
[

Figure 10.5 Example of usage of main and secondary hierarchies.

automotive, a cell safety group contains the robot and the surrounding fences,
but from an electrical point of view, fences are not represented at all).

For this reason, Meta Data Model provides an aggregation system that is
based on two levels:

e a first main hierarchy structure that is implemented in the two base
classes for prototypes and instances, AbstractResourcePrototype and
AbstractResource (Figure 10.6);

e a second level, discipline-dependent, that is defined in parallel to the
main one and that should be contained inside domain-specific Assets.

The former hierarchy level is meant to provide a reference organization
of the plant that enables both simulation tools and the CSI to access resources
in a uniform way. In fact, the main hierarchy has the fundamental role
of controlling the “visibility level” of resources, setting the lower access
boundaries that constrain the resources to which the secondary (“parallel”)
hierarchies should be associated.

Figure 10.5 shows an example of application of the main resources hierar-
chy and the secondary, domain-specific one. The main hierarchy organizes the
two robots and the surrounding security fence with a natural logical grouping
since Robotl, Robot2 and SecurityFence belong physically to the same
production cell, Painting_Celll. Even if this arrangement of the instances is
functional from a management point of view, it is not directly corresponding
to the relationships defined in the electrical schema of the plant, for which
the only meaningful resources are the two robots. Imagining that an elec-
tric connection exists between the two robots, a secondary, domain-specific

10.3 Meta Data Model Reference 295

schema (in this case, the domain is the electric design) needs to be defined
separately. The Painting Celll resource acts as the aggregator of the two
robot CPS; therefore, it has the “visibility” on the two resources of the
lower level (Level 1), meaning that they exist and it knows how to reference
them. For this reason, the electrical schema that connects Robotl and Robot2
is defined at Level 2 as the “ElectricConnections” Asset associated to the
Painting_Celll. This asset, if needed, is allowed to make references to each
electric schema of the lower-level resources.

10.3.3.3 AbstractResourcePrototype

AbstractResourcePrototype is abstract and extends IdentifiedElement
(see Figure 10.6). It represents the base class containing attributes and
relationships that are common both to prototypes of intelligent devices and
to prototypes of simple passive resources or aggregation of prototypes.
The main difference between prototype and instance classes is that the
former does not have any reference to a Plant model, because they represent
“not-applied” elements.

IdentifiedElement
+ documentation
0.1
Property 9
+ properties
< AbstractResourcePrototype 8| + tbsources
* 1
0.1
Metalnfo metalnfo
1
0.1 1
+ asset%
Asset 1

+ behavioyrs
Behaviour [#l<———— |ResourcePrototype & CPSPrototype Device [¥

+ device

-

Figure 10.6 Prototype Model class diagram.

296 Open Semantic Meta-model as a Cornerstone for the Design and Simulation

Each AbstractResourcePrototype can aggregate other AbstractResource-
Prototype (i.e. CPSPrototype and ResourcePrototype instances), and it can
use its Assets and Behaviours to create higher-level complex models and
functionalities starting from the lower-level ones.

10.3.3.4 ResourcePrototype
ResourcePrototype extends AbstractResourcePrototype. This class represents
the prototype of a generic passive resource of the plant that does not
have any electronic equipment capable of sending/receiving data to/from
its digital counterpart, or an aggregation of multiple resource prototypes.
Examples of simple resources are cell protection fences, part positioning
fixtures, etc.

Resource class is the direct instance class of a ResourcePrototype.

Since a ResourcePrototype must be identifiable within the libraries of
prototypes, its ID attribute should be set to a valid UUID that should be
unique within an overall framework deployment.

10.3.3.5 CPSPrototype

CPSPrototype extends AbstractResourcePrototype. This class represents a
prototype of an “intelligent” resource that is a resource equipped with
an electronic device, capable of sending/receiving data to/from its digital
counterpart. A CPSPrototype defines the way its derived instances should
connect to the physical devices to maintain synchronization between shop
floor and simulation models. CPS class is the direct instance class of a
CPSPrototype. Since a CPSPrototype must be identifiable within the libraries
of prototypes, its ID attribute should be set to a valid UUID that should be
unique within an overall framework deployment.

10.3.4 Resources Model

From Meta Data Model perspective, each simulated plant can be represented
as a bunch of resources (machine tools, robots, handling systems, passive
elements, etc.). Each resource can have a real physics counterpart to which it
can be connected or defined from a product life cycle management point of
view. This section of the model is meant to document the classes that support
the description of resource instances (see §10.3.4.1 Prototypes and instances
for the definition of the instance concept).

10.3 Meta Data Model Reference 297

10.3.4.1 AbstractResource

AbstractResource is abstract and extends IdentifiedElement (Figure 10.7).
This class represents the generalization of the concept of plant resource. As
cited at the beginning of the section, a plant is a composition of intelligent
devices (e.g. machines controlled by PLC, IoT ready sensors, etc.) or passive
elements (fences, fixtures, etc.). Even if such resources are semantically
different, from a simulation point of view, they have a certain number of
common properties. This fact justifies, from a class hierarchy perspective,
the definition of a base class that CPS and Resource classes extend.

IdentifiedElement

e

Property

[

+ properties

Metalnfo =] * AbstractResource [8
+ metalnfo 8
<« T dgtalOnly : boolean | +resources
<
0.1 1
- 1 Plant 4
Documentation £8| + gocumentation *Fesources; +plant
S
= 1
0.1
+assets Principal g
Asset E .E + principal
Resource CPS Blo———
1 1
+device | Device [§
Behaviour [&| + behaviours ? e
+ resourcePrototype [0 1 + cpsPrototype [0 1
ResourcePrototype CPSPrototype

Figure 10.7 Class diagram of resources section.

298 Open Semantic Meta-model as a Cornerstone for the Design and Simulation

An AbstractResource is identified by its ID, which must be unique within
the same plant.

Field Type Description

digitalOnly Boolean This flag indicates whether this
resource (be it a CPS or a simple
resource) has a physical counterpart
somewhere in the real plant or if it is
purely a virtual element.

In design phase of a plant that goes
on green field, resources will all have
digitalOnly = true, while during the
reconfiguration of a plant, there will
be a mixed condition with some
resources having the flag set to true
(the ones existing in the running
production lines) and some others set
to false (the ones that are going to be
evaluated with simulation).

properties Property[] Runtime properties of the resource.

Each property of the resource
represents a relevant piece of
information that can be shared
(accessed and modified) by the
simulation tools and by the functional
and behavioural models.

The length of the array can be O to n.

resources AbstractResource[] List of the resources that this instance
aggregates. This field implements the
hierarchy relationships among
resources inside a plant. See
5Prototypes and instances
aggregation patterns.
The length of the array can be O to n.

10.3 Meta Data Model Reference 299

10.3.4.2 CPS
CPS extends AbstractResource. This class represents each ‘“intelligent”
device belonging to the plant equipped with an electronic device capable
of sending/receiving data to/from its digital counterpart. A CPS can be
connected with the physical device to maintain synchronization between
shopfloor and simulation models. A CPS can be an aggregation of other
CPSs and simple Resources, using its Assets and Behaviours to aggregate
lower-level models and functionalities.

Each CPS must be identified by a string ID that must be unique within
the plant.

Field Type Description

cps- CPS- Each CPS can be an instantiation of a prototype
Prototype Prototype CPS that has been defined in a library of models
(usually stored in the CSI) that simulation tools
can access and use. See §10.3.4.1 Prototypes
and instances.
This field can be null if the CPS does not derive
from the instantiation of a prototype.
device Device Represents the description of the device that
ensures the data connection between the physical
and digital contexts. This object characterizes all
the I/Os that can be received and sent from and
to the real equipment.
This field cannot be null, while it is possible
that the device, even if fully defined, is not
connected to real electronic equipment.

principal Principal ~ Each CPS has a related access level that is
defined in compliance with the security data
model described in section “Security Data
Model” and implemented by the CSI.

10.3.5 Device Model

This section contains the documentation of the classes needed to model the
electronic equipment of the intelligent resources. This equipment is described
in terms of the interfaces that can be used by the digital tools to open data
streams with the real devices (Figure 10.8).

300 Open Semantic Meta-model as a Cornerstone for the Design and Simulation

IdentifiedElement &

Device =)
¢ [X3
+ deviceConnection | 1
DeviceConnection g DevicelO & DeviceSignal [

+ outputSignals
4 deficelO 1 +inputSignal§

>

1 1
+ deviceConfiguration

DeviceConfiguration & <—
3

iz] SignalDirection | |r] SignalType g

Input BYTE

Output INT
FLOAT
BIT
BLOB

Figure 10.8 Class diagram of devices section.

10.3.5.1 Device

Device is an IdentifiedElement and represents an electronic equipment of
physical layer that can be connected to the digital counterpart to send/receive
data.

Field Type Description

device- Device- It contains all the details to open data streams with

Connection Connection the physical device. E.g. for Ethernet-based
connections, it contains IP address as well as
information on ports, protocols and possibly the
security parameters to apply to receive access
rights to the specific resource.

The field can be null.

device- Device- It contains details on the device hardware and

Configuration Configuration software configuration (e.g. version of the running
PLC code). This object can be updated
dynamically based on data read from the physical

10.3 Meta Data Model Reference 301

Field Type Description
device to reflect the actual working condition of
the device.
The field can be null.
devicelO DevicelO It contains the map of Input/Output data signals

that can be exchanged with the physical device.
The field cannot be null. If no signal can be
exchanged with the device, the DevicelO map is
present but empty.

Normally, this should not happen (except during
the drafting phase) because if a device does not
allow any data exchange with its digital
counterpart, then it should be treated as a passive
resource.

10.3.5.2 DevicelO
DevicelO represents a map of input and output signals that can be exchanged
with a specific device. Moreover, the DevicelO represents the communication
between CPS on IO-Level.

Field

Type

Description

input-
Signals

Device-
Signal[]

Array of DeviceSignal describing input signals.

Signal direction is seen by the device;
therefore, this is the list of data that can be sent
TO the device.

The field cannot be null.

Length of the array can be O to n

All DeviceSignal instances belonging to this
collection must have direction attribute set to
SignalDirection.Input.

output-
Signals

Device-
Signal[]

Array of DeviceSignal describing output signals.

Signal direction is seen by the device;
therefore, this is the list of data that can be
received FROM the device.

The field cannot be null.

Length of the array can be O to n

All DeviceSignal instances belonging to this
collection must have direction attribute set to
SignalDirection.Output.

302 Open Semantic Meta-model as a Cornerstone for the Design and Simulation

IdentifiedElement & <t————
Plant Eg Project 8
+ geoLocation : string <‘>plant * projects
+ company : string 3 K
0.1
+ planty1 + projecty1
TresourEEs resources
%
AbstractResource [+scenarios |=
P — SimulationScenario g ——
1 e
+scenario |1 1 +scenario
+results |« +models |=
Assot = SimResult = simModel =
+results +model
* 1
+assets [1.7 &~

Figure 10.9 Class diagram of the Project Model section.

10.3.6 Project Model

This section describes the classes related to the management of projects,
scenarios and results of simulations for a certain plant that are produced and
consumed by simulation tools (Figure 10.9).

10.3.6.1 Project

A project is an IdentifiedElement. It can be considered mainly as a utility
container of different simulation scenarios that have been grouped together
because they are related to the same part of the plant (e.g. different scenarios
for the same painting cell of the production line).

10.3 Meta Data Model Reference 303

A project could identify a design or a reconfiguration of a part of the
plant for which each SimulationScenario represents a hypothesis of layout of
different resources.

10.3.6.2 Plant

Plant is an extension of IdentifiedElement and represents an aggregation
of projects and resources. A plant instance could be considered as an
entry point for simulation tools that want to access models stored on the
CSL. It contains references to all the resource instances that are subject of
SimulationScenarios. In this way, it is possible to have different simulation
scenarios, even with simulation of different types, bound to a single resource
instance.

Note: the fact that different simulations of different nature can be set up
for the same resource (be it a cell, a line, etc.) is not related to the concept of
multi-disciplinary simulation that is, instead, implemented by the Simulation
Framework and refers to the possibility of running concurrent, interdependent
simulations of different types.

The ID of the Plant must be unique within the overall framework
deployment.

10.3.6.3 SimulationScenario

SimulationScenario is an extension of IdentifiedElement and represents the
run of a SimModel producing some SimResults. A simulation scenario refers
to a root resource that is not necessarily the root resource instance of the
whole plant, because a simulation scenario can be bound to just a small part
of the full plant. A simulation scenario can set up a multi-disciplinary simu-
lation, defining different simulation models for the same resource instance to
be run concurrently by the Simulation Framework.

10.3.6.4 SimModel
SimModel is an IdentifiedElement and represents a simulation model
within a particular SimulationScenario. Each model can assemble different
behavioural models of the root resource into a specific simulation model,
creating scenario-specific relationships that are stored inside simulation
assets that can be expressed both in an interoperable format (e.g. Automa-
tionML) when there is need for data exchange among different tools and in
proprietary formats.

The ID of a SimModel instance must be unique within a Simulation
Scenario.

304 Open Semantic Meta-model as a Cornerstone for the Design and Simulation

Plant1 : Plant BendingCellProject : Project
DESModel2 : ¥ ! g EnerayModel :
SimModel DESScenario2 : MD-DESScenariot : > SimModel
< SimulationScenario SimulationScenario
DESModel1 :
gg Resut2: I rootResource R 5 smiodel
= . 3 rootResource
SimResult 4 ,
¥ Demoline : Resource ; DemoLineNew :
Resource
0N 4 0N l i
BendingCell : Resource = AutomaticMagazine : PunchingMachine : CPS = BendingCellNew :
CcPS Resource
/F /i /I\ /r
2 SecurityFence : @ BendingMachine : CPS s SecurityFenceNew : — BendingMachineNew :
) g =
Resource Resource & CcPS

Figure 10.10 Object diagram of the Project Model.

The object diagram shown below (Figure 10.10) shows a possible applica-
tion of the Project Model: a set of simple resources and CPS is organized into
two hierarchies: one representing the actual demo line and a second hierarchy
modelling a hypothesis of redesign of the demo plant. All the Resource
and CPS instances belong to the plant model Plantl (relationships in this
case have not been reported to keep the diagram tidy). The user wants to
perform two different simulations, one for each root resource. For this reason,
he/she sets up two SimulationScenario instances: MD-DESScenariol and
DESScenario2. Each one refers to a different root resource. The former is a
multi-disciplinary scenario of the DemoPlantNew that will use a combination
of a DES model and an Energy Consumption model, while the latter repre-
sents a simple DES-only scenario of the original DemoPlant. These scenarios
are aggregated in a Project instance (BendingCellProject) that belongs to the
Plant1 project and that is meant to compare the performance of the plant using
two different setups of the bending cell. For DESScenario2, there are already
simulation results Result2.

10.3.7 Product Routing Model

In this paragraph, a description of the product routing section of the meta
data model is given. Structural choices as well as requirements consideration

10.3 Meta Data Model Reference 305

are reported, with a particular focus on the validation points that have been
reviewed by experts. In order to describe this part of the model, each class is
treated separately and clusters of functional areas have been created for sim-
plicity. All attributes, cardinality indications and relationships are described
with respect to the single entity and in the general data model perspective.

10.3.7.1 Relationship between product routing model and ISO
14649-10 standard

The product routing section of the data model has been developed according
to the ISO 14649-10 standard, “Industrial automation systems and integra-
tion — Physical device control — Data model for computerized numerical
controllers — Part 10: General process data”, which was deeply analysed
and chosen as best-fitting standard for the product feature — operation cou-
pling part. Its characteristics and focus areas are suitable from the functional
point of view, as it tackles some aspects that the model needs to cover
in exactly the same application environment. In fact, it supports the com-
munication between CAD and CNC. ISO 14649-10 specifies the process
data that is generally needed for NC programming in any of the possible
machining technologies. These data elements describe the interface between
a computerized numerical controller and the programming system (i.e. CAM
system or shopfloor programming system). On the programming system, the
programme for the numerical controller is created. This programme includes
geometric and technological information. It can be described using this part of
ISO 14649 together with the technology-specific parts (ISO 14649-11, etc.).
This part of ISO 14649 provides the control structures for the sequence of
programme execution, mainly the sequence of working steps and associated
machine functions.! The standard ISO 14649-10 gives a set of terms and
a certain hierarchy among them, though without specifying the type of
relations. Being focused on process data for CNC (Computerized Numeri-
cal Control), the terminology is deeply technical in describing all different
types of manufacturing features, mechanical parameters and measures. The
relationship between workpiece features, operations and sequencing is of
relevance for the purpose of this work, so a number of entities have been
selected. Only after that, the distinction between classes and attributes was
made, together with the definition of the types of relationships and references
among the classes.

'ISO 14649. http://www.iso.org/iso/catalogue_detail ’csnumber=34743

306 Open Semantic Meta-model as a Cornerstone for the Design and Simulation

Schedule =)

+ releaseDateAndTime : long = =a
i2.] Schedule Status 1 A IdentifiedElement 8
+ owner : string

+ state : ScheduleStatus I

+workpiece . .
P + realizedWorkpiece

Material 9 1
+ material Workpiece g
1 7] + tolerance : foat —
_ Program Structure &
+ required_program_structure 90
— 1 1.x
Geometry
+ geometry 1 2.2
3
+asset
Asset ;
+ disassembly_workpiece
+ manufacturing_feature |, . + assembly_workpiece_subset L
ManufacturingFeature IAssemblyWorkpiece Subset[Z DisassemblyWorkpiece [

Figure 10.11 Schedule and workpiece representation.

10.3.7.2 Workpiece

Workpiece class (Figure 10.11) represents the part or product that needs to
be machined, assembled or disassembled. Each schedule realizes at least
one workpiece, but it may also realize different product variants, with var-
ious features. Each product variant is a different instantiation of the class
“Workpiece” and extends the IdentifiedElement class. Being a central entity
for the data model, the workpiece has a further development side that con-
cerns the production scheduling and product routing. Manufacturing methods
and instructions are not contained in the workpiece information but are
determined by the operations themselves.

10.3.7.3 ProgramStructure
ProgramStructure determines how the different operations are executed for
a specific work piece, i.e. in series or parallel (see also Figure 10.12).

10.3 Meta Data Model Reference 307

! + programStructure

Program Structure =<

+ structureType : ProgramStructureType

I

+machiningExecutable . assemblyExecutable | * disassemblyExecutable

= = =

MachiningExecutable AssemblyExecutable [DisassemblyExecutable

—

i2.]Program StructureType 1] IdentifiedElement

Parallel
Serial

Figure 10.12 Program structure representation.

A program structure, at low level, is composed of single, ordered steps, called
“Executables”. Depending on the type of program structure, the executables
are realized in series or parallel. The program structure thus defines how the
different steps are executed and at the same time gives some flexibility in the
choice, by taking into account data from the system.

10.3.7.4 ProgramStructureType
Enumeration representing the allowed types of a ProgramStructure instance
(Figure 10.12).

10.3.7.5 MachiningExecutable

Machining executables initiate actions on a machine and need to be arranged
in a defined order. They define all those tasks that cause a physical trans-
formation of the workpiece. MachiningExecutable class extends the Identi-
fiedElements class and is a generalization of machining working steps and
machining NC functions, since both of these are special types of machining
executables. Hierarchically, it is also a sub-class of program structures, being

308 Open Semantic Meta-model as a Cornerstone for the Design and Simulation

their basic units, as it constitutes the steps needed for the execution of the
program structure. Starting from the machining executable, the connected
classes are represented in Figure 10.12.

10.3.7.6 AssemblyExecutable

AssemblyExecutable also extends IdentifiedElement class. AssemblyExe-
cutable are a specialization of program structures and generalizations of
working steps or NC functions. As in the case of machining executables,
they initiate actions on a machine and need to be arranged in a defined
order: assembly executables include all those operations that allow creating
a single product from two or more work pieces. Starting from the assembly
executable, the connected classes are represented in Figure 10.12.

10.3.7.7 DisassemblyExecutable

DisassemblyExecutable is derived from IdentifiedElement. DisassemblyEx-
ecutables are generalizations of working steps or NC functions. As in the
case of machining and assembly executables, they are also a specialization of
program structures, being their basic units, as these three classes constitute
the steps needed for the execution of the program structure. Thus, it can be
imagined that one or more machining executables, one or more assembly exe-
cutables and one or more disassembly executable compose program structure.
Disassembly executables also initiate actions on a machine and need to be
arranged in a defined order: disassembly executables perform an opposite
activity with respect to assembly, which means that from a single part it
extrapolates more than one part. Starting from the disassembly executable,
the connected classes are represented in Figure 10.12.

10.3.7.8 MachiningNcFunction

MachiningNcFunction is an IdentifiedElement and a specialization of
MachiningExecutable (Figure 10.13) that differentiates from the machining
working step for the fact that it is a technology-independent action, such as a
handling or picking operation or rapid movements. It has a specific purpose
and given parameters. If needed, other parameters regarding speed or other
technological requirements can be added as attributes.

10.3.7.9 MachiningWorkingStep

MachiningWorkingStep is an IdentifiedElement that is also a specialization of
MachiningExecutable, the most important one for the purpose of this work. It
is the machining process for a certain area of the workpiece, and as such,

10.3 Meta Data Model Reference 309

ExternalDocumentation &
+ externalDoc
; * ini uction '?
N W°'k°meil 7| + description : string
MachiningWorkpiece Setup£Z|

Workpiece 8

+ workpieceSetup

+next
1 —_— —
> MachiningWorkingStepf8 MachiningExecutable & —
+ manufacturing_feature)
—D
1 <
ingFeature £
1 + relatedManufacturingFeature
- . Operation |1 CcPS MachiningNcFunction&
+ requiredMachjningOperation +actuato
5l iningOperation ¢ <<
MachiningTool £& H 3 H
+ maxFeedrate : foat

+ requiredTools + toolDirection : string
€| + startPosition : Vector3

4 1
i El< (¥
+ feedrate : foat
+ toolReferencePoint : Vector3

+ machiningTechnology
+generatedScrap

+fixture | 1.+

¢

S g Fixte g Bendil g
MachiningToolpath +toolpath crap (8 xture [nding (9

AvARvAvAv
ﬁ\

Figure 10.13 Machining executable representation.

it is related to a technology like milling, drilling or bending. It cannot
exist independent of a feature, but rather specifies the association between
a distinct feature and an operation to be performed on the feature. It cre-
ates an unambiguous specification, which can be executed by the machine.
An operation can be replicated for different features, while a working step is
unique in each part program as it spans for a defined period of time and relates
to a specific workpiece and a specific manufacturing feature. Each working
step thus defines the conditions under which the relative operation has to
be performed. This means also that the operation related to the machining
working step must be in the list of possible operations related to a certain
manufacturing feature (Figure 10.13).

310 Open Semantic Meta-model as a Cornerstone for the Design and Simulation

10.3.7.10 MachiningWorkpieceSetup

MachiningWorkpieceSetup has a direct reference to the workpiece and is
defined for each machining working step, since it defines its position for
machining. In fact, it may change according to the position of the single
machining feature on the workpiece. In fact, also the reference to the manu-
facturing feature for which it is defined is unique: a single workpiece setup,
in fact, refers to only one machining working step that is meant to realize a
defined feature.

10.3.7.11 MachiningSetuplnstructions

For each single operation in time and space, precise setup instructions may
be specified, connected to the workpiece setup, such as operator instructions
and external material in the forms of tables, documents and guidelines.
MachiningSetuplInstructions class extends the IdentifiedElement class.

10.3.7.12 ManufacturingFeature

ManufacturingFeature is an IdentifiedElement that is a characteristic of the
workpiece, which requires specific operations. For 3D simulation and Com-
puter Aided Design, it is fundamental to have the physical characteristics
specifications: as shown in Figure 10.13, the workpiece manufacturing fea-
tures are a relevant piece of information for modelling and simulation, as they
determine the required operations.

10.3.7.13 MachiningOperation

MachiningOperation is an IdentifiedElement that specifies the contents of a
machining working step and is connected to the tool to be used and a set
of technological parameters for the operation. The tool choice depends on
the specific working step conditions (Figure 10.13). The more information is
specified for tool and fixture, the more limited the list of possible matches is.
Therefore, only the relevant, necessary values should be specified.

10.3.7.14 MachiningTechnology

MachiningTechnology collects a set of parameters, such as feed rate or tool
reference point. The addition of new attributes would expand the possibilities
of technological specifications.

10.3.7.15 FixtureFixture
Fixture class is an IdentifiedElement that represents the fixtures required
by machining operations, if any. Given that the same operation may be
performed under different conditions, the choice of a fitting fixture is done
for the single working step.

10.3 Meta Data Model Reference 311

10.3.7.16 Assembly and disassembly

In Figures 10.14 and 10.15, assembly-executable and disassembly-executable
branches are examined, even though their development is very similar to the
machining executable branch. In fact, they differ only for a low number of
details and specifications. These differences are presented in the following
subsections.

+ workpiece

Workpiece ExternalDocumentation|

+ tolerance : fioat + externalDocumentation

1

Y e]
K ———
S—— AssemblySetuplinstruction

y_setup_ii + description : string

+next AssemblyExecutable %
i | . -
e
= 1 5 f
+ assembly_workpiece_subset CPS i Zﬂ
+actuato
- 1
Consumable
AssemblyTool =¢] e biyOperation o i performedAs s emblyOperation Gluing 8
+ maxFeedrate : foat ©

Operation aﬂq

*+ requiredAss emblyTools * | *+ toolDirection : Vector3

+ startPoint : Vector3
1 -
; Welding £
AssemblyTechnology .

+ feedrate : foat
+ toolReferencePosition : Vector3

0.1
1
+ assemblyTechnology + assemblyFixture
1
AssemblyToolpath Fixture) IdentifiedElement
+toolpath
— <t
<
N AN AN
+asset [1
Asset

Figure 10.14 Assembly-Executable representation.

312 Open Semantic Meta-model as a Cornerstone for the Design and Simulation

Workpiece 8 pr— ExternalDocumentationg|

+ tolerance : foat

T . DisassemblySetupinstruction F&| E
+ description : string

42 2 +workpiece'| 1

DisassemblyWorkpiece Setup £

T' + disassembly_setup_instructions

+next
1 + disassemblyWorkpieceSetup ()1 DisassemblyExecutable 8| —
DisassemblyWorkingStep &

DisassemblyWorkpiece v ;
e
1
- + actuator T
CPS <> DisassemblyNcFunction
+ disassembly_workpiece & 3 ~ 9

DisassemblyTool =

+ maxFeedrate : foat + requiredDis ass emblyOperation

+ performedDis ass emblyOperation

¥

1 S L <> DisassemblyOperation 4 Cutting
+ requiredDis assemblyTool * + toolDirection : Vector3
DisassemblyTechnology + startPoint : Vector3
+ feedrate : foat *
+ toolReferencePosition : Vector3 | ¢_1 1
[YN 3
1 + disassemblyTechnology
1
i pa <
+toolpath +produces |+ +fixtures [4 =
Scrap [# Fixture [§ IdentifiedElement 8 .
D
M <=
+asset |1 PN a A
Asset =)

Figure 10.15 Disassembly representation.

10.3.8 Security Model

The phases of requirement gathering and analysis highlighted that security
and privacy are two of the principal issues that must be properly addressed in
a simulation platform.

Here, security and privacy will be enforced focusing mainly on the
following aspects:

e The implementation of suitable authentication/authorization
mechanisms
e Securing communication and data storage via encryption

10.3 Meta Data Model Reference

313

These aspects fall under the so-called Privacy-Enhancing Technologies

(PETs).

More in detail, authentication is the process of confirming the identity of
an external actor in order to avoid possible malicious accesses to the system
resources and services. Authentication, however, is only one side of the coin,
it is in fact tightly coupled with the concept of authorization, which can be
defined as the set of actions a software system has to implement in order
to grant (authenticated) users the permission to execute an operation on one
or more resources. Authentication and authorization are concepts related to
both security (unwanted possible catastrophic access to inner resources) and
privacy and data protection issues (malicious access to other users’ data).

Client =)

+ clientld : string

+Uus erﬁ

CPS Eg User ¢ Principal
+ logn : string + description : stri...
+ cpsPrototype
1
CPSPrototype (& Human B IdentifiedElement &

+ sumame : string

+ firstname : string
+ email : string

+ activated : boolean

+ principal Role E4
3
+ authority (=
Authority =)
(<=7 + action : ActionEnum

+ allow : boolean

i2] ActionEnum @

READ
WRITE
CREATE
DELETE
ALL
NONE

+ actionEnum/I\‘1

ResourceSet (g

+ resourceSet Q.
1.5

Resource Eg

+resource

>

+ uni : string

. 1.7

Figure 10.16 Class diagram for the security section of the Meta Data Model.

314 Open Semantic Meta-model as a Cornerstone for the Design and Simulation

Securing communication is the third piece of this security and privacy
puzzle, and it is as necessary as authentication and authorization. As a matter
of fact, most physical devices (e.g. wireless networks) show very few privacy
guaranties, and in many cases, it is practically impossible to secure wide
networks against eavesdroppers. Nonetheless, confidentiality and privacy are
fundamental rights (acknowledged by the European Convention on Human
Rights) and must be enforced over often unsecure (communication and stor-
age) infrastructures. For this reason, the simulation platform is committed to
employ state-of-the-art encryption mechanisms (e.g. SSL and TLS) on both
data storage and transport.

In the following sections of the document, the part of Meta Data Model
devoted to security/access control management is reported and discussed. The
elements of the meta model that play a role in security-related scenarios are
depicted in Figure 10.16.

10.4 Conclusions

Multidisciplinary simulation is increasingly important with regard to the
design, deployment and management of CPS-based factories. There are many
challenges arising when exploiting the full potential of simulation technolo-
gies within Smart Factories, where a consistent technological barrier is the
lack of digital continuity. Indeed, this chapter targets the fundamental issue
of the lack of common modelling languages and rigorous semantics for
describing interactions — physical and digital — across heterogeneous tools
and systems towards effective simulation applicable along the whole factory
life cycle.

The data model described in this chapter is the result of the joint effort of
different actors from the European academia and industry. From the reference
specifications presented in this chapter, which should be considered as a first
release of a broader collaboration, a model has indeed been developed and
has subsequently been validated within both an automotive industry use case
and a steel carpentry scenario.

Acknowledgements

This work was achieved within the EU-H2020 project MAYA, which received
funding from the European Union’s Horizon 2020 research and innovation
programme, under grant agreement No. 678556.

References 315

References

[1] www.automationml.org, accessed on March 24, 2017.

[2] Weyer, Stephan, et al.: Towards Industry 4.0-Standardization as the
crucial challenge for highly modular, multi-vendor production systems.
IFAC-PapersOnLine, 48. Jg., Nr. 3, S. 579-584, 2015.

[3] Baudisch, Thomas and Brandstetter, Veronika and Wehrstedt,
Jan Christoph and Wei{\ss}, Mario and Meyer, Torben: Ein zentrales,
multiperspektivisches Datenmodell fur die automatische Generierung
von Simulationsmodellen fur die Virtuelle Inbetriebnahme. Tagungs-
band Automation 2017.

	Open Semantic Meta-model as a Cornerstone for the Design and Simulation of CPS-based Factories
	Introduction
	Adoption of AutomationML Standard
	Meta Data Model Reference
	Base Model
	Property
	CompositeProperty

	Assets and Behaviours
	ExternalReference
	Asset
	Behaviour

	Prototypes Model
	Prototypes and instances
	Prototypes and instances aggregation patterns
	AbstractResourcePrototype
	ResourcePrototype
	CPSPrototype

	Resources Model
	AbstractResource
	CPS

	Device Model
	Device
	DeviceIO

	Project Model
	Project
	Plant
	SimulationScenario
	SimModel

	Product Routing Model
	Relationship between product routing model and ISO 14649-10 standard
	Workpiece
	ProgramStructure
	ProgramStructureType
	MachiningExecutable
	AssemblyExecutable
	DisassemblyExecutable
	MachiningNcFunction
	MachiningWorkingStep
	MachiningWorkpieceSetup
	MachiningSetupInstructions
	ManufacturingFeature
	MachiningOperation
	MachiningTechnology
	FixtureFixture
	Assembly and disassembly

	Security Model

	Conclusions

