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Abstract

This paper presents a multi-agent control architecture for the efficient control
of a multi-wheeled mobile platform. Such control architecture is based on
the decomposition of a platform into a holonic, homogenous, multi-agent
system. The multi-agent system incorporates multiple Q-learning agents,
which permits them to effectively control every wheel relative to other
wheels. The learning process was divided into two steps: module positioning —
where the agents learn to minimize the error of orientation, and cooperative
movement — where the agents learn to adjust the desired velocity in order to
conform to the desired position in formation. From this decomposition, every
module agent will have two control policies for forward and angular velocity,
respectively. Experiments were carried out with a simulation model and the
real robot. Our results indicate a successful application of the purposed control
architecture both in the simulation and in real robot.

Keywords: control architecture, holonic homogenous multi-agent system,
reinforcement learning, Q-Learning, efficient robot control.

6.1 Introduction

An efficient robot control is an important task for the applications of a mobile
robot in production. The important control tasks are power consumption
optimization and optimal trajectory planning. Control subsystems should
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provide energy consumption optimization in a robot control system. Four
levels of robot power consumption optimization can be distinguished:

e Motor power consumption optimization. Those approaches based on
energy-efficient technologies of motor development that produce sub-
stantial electricity saving and improve the life of the motor drive
components [1, 2];

o Efficient robot motion. Commonly, this is a task of an inverse kinematics
calculation. But the dynamic model is usually far more complex than the
kinematic model [3]. Therefore, intellectual algorithms are relevant for
the optimization of a robot motion [4];

o Efficient path planning. Such algorithms build a trajectory and divide it
into different parts, which are reproduced by circles and straight lines. The
robot control subsystem should provide movement along the trajectory
parts. For example, Y. Mei and others show how to create an efficient
trajectory using knowledge of the energy consumption of robot motions
[5]. S. Ogunniyi and M. S. Tsoeu continue this work using reinforcement
learning for path search [6];

o Efficient robot exploration. When a robot performs path planning
between its current position and its next target in an uncertain environ-
ment, the goal is to reduce repeated coverage [7].

The transportation of cargo is an actual task in modern production. Multi-
wheeled mobile platforms are increasingly being used in autonomous trans-
portation of heavy components. One of these platforms is a production mobile
robot, which was developed and assembled at the University of Ravensburg-
Weingarten, Germany [3]. The robot is illustrated in Figure 6.1(a). The
platform dimensions are 1200cm in length and 800cm in width. The maximum
manufacturer’s payload is 500kg, battery capacity is 52Ah, and all modules
drive independently.

The platform is based on four vehicle steering modules [3]. The steering
module (Figure 6.1(b)) consists of two wheels powered by separate motors
and behaves like a differential drive.

In this paper, we explore the problems of formation control and efficient
motion control of multiple autonomous vehicle modules in circular trajectory
motion. The goal is to achieve a circular motion of a mobile platform around
a virtual reference beacon with optimal forward and angular speeds.

One solution to this problem, [8-10] is to calculate the kinemat-
ics of a one-wheeled robot for circle driving and then generalize it for
multi-vehicle systems. This approach has shown promising modeling results.
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Figure 6.1 Production mobile robot: Production mobile platform (a); Driving module (b).

The disadvantage of this technique is its low flexibility and high computational
complexity.

An alternative approach is to use the machine learning theory to obtain
an optimal control policy. The problem of multi-agent control in robotics is
usually considered as a problem of formation control, trajectory planning,
distributed control and others. In this paper we use techniques from multi-
agent systems theory and reinforcement learning to create the desired control
policy.

The content of this paper is the following: Section 6.2 gives a short
introduction to the theory of holonic, homogenous, multi-agent systems
and reinforcement learning. Section 6.3 describes the steering of a mobile
platform in detail. Section 6.4 describes the multi-agent decomposition of a
mobile platform. Using this decomposition, we propose a multi-agent control
architecture based on the model described in Section 6.2. Section 6.5 contains
a detailed description of the multi-agent control architecture. The Conclusion
highlights important aspects of the presented work.

6.2 Holonic Homogenous Multi-Agent Systems

A multi-agent system (MAS) consists of a collection of individual agents,
where each agent displays a certain amount of autonomy about its actions
and perception of domain, and communicates via message-passing with
another agent [11, 12]. Agents act in organized structures which encapsulate
the complexity of subsystems and therefore modularize its functional-
ity. Organizations are social structures with means of conflict resolution
through coordination mechanisms [13]. The overall emergent behavior of a
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multi-agent system is composed of a combination of individual agent behav-
iors determined by autonomous computation within each agent, and by
communication among agents [14]. The field of MAS is a part of dis-
tributed Al, where each agent has a distinct problem solver for a specific
task [12, 14].

6.2.1 Holonic, Multi-Agent Systems

An agent (or MAS) that appears as a single entity to the outside world
but is in fact composed of many sub-agents with the same inherent
structure is called holon, and such sub-agents are called holonic agents
[11, 14]. The transformation of a single entity into a set of interacting
subagents is called holonic decomposition. Holonic decomposition is an
isomorphic transformation. Gerber et al. [15] show that an environment
containing multiple holonic agents can be isomorphically mapped as an
environment in which exactly one agent is represented explicitly, and vice
versa.

For the purposes of this paper and without the loss of generality, we use
terms holon and holonic multi-agent system (Holonic MAS) interchangeably,
meaning that a MAS contains exactly one holon. In the general case, a holonic,
multi-agent system (called holarhy) is a self-organized, hierarchical structure
composed of holons [14].

A holon is always represented as a single entity to the outside world.
From the perspective of the environment, a holon behaves as an autonomous
agent. Only a closer inspection reveals that a holon is constructed from a
set of cooperating agents. It is possible to communicate with a holon simply
by sending messages to them from the environment. The most challenging
problem in this design is the distribution of individual and overall computation
of the holonic MAS [15].

Although it is possible to organize holonic structures in a completely
decentralized manner, it is more efficient to use an individual agent to represent
a holon. Representatives are called the head of the holon; the other agents in
the holon are called the body [11]. In some cases, one of the already existing
agents is selected as the representative of the holon. In other cases, a new
agent is explicitly introduced to represent the holon during its lifetime.

The head agent represents the shared intentions of the holon and negotiates
these intentions with the agents in the holon’s environment, as well as with
the internal agents of the holon. Only the head agent communicates with the
entities outside of the holon.
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Figure 6.2 Organizational structure of a Holonic Multi-Agent System. Lines indicate the
communication channels.

The organizational structure of a holonic, multi-agent system is depicted
in Figure 6.2.

When agents join the holon, they surrender some of their autonomy to the
head agent. The binding force that keeps the head and body in a holon together
can be called a commitments [16]. It should be explicitly noted that agents are
not directly controlled by the head agent. The agents remain autonomous
entities within the holon, but they align their individual behavior with the
goals of holon.

6.2.2 Homogenous, Multi-Agent Systems

For the purposes of this paper, we will consider the case when all body agents
are homogenous. In a general, multi-agent scenario with homogeneous agents,
there are several different agents with an identical structure (sensors, effectors,
domain knowledge, and decision functions) [17]. The only differences among
agents are their sensory inputs and the actual actions they take, as they are
situated differently in the world [18]. Having different effector outputs is a
necessary condition for MAS; if the agents all act together as a unit, then
they are essentially a single agent. In order to realize this difference in output,
homogeneous agents must have different sensor input as well. Otherwise, they
will act identically.
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Thus, the formal definition of holonic, homogenous, multi-agent system
(H2MAS) is a tuple H = (B, h,C):

o B={My,My,...,M,}-is the set of homogenous body agents. Each
agent is described by a tuple M; = (s, a, 7;), where:

e s—isthe set of possible agent states, where s; € sis the i-th agent current
state;

e o~ is the set of possible agent actions, where a; € « current action of
the i-th agent;

e T : s — « is the behavior policy (decision function) which maps it’s
state to actions;

e h — is the head agent representing the holon to the environment and
responsible for coordinating the actions inside the holon:

o S=5""={(s1,52,...,5n) |5 €sforall 1<i<n}-isajointstate
of the holon;
o A =" = {(a1,a2,...,an)|a; € aforall 1 <i<n}isa joint

action of the holon;
o 7:S — A-global;
o C —is the commitment that defines the agreement to be inside the holon.

The learning of multi-agent systems composed of homogenous agents has a
few important properties which affect the usage of such systems.

6.2.3 Approach to Commitment and Coordination in H2 MAS

The holon is realised exclusively through cooperation among the constituent
agents. The head agent is required to co-ordinate the work of the body agents
to achieve the desired global behavior of HHMAS by combining individual
behaviors, resolving collisions, etc. In this way, a head agent serves as a
coordination strategy among agents. The head is aware of the goals of the
holon, and has access to important environmental information which allows
it to act as a central point of coordination for body agents.

Since a body agent has some degree of autonomy, it may perform an
unexpected action, which can lead to uncoordinated behavior within the
Holon. The head agent can observe the states and actions of all subordinate
agents and can fix undesired behavior using simple coordination rule: if the
current behavior of the holon M; is inconsistent with the head agent’s vision,
then it sends a correction message to M;. This action by the head is known as
an influence on the body. When the body M; succumbs to the influence, this
is called making a commitment to the Holon.
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6.2.4 Learning to Coordinate Through Interaction

The basic idea of the selected approach for coordination is to use influences
between the head and the body to determine the sequence of correct actions
to coordinate behavior within the holon. The core design question is how to
determine such influences in terms of received messages and how received
messages affect changes of individual policies.

To answer this question we postulate that interacting agents should
constantly learn optimal coordination from scratch. To achieve this, we
can use influence-based, multi-agent reinforcement learning [18-20]. In
this approach, agents learn to coordinate using reinforcement learning by
exchanging rewards with each other.

Inreinforcement learning, the ith agent executes an action a; at the current
state s;. It then goes to the next state s; and receives a numerical reward r
as feedback for the recent action [21], where s;, 8; €s,a; € a, reR.
Ideally, agents should explore state space (interact with environment) to build
an optimal policy 7*.

Let Q (s,a) — represent a Q-function that reflects the quality of the
specified action a in state s. Optimal policy can be expressed in terms of
optimal Q-function QQ*:

7 (s) = arg max Q" (s,a). (6.1)
a€a(s)
The initial values of Q-funcions are unknown and equal to zero. The learning
goal is to approximate the Q-function, (e.g. to find true Q-values for each
action in every state using received sequences of rewards).

A model of influence-based multi-agent reinforcement learning depicted
in Figure 6.3.

In this model, a set of body agents with identical policies 7 acts in
a common, shared environment. The " body agent M; in the state s;
selects an action a; using current policy 7, and then moves to the next
state ;. The head agent observes changes resulting from the executed
action and then calculates and assigns a r, to the agent as an evaluative
feedback.

Equation (6.2) is a variation of the Q-learning update rule [21] used to
update the values of the Q-function, and where learning homogeneity and
parallelism are applied. Learning homogeneity refers to all agents building
the same Q-function, and parallelism requires that they can do it in parallel.
The following learning rule executes NV times per step for each agent in parallel
over single-shared Q-function:
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Figure 6.3 Model of Influence Based Multi-Agent Reinforcement Learning in the Case of a
Holonic Homogenous Multi-Agent System.

AQ (si,a) = a |7+~ max Q (s, a) — Q (si,a;)] - (6.2)

aca(s;)

6.3 Vehicle Steering Module

The platform is based on four vehicle steering modules. The steering module
consists of two wheels powered by separate motors and behaves as a differ-
ential drive. It is mounted to the platform by a bearing that allows unlimited
rotation of the module with respect to the platform (Figure 6.4). The platform
may be equipped with three or more modules.

The conventional approach for the platform control is a kinematics
calculation and an inverse kinematics modeling [3]. The inverse kinematics
calculation is known for the common schemes: the differential scheme, car
scheme, and bicycle scheme. In the case of production module platforms,
the four modules are controlled independently. As a consequence, the con-
trol system can only perform symmetric turning. Hence, the platform has
limited maneuverability [3]. The other problem is the limitations of the robot
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Figure 6.4 The Maneuverability of one module.

configuration. Previous systems require recalculations if modules are added or
removed from the platform. These recalculations require a qualified engineer.

The problem of steering the robot along the trajectory is illustrated in
Figure 6.5. This trajectory consists of four segments:

Figure 6.5 Mobile Robot Trajectory Decomposition.
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e The turning radius length is Ry, the center of rotation is (x1,y1);
e The straight segment;
e The turning radius length is R», the center of rotation is (x2,y2);
e The straight segment.

The steering of the robot also fulfills the following specifications:

e At the starting point, the robot rotates all modules in the direction of the
trajectory;

e A robot cannot stop at any point of the trajectory. The trajectory always
has smooth transitions from one segment to another.

6.4 A Decomposition of Mobile Platform

A platform is composed of identical modules attached to the platform in the
same way as a multi-agent decomposition. This is a prominent way to develop
a distributed control strategy for such platforms. Mobile platforms with four
identical independent driving modules can be represented as homogenous,
holonic, multi-agent systems as described in Section 6.2. The driving modules
are represented as body agents (or module agents) and the head agent (or
platform agent) represents the whole platform. The process of multi-agent
decomposition described above is shown in Figure 6.6.

The whole platform reflects global information, such as the shape of the
platform and the required module topology, including its desired positions
relative to the centroid of the platform. To highlight this information, we can
attach a virtual coordinate frame to the centroid of the platform to create the
virtual structure.

Figure 6.7 shows an illustrative example of the virtual structure approach
with a formation composed of four vehicles capable of planar motions, where

.-z’ntroduction of

holonic
[+ Thead agen? B

decomposition,

Figure 6.6 Holonic Decomposition of the Mobile Platform. Dashed lines represent the
boundary of a Multi-Agent System (the Holon). Introduction of the Head Agent Leads to
a reduction of communication costs.
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Figure 6.7 Virtual Structure with a Virtual Coordinate Frame composed of Four Modules
with a known Virtual Center.

Cy represents the beacon frame and C represents a virtual coordinate frame
located at a virtual center (Zyc, Yy) With an orientation ¢, relative to Cp.
Values of p; = [2;,5:]" and p¢ = [2¢,y¢] represent, respectively, the -th
vehicle’s actual and desired position. Values of ¢; and gpgl represent the actual
and desired orientation, respectively, of the -th vehicle. Each module’s desired
position (:cgl, yf, gof) can be defined relative to the virtual coordinate frame.

For a formation stabilization with a static formation centroid, if each vehi-
clein a group canreach a consensus on the center point of the desired formation
and specify a corresponding desired deviation from the center point, then the
desired motion can be achieved [22]. If each vehicle can track its desired posi-
tion accurately, then the desired formation shape can be preserved accurately.

The vectors d; = (z¢ — zi,ye — y;) and djo = (zc — 2, xc — yf)
represent, respectively, the -th vehicle’s desired and actual deviation relative to
C'. The deviation vector d%” of the i-th module relative to the desired position
is defined as:
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&' =d; — dic. (6.3)

Each module’s desired position can be defined relative to the virtual coordinate
frame. Once the desired dynamics of the virtual structure are defined, the
desired motion for each agent can be derived. As a result, path planning
and trajectory generation techniques can be employed for the centroid
while trajectory tracking strategies can be automatically derived for each
module [23].

6.5 The Robot Control System Learning

The main goal of the control system is to provide the movement of the robot
along the desired circular trajectory. The objective is to create a cooperative
control strategy for any configuration of N modules so that all the modules
within the platform achieve circular motion around the beacon. The circular
motions should have a prescribed radius of rotation pc defined by the center
of the platform and the distance between neighbors. Further requirements are
that module positioning before movement must be taken into account, and
the adaptation of angular and linear speed during circular movement to reach
optimal values.
We divide the process of learning into two steps:

e Module positioning — a learning of the module to rotate to the trajectory
direction (6.5.1);

e Cooperative movement - a learning of cooperative motion of modules
within platform (6.5.2).

The overall control architecture is depicted in Figure 6.8.

From this decomposition, every module agent will have two control
policies, m, and 7, , for both forward and angular velocity, respectively.
Policy 7, is responsible for correct module orientation around the beacon.
Each module follows this policy before the platform starts moving. Policy
is used during circular motion of the platform along curves. Both policies are
created via reinforcement learning, which allows for generalization.

In the simulation phase, the head agent interacts with the modeling
environment. In experiments with real robots, the head agent interacts with
the planning subsystem. The Environment/Planning subsystem provides infor-
mation about the desired speed of the platform v? and the global state of the
multi-agent S = { Uﬁlsi} U {sp}, where s; € sis the state of the i-th module
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Figure 6.8 A unified view of the control architecture for a Mobile Platform.

is defined by values in Table 6.1 and s, = (C, Co, {UY, (zf,y¢, o) }) is
the state of the head agent describes the virtual coordinate frame.

6.5.1 Learning of the Turning of a Module-Agent

This subsection describes the model for producing an efficient control rule for
the positioning of a module, based on the relative position of the module with
respect to the beacon. This control rule can be used for every module, since
every steering module agent is homogenous.

The agent stays in a physical, 2-D environment with a reference beacon,
as shown in Figure 6.9. The beacon position is defined by coordinates (x,
y0). The rotation radius p is the distance from the center of the module to the
beacon.



136 A Multi-Agent Reinforcement Learning Approach for the Efficient Control

Figure 6.9 State of the Module with Respect to Reference Beacon.

The angle error is calculated using the following equations:
¢c = arctan 2(zo — i, Yo — ¥i), (6.4)

Perr = ¢ — . (6.5)

Here, (pgl and ¢; are known from the environment.

In the simulated model environment, all necessary information about an
agent and a beacon is provided. In a real robotic environment, this information
is taken from wheel odometers and a module angle sensor. The environment
information states are illustrated in Table 6.1.

The full set of actions available to the agent is presented in Table 6.2.
The agent with actions A = {A,,, A, } can change an angle speed by actions
A, = {w4,w_} and linear speed by actions A, = {vy,v_}. To turn, an
agent controls the angular speed A, .

Table 6.1 The Environment Information

No Robot Get Value

1 X robot position, x Coordinate, m

2 Y robot position, y Coordinate, m

3 X of beacon center, xp Coordinate, m

4 Y of beacon center, yp Coordinate, m

5  Robot orientation angle, ¢; Float number, radians
-T <@; < T

6  Desired orientation angle relative to robot, ¢ Float number, radians
- <gpf <

7 The radius size, r Float number, m

8 The desired radius size, r¢ Float number, m
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Table 6.2 Agent Actions

No Robot Action Value

1 Increase force, v— +0.1, m/s

2 Reduce force, v+ -0.1, m/s

3 Increase turning left, w+ +0.1, rad/s

4 Increase turning right, w— —0.1, rad/s

5 Do nothing, § +0 m/s, +0 rad/s

The learning system is given a positive reward when the robot orientation
is closer to the goal orientation (¢, — 0) and is using optimal speed wy;.
A penalty is received when the orientation of the robot deviates from the goal
orientation or the selected action is not optimal for the given position. The
value of the reward is defined as:

7l = Ru(dhy,, wh). (6.6)

Where R, — is a reward function, which is represented by the decision tree
depicted in Figure 6.10. Here, (g, represents the value of the angle, where

(- 1o, ,g Iz -(m - |perr|)

™ k>
/@ ,@ 7 Q %‘OQ
&, %, Qes
- |loerr O o o < 0
(n-loerr )g of >0 7 - |perr]
(AN N e:'.!r) & QQAO 7O
o), S/~ s
Y, %)
& X
o< (,l)Opt @ %
A\ o % (- leen)
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X \IY
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Figure 6.10 A Decision tree of the reward function.
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the robot reduces speed to stop at the correct orientation, wey; [0.6 .. 0.8]
rad/s, which is the optimal speed to minimize module power consumption.
The parameter ¢4, is used to decrease the search space for the agent. When
the agent angle error becomes smaller than ¢4,p, an action that reduces the
speed will receive the highest reward. The parameter w,,,; shows the possibility
of power optimization by setting a value function. If the agent angle error is
more than ¢, and wg%” <w< wo”;?‘”, then the agent reward will increase.
This coefficient which determines the increase ranges between [0 .. 1]. The

optimization allows the use of the preferred speed with the lowest power
consumption.

6.5.1.1 Simulation

The first task of the robot control is becoming familiar with robot positioning
through simulation. This step is done once for an individual module before
any cooperative simulation sessions. The learned policy is stored and copied
for other modules via knowledge transfer. The topology of the Q-function
trained during 720 epochs is shown in Figure 6.11.
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Figure 6.11 Result Topology of the Q-Function.
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The external parameters of a simulation are:

e Learning rate o« = 0,4;

e Discount factor y = 0,7;

e Minimal optimal speed w//i" = 0, 6 rad/s;

e Maximum optimal speed wyi* = 0, 8 rad/s;

e Stop angle, Ystop = 0, 16 radians.

Figure 6.12 shows the platform’s initial state (left) and the positioning
auto-adjustment (right) using learned policy [23].

6.5.1.2 Verification

The learning of the agent was executed on the real robot after a simulation with
the same external parameters. The learning process took 1440 iterations. A real
learning process takes more iterations on average because the real system has
noise and sensor errors. Figure 6.13 illustrates the result of execution of a
studied control system used to turn modules to the center, which is on the rear
right side of the images [24].

Figure 6.12 Initial and Final Agente Positions.
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Figure 6.13 Execution of a Learned Control System to turn modules to the center, which is
placed on the rear right relative to the platform.

6.5.2 Learning of the Turning of a Module-Agent

This subsection describes multi-agent learning for producing an efficient
control law in the case of cooperative motion using an individual module’s
speed. The module’s desired linear speed A, should be derived through the
learning process relative to the head agent so that the whole platform is moved
in a circular motion. .

Let the state of the module be represented by s; = {v, d""}, where v,
is the current value of linear speed, and J%”" is the error vector calculated by
(6.7). Action set A, = {@, v, v_} is represented by the increasing/decreasing
of the linear speed from Table 6.2 and action a; € A, is a change of forward
speed Av! for given moment in time ¢.

The virtual agent receives error information for each module and calculates
the displacement error. This error can be positive (module ahead of the
platform) or negative (module behind of the platform). The learning process
progresses toward the minimization of error d%’”’" for every module. The

maximum reward is given for the case where ci;‘-"”“ — 0, and a penalty is
given when the position of the module deviates from the predefined position.
The value of the reward is defined as:

.
, 17 d_'z err > %err
Ty = - 1’ dz err < dz err (67)
10, d! =0

1 err

6.5.2.1 Simulation

Figure 6.14 shows the experimental results of the cooperative movement after
learning positioning [23]. It takes 11000 epochs on average. The external
parameters of a simulation are:

e [ earning rate o = 0,4;
e Discount factor v =0,7.
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Figure 6.14 Agents Team Driving Process.

During the modules learning, the control system did not use any stabilization
of the driving direction. This is because a virtual environment has an ideal,
flat surface. In the case of the real platform, stabilization will be provided
by internal controllers of the low-level module software. This allows us to
consider only the linear speed control.

6.5.2.2 Verification

The knowledge base of the learned agents was transferred to the agents of
the control system on the real robot. Figure 6.15 demonstrates the process of
the platform moving by the learned system [25]. At first, modules turn in the
driving direction relative to the center of rotation (the circle drawn on white
paper), as shown in screenshots 1-6 in Figure 6.15. Then, the platform starts
driving around the center of rotation in screenshots 7-9 in Figure 6.15. The
stabilization of the real module orientation is based on a low-level controller
with feedback. This controller is provided by the software control system of
the robot. It helps to restrict the intellectual control system by manipulating
the linear speed of modules.
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Figure 6.15 The Experiment of modules turning as in the Car Kinematics Scheme (1-6
screenshots) and movement around a White Beacon (7-9).

Figure 6.16 The Experiment shows that the radius doesn’t change during movement.

The distance to the center of rotation is always the same on the entire trajec-
tory of the platform. This is confirmed by Figure 6.16. Hence, the robot drives
around in a circle where the coordinates of the center and the radius are known.

6.6 Conclusions

This paper focuses on an efficient, flexible, adaptive architecture for the
control of a multi-wheeled, production, mobile robot. The system is based
on a decomposition into a holonic, homogenous, multi-agent system and on
influence-based, multi-agent reinforcement learning.
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The proposed approach incorporates multiple Q-learning agents, which
permits them to effectively control every module relative to the platform. The
learning process was divided into two parts:

e Module positioning — where agents learn to minimize the error of
orientation;

o Cooperative movement —where agents learn to adjust the desired velocity
to conform to a desired position in formation.

Ahead agent is used to coordinate modules through the second step of learning.
From this decomposition, every module agent will have a separate control
policy for both forward and angular velocity.

The reward functions are designed to produce efficient control. During
learning, agents take into account the current reward value and the previous
reward value that helps to find the best policy of agent actions. Altogether,
this provides efficient control where agents must cooperate with each other
and use the policy of least resistance between each other on a real platform.

The advantages of this method are as follows:

e Decomposition means that instead of trying to build a global Q-function,
we can build a set of local Q-functions;

e Adaptability — the platform will adapt its behavior for a dynamically
assigned beacon and will auto-reconfigure its moving trajectory;

e Scalability and generalization — the same learning technique is used
for every agent, for every beacon position, and for every platform
configuration.

In this chapter, we showed successful experiments with the real robot where
the system provides robust steering of the platform. These results indicate that
the application of intellectual adaptive control systems for real mobile robots
have great potential in production.

In future works, we will consider a comparison of the developed approach
to mobile robot steering with existing approaches and will provide further
information about efficiency of the developed control systems relative to real
control systems.
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